Assignment p
Computer Networks (CS 456)
Winter 2012
Reliable Data Transfer: The Go-Back-N Protocol
Due Date: Sunday, March 4th,2012, at midnight(11:59 PM)

1 Assignment Objective

The goal of this assignment is to implement the Go-Back-N protocol, which could be used to transfer a
text file from one host to another across an unreliable network. The protocol should be able to handle
network errors such as packet loss and duplicate packets. For simplicity, your protocol is unidirectional,
i.e., data will flow in one direction (from the sender to the receiver) and the acknowledgements (ACKs)
in the opposite direction. To implement this protocol, you will write two programs: a sender and a
receiver, with the specifications given below. You will test your implementation using an emulated
network link (which will be provided to you) as shown in the diagram below:

Sender (sender) Receiver (receiver)

) Network Emulator (nEmulator)

FIGURE 1
When the sender needs to send packets to the receiver, it sends them to the network emulator instead

of sending them directly to the receiver. The network emulator then forwards the received packets to
the receiver. However, it may randomly discard and/or delay received packets. The same scenario
happens when the receiver sends ACKs to the sender.

Note: The assignment description (data structure and program names) assumes an implementation in
Java.

2 Packet Format

All packets exchanged between the sender and the receiver should have the following structure
(consult packet.java provided with the assignment):

public class packet {

private int type; // 0: ACK, 1: Data, 2: EOT

private int segnum; // Modulo 32

private int length; // Length of the String variable ‘data’
private String data; // String with Max Length 500

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

The type field indicates the type of the packet. It is set to 0 if it is an ACK, 1 if it is a data packet, 2 if it is
an end-of-transmission (EOT) packet (see the definition and use of an end-of-transmission packet
below). For data packets, seqnum is the modulo 32 sequence number of the packet. The sequence
number of the first packet should be zero. For ACK packets, seqnum is the sequence number of the
packet being acknowledged. The length field specifies the number of characters carried in the data
field. It should be in the range of 0 to 500. For ACK packets, 1ength should be set to zero.

3 Sender Program (sender)

You should implement a sender program, named sender, on a UNIX system. Its command line input
includes the foIIowing: <host address of the network emulator>, <UDP port number used by
the emulator to receive data from the sender>, <UDP port number used by the sender to
receive ACKs from the emulator>, and <name of the file to be transferred> in the given
order.

Upon execution, the sender program should be able to read data from the specified file and send it
using the Go-Back-N protocol to the receiver via the network emulator. The window size should be set
to N=10. After all contents of the file have been transmitted successfully to the receiver (and
corresponding ACKs have been received), the sender should send an EOT packet to the receiver. The
EOT packet is in the same format as a regular data packet, except that its type field is set to 2 and its
length is set to zero. The sender can close its connection and exit only after it has received ACKs for all
data packets it has sent and an EOT from the receiver. To keep the project simple, you can assume that
the end-of-transmission packet never gets lost in the network.

In order to ensure reliable transmission, your program should implement the Go-Back-N protocol as
follows:

If the sender has a packet to send, it first checks to see if the window is full, that is, whether
there are N outstanding, unacknowledged packets. If the window is not full, the packet is sent and the
appropriate variables are updated. A timer is started if it was not done before. The sender will use only
a single timer that will be set for the oldest transmitted-but-not-yet-acknowledged packet. If the
window is full, the sender will try sending the packet later. When the sender receives an
acknowledgement packet with sequence number n, the ACK will be taken to be a cumulative
acknowledgement, indicating that all packets with a sequence number up to and including n have been
correctly received at the receiver. If a timeout occurs, the sender resends all packets that have been
previously sent but that have not yet been acknowledged. If an ACK is received but there are still
additional transmitted-but-yet-to-be-acknowledged packets, the timer is restarted. If there are no
outstanding packets, the timer is stopped. Further description of the GBN sender and receiver can be
found in slides 45-48 of Module 3 Lecture Notes.

3.1 Output

For both testing and grading purposes, your sender program should be able to generate two log files,
named as segnum.log and ack.log. Whenever a packet is sent, its sequence number should be
recorded in seqnum.log. The file ack.log should record the sequence numbers of all the ACK packets

that the sender receives during the entire period of transmission. The format for these two log files is
one number per line. You must follow this format to avoid losing marks.

4 Receiver Program (receiver)

You should implement the receiver program, named as receiver, on a UNIX system. Its command line
input includes the following: <hostname for the network emulator>, <UDP port number used by
the link emulator to receive ACKs from the receiver>, <UDP port number used by the
receiver to receive data from the emulator>, and <name of the file into which the

received data is written> in the given order.

When receiving packets sent by the sender via the network emulator, it should execute the following:
* check the sequence number of the packet;
* if the sequence number is the one that it is expecting, it should send an ACK packet back to the
sender with the sequence number equal to the sequence number of the received packet;
* |n all other cases, it should discard the received packet and resends an ACK packet for the most
recently received in-order packet;

After the receiver has received all data packets and an EOT from the sender, it should send an EOT
packet then exit.

4.1 Output

The receiver program is also required to generate a log file, named as arrival.log. The file arrival.log
should record the sequence numbers of all the data packets that the receiver receives during the entire
period of transmission. The format for the log file is one number per line. You must follow the format to
avoid losing marks.

5 Network Emulator (nEmulator)

You will be given the executable code for the network emulator. To run it, you need to supply the
following command line parameters in the given order:

® <emulator's receiving UDP port number in the forward (sender) direction>,

® <receiver’s network address>,

® <receiver’s receiving UDP port number>,

® <emulator's receiving UDP port number in the backward (receiver) direction>,

® <sender’s network address>,

® <sender’s receiving UDP port number>,

® <maximum delay of the link in units of millisecond>,

® <packet discard probability>,

* <verbose-mode> (Boolean: Set to 1, the network emulator will output its internal processing).

When the link emulator receives a packet from the sender, it will discard it with the specified
probability. Otherwise, it stores the packet in its buffer, and later forwards the packet to the receiver
with a random amount of delay (less than the specified maximum delay).

6 Hints

* Use the packet class given in packet.java containing necessary declarations, definitions, and
helper methods

* All the packets must be sent and received as byte arrays instead of as Java packet objects. Since
the network emulator is written in C/C++, it cannot read Java objects. Necessary code to convert
the packet class into byte array and vice versa is provided in the packet. java file.

* You must run the programs in the CS Undergrad Environment in order to allow nEmulator to work.

* Experiment with network delay values and sender time-out to understand the performance of the
protocol.

* Run nEmulator, receiver, and sender on three different machines in this order to obtain
meaningful results.

6.1 Example Execution

1. Onthe host hostl: nEmulator 9991 host2 9994 9993 host3 9992 1 0.2 0
2. Onthe host host2: java receiver hostl 9993 9994 <output File>
3. Onthe host host3: java sender hostl 9991 9992 <input file>

7 Procedures

7.1 Due Date
The assignment is due on Sunday, March 4th,2012, at midnight.

7.2 Hand in Instructions
Submit your all your files in a single compressed file (.zip, .tar etc.) using UW-LEARN.

You must hand in the following files / documents:
* Source code files.
* Makefile: your code must compile and link cleanly by typing “make” or “gmake”.
* READMIE file: this file must contain instructions on how to run your program, which undergrad
machines your program was built and tested on, and what version of make and compilers you
are using.

Your implementation will be tested on the machines available in the undergrad environment.

7.3 Documentation

Since there is no external documentation required for this assignment, you are expected to have a
reasonable amount of internal code documentation (to help the markers read your code).

You will lose marks if your code is unreadable, sloppy, inefficient, or not modular.

7.4 Evaluation
Work on this assighment is to be completed individually or in groups of two.

nlimam
Typewritten Text
 or in groups of two.

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

nlimam
Typewritten Text

