graphs.sty—how it works when it works

— A short documentation —
(Version 1.53)

Frank Drewes, 19.12.2000

I thank Renate Klempien-Hinrichs who produced this English documentation of the graph
package by translating my original German text (while I have always been too lazy for
doing so).

1 The General ...

This section contains general remarks on and explanations of the way the macro package
consisting of the file graphs.sty (plus files graphs_ps.tex, graphs_config.tex and
graphs.header) works. A word of caution: The package can be used reasonably only in
combination with dvips (resp. compatible programs) because it employs TEX'’s \special
command in the way expected by dvips. The individual commands are documented in
more detail in the second section; the third contains examples.

1.1 The files

The main file is graphs.sty which should be loaded as a KTEX2e-package if one wants
to use the macros defined there. This file loads on its own the files graphs_ps.tex
and graphs_config.tex. Therefore, all three files should be kept in one of the places
TEX searches for files during processing (e.g. in the directory tex/inputs which usually
contains the other style files, too, or in the directory containing the file to be processed).
Finally, the PostScript driver dvips needs the file graphs.header for the output. The
corresponding path must be indicated in graphs_config.tex.

1.2 The environment graph

The file graphs.sty offers a IXTEX environment graph which, similar to X TEX’s picture
environment, permits to draw graphics. It is intended and (hopefully) adequate to describe

graphs and diagrams. Analogously to the usage of the picture environment, this is done
by

\begin{graph} (z, z3) (d, d2)
: (commands)
\end{graph}
where the parameters have the well-known meaning (and the second pair is optional).

The graph environment is a proper extension of the IXTEX picture environment. There-
fore, in addition to the commands described below, all commands can be used which are
defined within a picture environment.

A variant of the graph environment is the framegraph environment. The latter is identical
to the former, with the exception that the graph is included in a framebox of the declared

1



graph size. (This is helpful if one wants to know whether the declared size matches the
defined graph; it does not have any other purpose.)

1.3 Types of drawing commands

The new drawing commands (i.e. those not coming from picture) can be divided into
four groups:

1. commands to generate nodes,
2. commands to generate edges,

3. commands to position text at nodes or edges, or at any other position given by
absolute coordinates,’

4. commands to generate filled or empty areas, possibly enclosed by lines.

In the sequel, the commands of the four categories above will be called drawing commands
(in contrast to the status commands described below).

1.4 First areas, then edges, then nodes, then text

Drawing commands do not immediately generate the picture. Instead, the required in-
formation is gathered internally in separate lists (for filled areas, nodes, edges, and text).
Only at the end of the environment, first the lines, then edges, then nodes and then texts
are put out. As a result, independently of the actual sequence of the commands, texts
are always drawn on top of nodes, edges, and areas; nodes on top of edges and areas; and
edges on top of areas. Among nodes (edges, texts, areas) themselves, however, the se-
quence is relevant: a node defined later at an overlapping position covers the node defined
previously, and analogously for edges, texts, and areas.

As all definitions take effect only at the end, there is yet another level “below” areas: all
picture commands are executed immediately, i.e. are valid before all others.

1.5 Line thickness, filling colour, and consorts

For line thickness, filling colour, and some other stuff, there are default values which may
be changed globally and locally with the help of some macros, called status commands.
Here, a filling colour is either a shade of grey or a RGB-colour (where the values of r,
g, and b in the argument (r,g,b) of the status command concerned fix the respective
intensities of red, green, and blue).

For local adjustments, every drawing command can take an optional parameter in which
the corresponding status commands are listed. The respective settings are valid locally
for the call of the drawing command which contains them in its optional parameter. (Of
course, not every change has an effect on every drawing command—for a node, a local
change of the size of arrow heads is meaningless yet harmless.)

L“Text” does not exclusively refer to genuine text, but to very general labels: everything is permitted
which may be an argument of put in the picture environment.



For a global change, a status command can be used in the graph environment itself (out-
side of the parameter of a drawing command)—then it is valid for this one environment—
or outside of the environment—then it is valid for all following graphs. As the actual
drawing is done at the end, global settings within an environment always take effect for
the whole environment, i.e. also for drawing previously listed commands. In general, this
renders the repeated global change of a setting within a graph useless. The analogous
statement holds for changing \unitlength (which, in order to avoid confusing effects,
should be avoided anyway on a global level within a graph).

1.6 Units

As far as the parameters describe sizes, their unit is \unitlength (so units are not
specified). The only exception is the status command for broken lines, which is based on
the unit “point”.

1.7 Previewing and printing

Internally, the graphics commands are compiled into the \special commands understood
by dvips (with the exception of the commands for labels). Therefore, only dvips should
be used to print. Moreover, this causes dvi previewers to display only the text. Thus, a
PostScript previewer is needed to display the output of dvips which has previously been
sent to a file.

1.8 Suppressing graph drawing

Sometimes one may wish to suppress graph drawing, because this can speed up the IXTEX
run when a text contains many and/or complicated graphs. For this, there are the com-
mands \drawgraphsfalse and \drawgraphstrue (with the obvious meaning); the latter
is the default. If \drawgraphsfalse is specified, a graph is replaced by a rectangle of
corresponding size with the inscription graph. Apart from this, the option draft can
be handed over to the graphs package in the usual way. This has the same effect as
\drawgraphsfalse at the start of the document.

1.9 Treatment of errors

The treatment of errors is (yet?) quite rudimentary. It is more or less confined to two
things: Firstly, to check whether a node which is used has been defined, and secondly,
whether nodes between which an edge is drawn have distinct coordinates. To treat other
errors, close inspection and checking with this documentation is recommended. Probably
most frequently, an error occurs within a parameter, which usually has quite fatal conse-
quences. The problem with german.sty mentioned below leads often to confusion, too.
Furthermore, it is possible that only the PostScript interpreter detects an error, which
may be provoked by a call of the form \bow{K1}{K2}{xyzl} (see below): The sequence
“xyz” is handed over to PostScript without checking, which in its turn expects to find a
number there.



1.10 Usage of german.sty

When writing German texts with german.sty, \originalTeX has to be called before a
graph environment, because the special treatment of " does not tolerate TEX’s \special
command (as came to my notice when writing the German version of this tutorial ...).
After the \end{graph}, one may switch back to German with \germanTeX.

2 ...and the Particular

And now for the individual commands. They are listed in two tables containing the
status and the drawing commands, respectively, and each of them is followed up with
more detailed descriptions.



2.1 Status commands

\graphnodesize{z} Node diameter x units. Default: 0.2
\graphnodecolour{z} Node filling colour black = 0 < z < 1 = white,
\graphnodecolour(r,g,b) resp. three separate values 0 < r,¢,b < 1 for RGB-
\graphnodecolour+{f} colours. Default: black

\fillednodestrue, Nodes are filled, or not.

\fillednodesfalse Default: true

\graphlinewidth{z} Line thickness z units.

\graphlinewidth*{f} Default: 0.02

\graphlinecolour{z} Line colour black = 0 < z < 1 = white, resp. three
\graphlinecolour(r,g,b) separate values 0 < r,¢9,b < 1 for RGB-colours.
\graphlinecolour+{f} Default: black

\graphlinedash{z; z2 ...}

Line dashing. Default: continuous line

\grapharrowlength{z}
\grapharrowlength*{f}

Length of arrowheads x units.
Default: 0.3

\grapharrowwidth{z} Width of arrowheads in relation to their length.

\grapharrowwidth*{f} Default: 0.5

\grapharrowtype{z} Type (1 or 2) of the arrowheads. Default: 1

\autodistance{z} Distance of automatically placed text. Default: 1.3

\enlargeboxes{z} Enlarge text box horizontally and vertically by x
units. Default: 0.1

\opaquetexttrue, Text covers everything below, or not.

\opaquetextfalse Default: true

\filledareastrue, Areas are filled, or not.

\filledareasfalse Default: true

\graphfillcolour{z} Area filling colour black = 0 < z < 1 = white,

\graphfillcolour(r,g,b) resp. three separate values 0 < r,g,b < 1 for RGB-

\graphfillcolour+{f} colours. Default: 0.5

The *- resp. +-variants of the status commands change the current value proportionally.
Here, f is a (positive) factor. The +-variants brighten the (grey) value for arguments > 1;
they darken it for arguments between 0 and 1. For example, the argument 3 triples the
brightness (for a current value of 0.7, the result is 0.9), and the argument 0.2 reduces the
brightness to a fifth (for a current value of 0.7, the result is 0.14).

2.2 The status commands one by one:

o \graphnodesize{z}

The node diameter is set to x times \unitlength. The diameter is independent of
the line thickness (as long as the latter does not exceed the former), i.e. the inside

of a node decreases with increasing line thickness.

e \graphnodecolour{z} resp. \graphnodecolour(r,g,b)

The parameters z, r, b, g have to be between 0 and 1, and the corresponding shade

of grey resp. colour is used to fill the nodes. Ineffective if \fillednodesfalse.




\fillednodestrue, \fillednodesfalse

Nodes are filled as determined by \graphnodecolour if \fillednodestrue. Other-
wise, nodes are not filled at all. This is usually not a good idea since edges originate
in the centre of a node, so the fill colour white is preferable. However, there are
cases in which \fillednodesfalse can be useful to achieve some special effect.

\graphlinewidth{z}

The thickness of lines, i.e. of edges and contours, is set to x times \unitlength. As
defined by PostScript, a value of 0 does not really lead to line thickness 0, but to
the smallest representable thickness (device dependant!).
\graphlinecolour{xz} resp. \graphlinecolour(r,g,b)

The shade of grey resp. colour for lines (i.e. for edges and contours), analogously to
\graphnodecolour.

\graphlinedash{z; x3 --- z,}

The dashing of lines (i.e. of edges and contours). The z; are positive numbers, and
the list is interpreted cyclically as follows: line of xpt length, gap of xopt length,
line of x3pt length, and so on. An empty list means “continuous line”; otherwise,
at least one entry of the list must differ from 0—for obvious reasons.

Examples:

- 1 produces 1pt line, 1pt gap, 1pt line, 1pt gap, etc.
- 1 2 produces 1pt line, 2pt gap, 1pt line, 2pt gap, etc.
- 3 2 1 produces 3pt line, 2pt gap, 1pt line, 3pt gap, etc.

\grapharrowlength{z}

The length of an arrowhead is = times \unitlength.

\grapharrowwidth{xz}
The width of the basis of an arrowhead is the z-fold of its length.

\grapharrowtype{z}

There are two types of arrowheads: type 1 is a triangle, whereas the sides of type 2
are slightly concave.

\autodistance{z}

Text boxes which are placed automatically at nodes are shifted by factor x to the
left /right and up/down (seen from the center and in proportion to the size of the
node). With a factor of 1, the corner near to the node is placed right on its border.

\enlargeboxes{z}

The size of the rectangles underlying inscriptions or labels (see \opaquetexttrue)
equals the extension of the text plus z times \unitlength in both dimensions.
Thus, an inscription does not appear squeezed in.



e \opaquetexttrue, \opaquetextfalse

Drawing commands which produce text, i.e. labels, underly it with a white rectangle
of corresponding size if \opaquetexttrue. This permits e.g. the inscription of nodes

filled with black.

e \filledareastrue, \filledareasfalse
The commands to draw areas produce contour lines which are filled with the specified
shade of grey resp. colour if \filledareastrue, and left unfilled otherwise.

e \graphfillcolour{z} resp. \graphfillcolour(r,g,b)

The shade of grey resp. colour with which areas produced with \area, \bubble or
\curve are filled. Ineffective if \filledareasfalse.



2.3 Drawing commands

\squarenode{name} (z,y)

Square node “name” at position (z,y).

\roundnode{name} (x,y)

Round node “name” at position (z,y).

\rectnode{name} [w,h] (z,y)

Rectangular node “name” of width w and height h
at position (z,y).

\textnode{name} (z,y) {text}

Rectangular node “name” at position (z,y) with
inscription “text” (size according to inscription).

\edge{name; }{names}

Undirected edge from name; to names,.

\diredge{name;}{names}

Directed edge from name; to names,.

\bow{name; }{names}
{deflection}

Curved undirected edge from name; to names with
relative deflection.

\dirbow{name; }{name,}
{deflection}

Curved directed edge from name; to names with
relative deflection.

\loopedge{name} (z1,%)
($2’y2)

or

\loopedge{name}{a} (z,y)

Undirected loop at name, where the out- and ingo-
ing edge halves either have (z1,y1), (z2,y2) for rel-
ative coordinates of their end points, or enclose the
angle a with (z,y) fixing central axis and length.

\dirloopedge{name} (z,y;)
($2’y2)

or

\dirloopedge{name}{a} (z,y)

Directed loop at name, where the out- and ingoing
edge halves either have (x1,y1), (z2,y2) for relative
coordinates of their end points, or enclose the angle
a with (z,y) fixing central axis and length.

\autonodetext{name}
[n|e|s|w|ne|nw|se|sw] {text}

Positions text automatically at name with optional
parameter “direction”.

\nodetext{name} (z,y)
{text}

Positions text at name with relative coordinates
(x,y) (optional).

\edgetext{name; }{names}
{text}

Positions text at the center between name; and
names.

\bowtext{name; }{names}
{deflection}{text}

Positions text at the center of the bow described
by the parameters.

\freetext (x,y) {text}

Positions text at absolute coordinates (z,y).

In addition to the parameters above, each of the commands may have an (n + 1)-th
optional parameter [---] containing local adjustments in the form of status commands.




\area(x1,y1) (Possibly filled) area with absolute coordinates of
{(zg,y2[,d2]) (x3,y3[,d3])---} | corner points. First point is (z1,y1); from (z;,y;)

to (zit+1,yi+1) with deflection d;.

\bubble{f}{ (Possibly filled) Bézier curve running through
(z1,y1) (x2,y2) -+ -} (x1,y1), (z2,92),... where f denotes the distance

of the control points to the actual points in multi-

ples of the segment length.

\curve{fH (Possibly filled) Bézier curve running through
(z1,y1,00) [f11,f1,2] (x1,y1), (z2,y2),... with control points defined
(2,y2,00) [f2,1,f20]1---} by f (default distance in multiples of the seg-

ment length), a; (angle), f; ; (optional for different
distance).

In addition to the parameters above, each of the commands may have an (n + 1)-th
optional parameter [---] containing local adjustments in the form of status commands.

2.4 The drawing commands one by one:

e \squarenode{name} (x,y)

A square node name with its center at position (z,y); name may contain all symbols
which TEX allows between \csname and \endcsname. This includes in particular
letters and digits.

The size of the node (alterable with \graphnodesize) does not depend on the
line width (which indicates, with respect to nodes, the width of the contour line).
Increasing the line width means decreasing the inside of the nodes.

Depends on:
\graphnodesize, \graphnodecolour, \graphlinewidth, \graphlinecolour,
\graphlinedash, \fillednodestrue/false

e \roundnode{name} (x,y)

As \squarenode, but producing a round node.

Depends on:
\graphnodesize, \graphnodecolour, \graphlinewidth, \graphlinecolour,
\graphlinedash, \fillednodestrue/false

e \rectnode{name} [w,h] (z,y)

As \squarenode, but producing a rectangular node with width and height given
explicitly in w and h (as usual in multiples of \unitlength).

Depends on:
\graphnodecolour, \graphlinewidth, \graphlinecolour,
\graphlinedash, \fillednodestrue/false

e \textnode{name} (x,y) {text}

As \rectnode, but the size of the node is given by the size of the text (plus
\enlargebozxes plus \graphlinewidth). Internally, the text is produced by means
of \autonodetext (see below).



Attention: This command has a private presetting of \graphnodecolour to 1 (=
white). This seems to be useful because of the private setting of \opaquetextfalse
at \autonodetext and may be changed in the optional parameter if required.

Depends on:

\graphnodecolour (in the optional parameter),

\graphlinewidth, \graphlinecolour, \graphlinedash, \enlargeboxes,
\opaquetexttrue/false (in the optional parameter), \fillednodestrue/false

\edge{name; }{namey}
A direct, undirected edge from node name; to node names,.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash

\diredge{name;}{name,}
As \edge, but directed.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash, \grapharrowlength,
\grapharrowwidth, \grapharrowtype

\bow{name; }{name,}{deflection}

An undirected, curved edge from node name; to node name,. The deflection deter-
mines the extent to which the center of the edge is moved to the left, in relation to
the distance between the two nodes. Negative deflection provokes the correspond-
ing move to the right. (In contrast to absolute values, relative deflection has the
advantage that the shape of an edge is independent of the position of the nodes.
For example, a deflection of 0.5 always leads to an edge which forms a semicircle.
This allows for a better estimation of the effects of subsequent node shifting.)

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash

\dirbow{name;}{name;}{deflection}
As \bow, but directed.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash, \grapharrowlength,
\grapharrowwidth, \grapharrowtype

\loopedge{name} (z1,y1) (z2,y2)
or
\loopedge{name}{a}(x,y)

A loop at node name. In the first form, the coordinates (z1,y;) and (z3,ys2) are
interpreted as relative coordinates of the endpoints of two edge halves starting in
name. During drawing, these are connected by a curve to obtain a loop.

The second form determines the angle o which the edge halves include, and their
central axis and length in (z,y) (a point relative to the node position). Thus, the
second form is more comfortable because it allows to easily generate symmetrical
loops, but it is also more restricted because limited to this case.

10



Both forms are based on the smaller angle (i.e. the one < 180 degrees); thus, for the
second form a = 200 degrees is equivalent to 160 degrees plus a 180 degree rotation
of (x,y) around the center of the node.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash

\dirloopedge{name} (z1,¥y1) (x2,y2)
or

\dirloopedge{name}{a}(z,y)

As \loopedge, but directed. The arrowhead appears at the edge half indicated by
(x9,12), resp. counter-clockwise for the second form.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash, \grapharrowlength,
\grapharrowwidth, \grapharrowtype

\autonodetext{name} [n|e|s|w|ne|nw|se|sw] {text}

Positions text automatically at node name. If it exists, the optional parameter will
be interpreted as a direction according to the points of the compass, and the text
appears at the corresponding side of the node. Otherwise, it appears within (i.e. at
the center of) the node.

As with the following commands, “text” refers to all which may be defined as an
argument of the \put-command of the IXTEX picture environment. Thus, nearly
everything is allowed; if necessary include it in a \parbox or something similar. In
particular, a graph can be used as an inscription. This has the advantage that whole
graph parts may be defined with their position relative to particular nodes or edges.
Subsequent shifting of the latter automatically entails shifting the graph parts as
well. For an example, consider the command

\autonodetext{K} [nel{%
\begin{graph}(1,1)
\graphnodesize{.1}
\squarenode{sqa}(0,1)
\squarenode{sqb}(1,1)
\edge{sqa}t{sqbl}
\end{graph}}

which positions to the upper right of the node K text consisting of a graph with node
diameter 1mm, containing in its turn two nodes and an edge linking them. When
moving the node K in its graph environment, the smaller graph keeps its position
relative to K. The same goes for the other text commands (see below).

In contrast to all the other text commands, \autonodetext has a fixed default
setting of \opaquetext which is \opaquetextfalse and will not be influenced
by the global setting. The reason for this is that for \autonodetext, the set-
ting \opaquetexttrue—otherwise the standard—is mostly a nuisance as it leads in
many cases to “ragged” nodes. Locally, of course, this setting can be changed as
usual (i.e. by a fourth parameter [\opaquetexttrue...]).

11



Depends on:
\autodistance, \opaquetexttrue/false (in the optional parameter),
\enlargebozxes (if \opaquetexttrue)

\nodetext{name} (x,y) {text}

Positions text at coordinates (x,y) relative to the node name. The coordinates
are optional; if absent, (0,0) is used, i.e. the center of the node. Apart from this,
the remarks to \autonodetext apply analogously. (But note the difference be-
tween \autonodetext{name}{text} and \nodetext{name}{text} with respect to
the setting of \opaquetext.)

Depends on:
\opaquetexttrue/false, \enlargeboxes (if \opaquetexttrue)

\edgetext{name; }{namey}{text?}

Positions text at the center between nodes name; and name,. It is not required that
the corresponding edge really exists. Apart from this, the remarks to \autonodetext
apply analogously.

Depends on:
\opaquetexttrue/false, \enlargeboxes (if \opaquetexttrue)

\bowtext{name; }{names}{deflection}{text}

Positions text at the center of the curved edge as described by the first three pa-
rameters. It is not required that the corresponding edge really exists. Apart from
this, the remarks to \autonodetext apply analogously.

Depends on:
\opaquetexttrue/false, \enlargeboxes (if \opaquetexttrue)

\freetext(z,y) {text}

Positions text at absolute coordinates (z,y). Apart from this, the remarks to
\autonodetext apply analogously.

Depends on:
\opaquetexttrue/false, \enlargeboxes (if \opaquetexttrue)

\area(a:1,yl){($2,y2[,d2]) (a:3,y3[,d3])- -}

Defines the border lines of an area (which, if \filledareastrue, is filled with the
current shade of grey resp. colour as set by \graphfillcolour). All coordinates
are absolute. The starting point is (x1,¥;), from which a line is drawn to (3, y2),
then to (z3,y3), and so on. The d; define the deflection of the corresponding line
segment, analogously to the third argument of \bow.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash,
\filledareastrue/false, \graphfillcolour (if \filledareastrue)

\bubble{f}H (z1,y1) (x2,y2) -}

As \area, but the border lines form a Bézier curve through the given points. The
first argument is a factor which determines the distance between the control points

12



and the actual points. Here, the distance is the length between a point and the
next, multiplied by f.

An area generated by \bubble is always closed.

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash,
\filledareastrue/false, \graphfillcolour (if \filledareastrue)

\curve{fH (z1,y1, ) [fi1,f12] (2,y2,00) [f21, f22]---}

A more flexible but more complex possibility to generate areas with Bézier curves as
borders. A Bézier curve runs through a number of points, with two control points for
every segment. The curve leaves the starting point of the segment in the direction
of the first control point and reaches the end point from the direction of the second
control point (i.e. the tangents of the curve in the respective points pass through
the control points). Figuratively speaking, the control points attract the curve so
that the greater the distance to the control points, the farther the curve is deflected
from the direct line to the next point.

The coordinates (z;,y;) (P; in the sequel) are absolute; they define actual points of
the curve. The two control points assigned to the segment P;P;,, are determined by
P;, o and f;; resp. by Pii1, iy and f; 0. If for a segment the f; ; are not set, then
fij = f is used. The first control point is determined as follows (and analogously
for the second): The point is on that straight line through P; which forms the angle
«; with the z-axis. The distance of the point to P; is the length of the segment
P, P, multiplied by f;. This first control point is in the quadrant determined by
«;, whereas the second is on the other side.

An area generated by \curve is not automatically closed. (This implies that an
optional argument following the last point is useless as it is not associated to any
segment. )

Depends on:
\graphlinewidth, \graphlinecolour, \graphlinedash,
\filledareastrue/false, \graphfillcolour (if \filledareastrue)

13



3 Examples

3.1 Nodes, plain nodes

\begin{graph}(4,4) (-2,-2)
\squarenode{Sq1}(-1.5,1.5)
\squarenode{Sq2}(1.5,1.5)
\textnode{Te}(1.5,-1.5){$\frac{i-\sqrt 2}2$}
\rectnode{Re}[.3,.1]1(-1.5,-1.5)
\roundnode{Ro}(0,0)

\end{graph}

3.2 ...and a few edges

\begin{graph}(4,4) (-2,0)

\squarenode{Sq}(-1.5,3.5)
\textnode{Te}(1.5,3.5){abc}
\roundnode{Ro} (0, .5)
\diredge{Sq}{Te}
\edge{Sq}{Ro} \diredge{Ro}{Te}
\dirbow{Ro}{Sq}{-.2}
\dirbow{Ro}{Te}{.2}
\dirloopedge{Ro}(-.8,-.2)(-1.2,.4)
\dirloopedge{Ro}(.8,-.2)(1.2,.4)
\loopedge{Ro}{16}(0,-.5)

\end{graph}

3.3 More text:

\begin{graph}(4,4) (-2,0)
\squarenode{Sq1}(-1.5,3.5)
\squarenode{Sq2}(1.5,3.5)
\roundnode{Ro} (0, .5)
\diredge{Sq1}{Sq2}
\dirloopedge{Ro}{30}(-.5,.7)
\edge{Sq2}{Ro}
\dirbow{Sq1}{Sq2}{-1.2}
\autonodetext{Sql} [nw]{Sql}
\nodetext{Ro}(.5,0){$\sqrt{2}$}
\edgetext{Sq1}{Sq2}{\tiny edge}
\bowtext{Sq1}{Sq2}{-1.2}{\s}
\freetext(0,2){free}

\end{graph}

14

Sql

[ ]
®
1—v/2
2
abe
edge ———|

free

>



3.4 Areas

\begin{graph}(4,13.5) (-2,-9.5)
\squarenode{Sq1}(-1.5,3.5)
\squarenode{Sq2}(1.5,3.5)
\roundnode{Ro}(0,.5)

\area(0,.5){%
(-1.5,3.5)(0,3.5,-.2)(1.5,3.5,.2)(0,.5)}

\area(0,.5){%
(-1.5,3)(1.5,3,-1)(0,.5)}

\roundnode a(-1,-5)

\roundnode b(0,-3)

\roundnode c(1.5,-5)

\roundnode d(1.5,-3.5)

\roundnode e(2,-2)

\roundnode f(0,-1)

\bubble{.5}{%
(-1,-5)(0,-3)(1.5,-5)(1.5,-3.5)(2,-2)(0,-1)}

\roundnode g(-1.5,-9)

\roundnode h(1,-9)

\roundnode i(1,-7)

\roundnode j(-1,-7)

\curve{.7}{(-1.5,-9,-30) (1,-9,-30)%
(1,-7,60)[1.3,.5]1(-1,-7,-60)(-1.5,-9,-30)}

\end{graph}

15



3.5 And now for the status commands ...

\begin{graph}(4,4) (-2,0)
\graphnodesize{.6}\graphlinecolour{.5%}
\graphlinewidth*{2.5}\filledareasfalse
\grapharrowtype{2}
\squarenode{Sq}(-1.5,3.5)[
\graphlinewidth{.01}
\graphnodecolour{1}]
\textnode{Te}(1.4,2.5){abc}[
\graphlinecolour(.9,.4,.9)
\graphnodecolour(.9,.4,.9)
\enlargeboxes{.2}]
\roundnode{Ro1} (0, .5) [
\graphnodecolour(1,.3,0)
\graphlinedash{3}]
\roundnode{Ro2}(-1,1)
\diredge{Sq}{Te}[
\grapharrowlength{.5}
\graphlinecolour{0}]
\dirbow{Ro2}{Sq}{.1}[
\grapharrowwidth{2}
\grapharrowtype{1}]
\autonodetext{Sq}{A}
\nodetext{Ro2}{$x$}
\area(-2,0){(-2,4)(2,4)(2,0)(-2,0)}
\edgetext{Sq{TeH{XXX}[
\opaquetextfalse]
\dirloopedge{Ro1}(-.5,.8)(.3,1.2)[
\graphlinewidth{.01}
\graphlinecolour{0}
\graphlinedash{3 1}]
\dirbow{Te}{Ro1}{.15}[
\graphlinecolour+{.5}
\graphlinewidth*{2}
\grapharrowlength*{2}
\grapharrowwidth*{.5}
\grapharrowwidth*{3}]

\end{graph}

16




3.6 ...and that which is known from BTgX:

\begin{graph}(4,4) (-2,0)
\graphnodesize{.7}
\squarenode{Sq1}(-1.5,3.5) [

\graphnodecolour{1}]
\squarenode{Sq2}(1.5,3.5)
\roundnode{Ro}(0, .5)

\diredge{Sq1}{Sq2}

\autonodetext{Sql}{A} .
tonodetext{Sq2}{B textt graph text-

\autonodetext{Sq2}{B}[\opaquetexttruel :&: A :x;

\dirloopedge{Ro}(-.5,.8)(.3,1.2)[
\graphlinewidth{.02}\graphlinecolour{.5}]
\freetext(0,2){graph text}
\put (-1.7,3.7){\LaTeX}
\thicklines
\put (0,2.5){\oval(3,2)}
\put (-2.5,1.4){\huge XXXXXXXX}
\end{graph}

3.7 How to do diagrams (for example):

\begin{graph}(5,4)
\graphlinecolour{1}\graphlinewidth{.01}
\grapharrowlength{.2}
\newcommand{\arr}[3]1{%

\edge{#1}{#2} [\graphlinewidth{.1}]
\diredge{#1}{#23} [\graphlinecolour{0}]

\edgetext{#1}{#2}{\small #3}} P a2 4
\textnode L(0,3){$L$} \textnode R(3,3){$R$} ////l ///T
\textnode M(0,0){$M$} \textnode N(3,0){$N$} L ! | I ,
\textnode{L2}(2,4){$L’$} ! g
\textnode{R2}(5,4){$R’$} j k J
\textnode{M2}(2,1){$M’$} M —g¢——=N’
\textnode{N2}(5,1){$N’$} ///”1/’ ///”//'
\arr{L2}R2}{$£’$} \arr{L2}{M2}{$j’$} M §——=N

\arr{R2}{N2}{$k’$} \arr{M2}{N2}{$g’$}
\arr L{L2}{$1$} \arr N{N2}{$n$}
\arr R{R2}{$r$} \arr M{M2}{$m$}
\arr LR{$£f$} \arr LM{$j$}
\arr RN{$k$} \arr MN{$g$}
\end{graph}

(Note the definition of \arr and its effect on crossing arrows. If you do not like the labels

17



on the arrows you can use e.g. \bowtext.)

3.8 The sequence is of consequence only for commands of the same type

\begin{graph}(4,4)
\autonodetext{Ro}[ne]{$\swarrow”{\mbox{Ro}}$} %/Ro
\dirbow{Sq}{Ro}{-20}
\squarenode{Sq}(1.9,2.5)
\roundnode{Ro}(2,2.5)
\graphnodecolour{1}
\end{graph}

3.9 Finally: Graphs as inscriptions

\begin{graph}(4,4) (-2,-2)
\roundnode{A}(-1.5,1.5)
\roundnode{B}(1.5,1.5)
\roundnode{C}(1.5,-1.5)
\roundnode{D}(-1.5,-1.5)
\roundnode{E}(0,0)
\autonodetext{A}{\tri{lcm}}
\autonodetext{B}{\tri{lcm}}
\autonodetext{C}{\tri{lcm}} QZ?;} EZ?S}
\autonodetext{D}{\tri{lcm}}
\autonodetext{E}{\tri{2cm}}
\newcommand{\tri}[1]1{%
\unitlength=#1
\begin{graph}(0,0) @ @
\graphnodecolour{1}
\squarenode{A} (0, .5)
\squarenode{B}(-.4,-.3)
\squarenode{C}(.4,-.3)
\edge AB\edge BC\edge CA
\bow CB{.3}\bow BA{.3}\bow AC{.3}
\end{graph}/,
}
\end{graph}
(Note that node names are defined locally. Thus, this is also an example of how to cut

down the number of identifiers: For the 20 nodes, 20 different names would have been
needed otherwise.)

18



3.10 PS. This even allows to do simple picture generation ...

\newcount\depth\depth=0
\def\sierp{%
\ifnum\depth=0%
\terminall,
\else%
\nonterminaly
\fi%
\advance\depth by 1%
}
\def\terminal{%
\begin{graph}(1,1)

\roundnode{M} (.5, .45) [\graphnodesize{0}]

\roundnode{A} (.25, .25)
\roundnode{B} (.75, .25)
\roundnode{C}(.5,.75)
\edge{M}{A}
\edge{M}{B}
\edge{M}{C}
\end{graph}
}
\def\nonterminal{’
\begin{graph}(1,1)
\advance\depth by -1
\freetext (.25, .25){%
\unitlength=.5\unitlength\sierp}
\freetext(.75,.25){%
\unitlength=.5\unitlength\sierp}
\freetext(.5,.75){%
\unitlength=.5\unitlength\sierp}
\end{graph}/,
}
\opaquetextfalse
\parbox{4cm}{
\unitlength=4cm
\sierp\\ \sierp\\ \sierp\\ \sierp
}

N
S

BN

& A
HA
KNS

RS
KA
LKA A
S &
S PP S
HoOA A A
A S N S N P S

(Nice, is it not? But at least this example has TEX's stack overflowing at the next iteration

(and with my TgX-installation).)

19



3.11 PPS. A variant of the previous:

\newcount\depth\depth=0
\def\sierp{%
\ifnum\depth=0%
\terminall,
\else,
\nonterminal¥
\fi%
\advance\depth by 1%
}
\def\terminal{’
\begin{graph}(1,1)
\bubble{.2}{(0,0) (1,0)(.5,1)}
\end{graph}/,
}
\def\nonterminalq{’
\begin{graph}(1,1.4) (0,-.2)
\advance\depth by -1
\bubble{.2}{(0,0) (1,0)(.5,1)}
\freetext(.25,.25){}
\unitlength=.5\unitlength\sierp}[
\graphfillcolour+{2}]
\freetext (.75, .25){%
\unitlength=.5\unitlength\sierp}[
\graphfillcolour+{2}]
\freetext(.5,.75){%
\unitlength=.5\unitlength\sierp}[
\graphfillcolour+{2}]
\end{graphl/,
}
\opaquetextfalse
\parbox{4cm}{
\unitlength=4cm
\graphfillcolourf{.4}
\sierp\\ \sierp\\ \sierp
}

20




