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Abstract

This essay describes a set of enhancements to the LISP language
which allow programmers to classify and type list structures and use
polymorphic functions. A novel type system allows list structures to
have multiple types which programmers can interrogate dynamically.
The essay takes the programmer’s rather than the language implemen-
tor’s perspective and is statement of design philosophy rather than a
mathematically formal language definition.
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1 Ambiguity and Computer Programming

1.1 On Ice Cream Sticks

At my workplace in Australia we make tea and coffee in kitchenettes, each is
equipped with a supply of small flat pieces of wood with rounded ends. See
figure [1l In my local kindergarten the same sticks are used by the children
for craft.

Figure 1: Wooden stick 114 x 10 x 2 mm.

I surveyed my colleagues and the children. When asked ”What is this
object?” the replies were various:

Response Number
paddle—popﬂstick

stirrer

ice cream stick

piece of wood

meal stick

tongue depresser

[t’s an ice cream stick, you put it in the bin, it’s long.

It belongs over at the table, it’s for putting things on.

It looks like an icy-pole stick made out of wood.

It’s for pasting.

It had some kind of ice cream on it, if you collect lots of
them you can make a house.

It’s very good for making stuff with. 1
It’s a stick. 1
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The children use them for construction, so it’s natural they view these as
construction material and not stirrers. One adult said it was a piece of wood
and commented that his colleagues were unable to differentiate form from
function. This insightful individual recognised that people name things by
their use or function rather than by their physical properties.

The lesson to draw from the responses is that different viewpoints give
an object different meanings. People identify the same objects with different

lalso known as popsicle, ice lolly or icy-pole



names and nuances and all these different views are equally valid. Ability
to cope with ambiguity, to look at piece of information and give it multiple
meanings has lead to some of the most important discoveries in mathematics
and computer science.

1.2 Ambiguity and Circularity - Form vs Function

If something has multiple possible meanings we call it ‘ambiguous’. Here’s
the dictionary [ definition:

1. Open to more than one interpretation
2. Doubtful or uncertain (see note [2))

In the Arts ambiguity thrives since it provides depth and richness to
the work. Leonardo da Vinci created a “sfumato” technique to enhance a
painting’s enigmatic quality. The Mona Lisa’s ambiguous smile is the most
famous example. In computer programming languages however, the rule is
that there is very strict syntax and semantics which allow for no ambiguity
or mis-interpretation. But we should not forget the very origin of computer
science arises in duality.

Kurt Godel published a mathematical theorem [6] which is one of the most
important in the twentieth century. He showed that in any given branch of
mathematics, there would always be propositions that couldn’t be proven
either true or false. He achieved this staggering result by using natural
numbers to represent strings of equations. He then fed the resulting number
sequences into the mathematical system in a circular manner.

The trick was to re-interpret numbers in a new and useful way. The
"double-entendre’ was essential to establishing the self-referentialf| nature of
his proof. The two interpretations of his Gédel Numbers were both mean-
ingful. We can say he used the ambiguity of numbers to advantage.

The same ambiguity exists in any Universal Turing Machine [9] or stored
program architecture computer. At one, the contents of it’s memory are
both data (which programmers manipulate) and program which the computer
interprets as its instructions.

For example, figure [2| shows simulated memory of the first stored program
computer “Baby” |7_f] : The simulation is running a self-modifying Noodle

2dictionary.com

3For a full discussion of the nature of self-reference and Gédel look no further than
Douglas R Hofstadter’s work|[7]

4SSEM - Manchester Small Scale Experimental Machine
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Figure 2: Noodle Timer by Yasuaki Watanabe of Japan

Timer program written by Yasuaki Watanabe. A closer look at the memory
contents reveals nothing about its interpretation:

11011011111000010000000000000000
00111011110001100011110000111100
00111011111000100000000000000000

Is this part of the program or just data? The data has only form, the function
or interpretation lies in the eyes of the beholder.

Most programming languages today lack the self-referential nature of the
underlying machines, however the LISP language has this quality in the most
accessible form. The LISP language was created for artificial intelligence and
symbolic processing and uses lists. The lists on which the programs operate
(its data) are represented in S-Expression syntax for example:

(xyz (123))

Initially the LISP language was intend to have a programming syntax called
"M-expressions’ [3] and be compiled from that syntax. M-expressions looked
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like this:

label [subst; A[[z; y; 2];
[atom[z] — [eqly; 2] — x; T — z];

T — cons|subst[x;y; car[z]]; subst[x; y; cdr[2]]]]]]

The language’s author John McCarthy subsequently decided to devise a
universal LISP function evalle, a]to show that LISP was “neater” than Turing
machines. Quote[4] :

Writing an ewval required inventing a notation representing LISP
functions as LISP data, and such a notation was devised for the
purposes of the paper with no thought that it would be used to
express LISP programs in practice.

S.R. Russell noticed that eval could serve as an interpreter for
LISP, promptly hand coded it, and now we had a programming
language with an interpreter.

Here’s an s-expression rendition of the subst function:

(defun subst (x y z)
(cond
((atom z) (cond ((eq y z) x) (T 2z)))
(T (cons (subst x y (car z)) (subst x y (cdr z)))))))

The LISP team used the same form (S-expressions) for two different func-
tions almost by accident. The first was storage for artificial intelligence sym-
bolic manipulation experiments, the second storage for the program instruc-
tions. Thereafter the S-expression would always have at least two possible
interpretations. The LISP team had been able to separate form from func-
tion and bootstrap themselves into a working programming language. Godel,
Turing and McCarthy all re-interpreted a form in multiple ways to provide
the self-reference essential to modern computing.

1.3 Polymorphism

Christopher Strachey first used the term polymorphic. [12] He identified that
some operators are ambiguous because they mean different things according
to the types of their operands. In 1967 he said:

In more sophisticated programming languages, however, we use
the type to tell us what sort of object we are dealing with (i.e., to
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restrict its range to one sort of object). We also expect the com-
piling system to check that we have not made silly mistakes (such
as multiplying two labels) and to interpret correctly ambiguous
symbols (such as +) which mean different things according to
the types of their operands. We call ambiguous operators of this
sort polymorphic as they have several forms depending on their
arguments.

In other words (+ 2 3) is a totally different execution to (+ 26.3e6
0.00345) — one invokes an integer addition whereas the other invokes float-
ing point addition.

Since then considerable thought has been expended refining and expand-
ing polymorphism in various forms. [I3] In general, type systems are added
to un-typed languages to allow ambiguity only in controlled circumstances.
Traditionally an object may only have a single type or interpretation. In this
essay we describe a type system that supports multiple interpretations.

1.4 Genyris

This essay explores explicit separation of form from function and manage-
ment of ambiguity in programming. We do this through language features
that can be added to a LISP-derived programming language. The Genyris
features are:

1. A type system for list structures.

2. Automation of type inference during list construction.

3. Generic functions with dispatch on list types.

4. Structures, arrays, hash-tables etc accessed via list types.

5. Disambiguation via Contexts

Since the feature set could be added to more than one language, this discus-
sion refers to ‘a’ Genyris language not ‘the’ Genyris language.

2 Representation of Data in Lisp

2.1 Lists in LISP

The LISP S-expression is a free-format way of expressing nested lists of any
arbitrary structure. For example the following are all LISPE] lists:

5The CLISP implementation of Common Lisp is used in the examples in this essay.
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(1 23405)
(Students (hate (annoying)) professors)
(cdr (cons 23.4 . 44.5))

Lists can be input to the language in any form without prior declaration
of structure. All forms are valid provided they conform to the (minimal)
syntax of the LISP reader. There are no semantics associated with lists. The
meaning or interpretation depends upon the user and the programs which
manipulate them. LISP has builtin functions which provide some information
about the types of the list elements. The function type-of is able to return
the type of the object passed as a parameter.

> (type-of ’(23.4 44.5))
CONS

However the language cannot see beyond the pointer to the CONS cell it has
been asked to examine, hence it responds with CONS.

Users can construct compound structures with lists and store them in
untyped variables. For example we can create a pair of numbers and store it
in a variable:

> (setq my-complex ’(23.4 . 44.5))
(23.4 . 44.5)

The variable can be overwritten with any other S-Expression:

> (setq my-complex ’(lambda f (x) x))
(LAMBDA F (X) X)

LISP implementations include very large libraries of functions for manipu-
lating lists of various types. Being a dynamically typed language, any such
function will accept any kind of S-expression. For example (assoc item
alist) expects an association list as its second parameter. An association
list is defined in the ANSI standard as “.a list of conses representing an
association of keys with values, where the car of each cons is the key and
the cdr is the value associated with that key.” There is no formal definition
of association lists in LISP. If an association list is not supplied, assoc will
signal an error at runtime.

As described earlier, lists can be executed by the interpreter which may
or may not signal errors:

> (eval ’(progn (print "A") (terpri)))

|IAII
NIL



2.2 LISP Structures
2.2.1 Structures in General

Most programming languages have an ability to define collections of atoms
of information. C++ has structures, COBOL has records and LISP has lists
and defstructs. Consider the following typical definition in C++:

struct complex { double real; double imaginary; } myComplex;

To access the struct it is necessary to refer to the member variables real and
imaginary. Such as:

myComplex.real = 2.3;
myComplex.imaginary = 7.8;

Programmers consider use of short names for variables poor style. So the
use of i j in place of real and imaginary would be poor form. Similarly it
is most unusual to see code developed without the human interpretation of
the data embedded in the definition of the form used to store it.

When a developer needs to do something different like plot these complex
numbers on a screen in graphical form, he or she will need to manually
perform type conversion to an identical form such as:

struct point { double x; double y; I};

This means that unless the programmer is very brave and willing to use an
un-safe type cast such as this: plot((point&)myComplex); there is no way
to engineer an isomorphism from complex numbers to cartesian coordinates
without additional code. A prescient developer may have chosen to imple-
ment a generic structure for both functions consisting of a pair of anonymous
numbers:

struct pairOfNumbers { double D001; double D002; };

It is unlikely the same person would write both complex number and plotting
libraries so such a construction is rare.

Contrast this situation to the UNIX family of text filters. In UNIX,
commands are connected together by pipes. This is expressed in the shell
languages by a | character. The following command line counts the number
of getty programs running:

ps -e | grep getty | wc -1



This happy arrangement works because there is a tacit standard for trans-
mission of data between one program and the next in the line of filters. The
programs all assume ASCII lines of text terminated by a linefeed character.
The standard IO libraries come with handy functions for reading lines, how-
ever no rule says these functions must be used to write filters. There is no
formal definition of the data structure (such as a header file). The form of the
data in the files is entirely divorced from the interpretation. Serendipitous
reuse flourishes where there is standardisation and loose coupling.

2.2.2 LISP defstruct

Like C++, Common Lisp also has a facility for creating frame and slot struc-
tures (structure-objects). The defstruct macro allows the definition of
a new type with slots. The same function also creates a constructor, accessor
functions for the slots, printing and parsing and type checking functions. We
can create a new structure type:

> (defstruct point x y)
POINT

and create an instance of the new type, and see the new print format:

> (setq p (make-point :x 12 :y 13))
#S(POINT :X 12 :Y 13)

We can check the type of a value:

> (type-of p)
POINT

and access it’s slots:

> (point-x p)
12

Amongst other possibilities, the programmer can also associate a custom
printing function with the new type:

> (defun my-print-point (pnt stream depth)
(format t "my point: (TA "A)" (pntx pnt) (pnty pnt)))
MY-PRINT-POINT
> (defstruct (point
(:conc-name pnt)
(:print-function my-print-point)) x y)
POINT

10



and use the new printer:

> (print p)

my point: (12 13)
my point: (12 13)

The reader will also construct new structures for us:

> #S(POINT :x 99 :Y 42)
my point: (99 42)

2.2.3 Common Lisp Features

Common Lisp has many more features that might support ambiguous types
and congruence.

The defstruct facility creates opaque structure-objects. These are inac-
cessible to the list processing functions since they are stored in special data
structures. For example if we try to take a CAR or CDR of an object created
with defstruct the language throws errors:

> (car p)
*%x — CAR: #S(POINT :X 12 :Y 13) is not a list
> (cdr p)
*%*x — CDR: #S(POINT :X 12 :Y 13) is not a list

We can force defstruct to store the structure in a list:

> (defstruct (quux (:type list) :named) x y)
QUUX

and create an instance and see that it is stored in a list:

> (setq a (make-quux :x 1 :y 2))
(QUUX 1 2)

However the type of the object created by the constructor is not recognised
by the type system:

> (type-of a)
CONS

Naturally the LISP interpreter makes no attempt to evaluate the contents of
non-list data types; a structure evaluates to itself:
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> (setq X #S(POINT :x (print "A") :y (terpri)))
my point: ((PRINT A) (TERPRI))

> (eval X)

my point: ((PRINT A) (TERPRI))

Structure objects have the same semantic as C structures and are external
to the list processing which is the core of the language. Their origins pre-
sumably lie in a need for efficiency on the hardware of the day. There are a
number of similar pragmatic data types in Common Lisp which are inaccessi-
ble to the list processing functions such as complex numbers, strings, arrays,
vectors, hash tables and CLOS objects. Polymorphism and generic dispatch
is provided by CLOS (however for non-list types). All these additional data
types have been added to Common Lisp for very practical reasons.

Common Lisp’s type system allows type extension via deftype macro,
the type specifiers being interpreted predicates. For example we define a new
type predicate for points:

> (defun check-point (p)
(and (numberp (car p)) (numberp (cdr p))))
CHECK-POINT

Then we can define a new type tpoint:

> (deftype tpoint () ‘(and list (satisfies check-point)))
TPOINT

The type system recognises lists which match the new type (by calling the
predicate function):

> (typep (1 . 2) ’tpoint)
T

> (typep (1 . e) ’tpoint)
NIL

However type-of is unable to recognise the type of the object:

> (type-of (1 . 2))
CONS

In summary, Common Lisp has many features very close to the desired re-
quirement however there are areas which need enhancements. New languages
such as ARCJI0] enhance Common Lisp by allowing programmers to use list
processing functions to access the internals of traditionally inaccessible data

types:
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(car "abc") => \a
(cons \a "bc") => "abc"

This is closer to the ideal. To close the gap a new type system is proposed.

3 Genyris Type System

Most of the enhancements in Genyris are founded in a non-traditional type
system. The emphasis is on providing a way for programmers to capture their
current de-facto standard structures which are described only in documents
or code comments. What follows is an informal programmmer’s view of the
type system.

3.1 Deep Type Declarations for Lists

Genyris allows the programmer to declare type names for lists which conform
to construction rules. This allows the programmer to define their interpre-
tations of particular list structures. After the definitions have been made,
the language automatically classifies list structures according to the known
types.

We will define types for complex numbers and points as an example. We
choose to store the complex type in a pair of numbers. Initially the language
has no knowledge of our type, so the macro types-of returns a single value:

>- (types-of ’(12.9 . 23.6))
(cons)

Genyris allows declaration of list structures (binary trees) and atoms. The
main primitive for type declaration declares a new type for CONS cells with
the types identified for the CAR and CDR parts. This can be done via the
define-type macro. Types are named by unique symbols. No two types
may have the same name. At the prompt we define a point to be a pair of
floating point numbers as follows:

>- (define-type point float float)
(type point float float)

The language now automatically recognises that a pair of numbers can be
interpreted as a point type, and as a CONS:

>- (types-of ’(12.9 . 23.6))
(point cons)

13



Next we can add another interpretation of a pair of numbers, such as a
complex number:

>- (define-type complex float float)
(type complex float float)

This time the language reports three possible types for the same s-expression:

>- (types-of ’(34.5 . 7.8))
(complex point cons)

In a mature Genyris environment where there are many packages of represen-
tations, the number of types may be large. The programmer can experiment
with different representations for new ideas, building on the existing code
base of representations and utility functions. With knowledge of the code
libraries it will be possible to construct programs by interconnecting existing
packages without 'glue’ code since compatible representations can be passed
directly between functions in a type-safe manner. A mature environment
might give this result:

>- (types-of ’(2134 . 986))
(complex point rational vector cons)

The basic Genyris primitives do not need to define ‘places’ within list
structures nor accessor functions since access can be arranged using list access
functions.

The type system allows many types to have the same underlying form and
a form can have many types. A Genyris type is a name for an interpretation
of the form. The Genyris programs which operate on the type provide the
function.

3.2 The Universal CONStructor

In LISP, lists are stored (notionally anyway) in CONS cells. Each CONS con-
tains pointers to the CAR and CDR sides of the binary tree. In a Genyris
language, all non-atomic data types can be constructed by CONS. This does
not mean that all data types are physically stored in linked lists. An imple-
mentation is free and likely to use the most efficient implementation for the
data structure requested by the programmer (see section . However as
far as the programmer is concerned, these look and feel just like CONS cells.
In effect there is a virtual CONS cell for all data. The virtual Genyris CONS
cell also includes the ’deep’ type of the entire subtree - which is the type of
the data structure.
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Therefore the action of CONS is two-fold: (1) it physically constructs the
required object; (2) it computes the types of the object. The types are stored
in a type graph within the language system. The CONS cell refers to the
relevant types within the type graph. (see note [7)

3.3 Generalisation and Inferred Types

The Genyris type system automatically computes generalisation relationships
between defined types. The root of the Genyris type tree is the type thing.
In a type declaration thing can be used to stand for any type:

>- (define-type pair thing thing)
(type pair thing thing)

>- (types-of ’(1))

(pair cons)

The conventional in-built hierarchy of atomic LISP types is included in the
Genyris type system. Thus float ¢sa number, fixnum ¢se number and so
forth. When Genyris computes the type of a list, it also calculates the gen-
eralisations which apply to the current object based on the generalisations
of its constituent types. The corollary is also true, Genyris understands the
subtype relationships between types. For example we can further define a
pair consisting of a fixnum in the CAR position. It will also be classed as a
pair:

>- (define-type numbered-item fixnum thing)

(type numbered-item fixnum thing)

>- (types-of ’(42 "The chickens are too hot to eat."))
(numbered-item pair cons)

types-of calculates the most specific type of each isa relationship and orders
the returned type list with the most specific type first.

3.4 Type Definitions with Values

When a type is defined it may be defined with both types or values. This
allows the programmer to place constant values in the type definition. The
define-type macro syntax works on atomic types when there are 2 argu-
ments:

>- (define-type RED 2)
(type RED 2)

>- (types-of 2)

(RED fixnum)
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Here we define types with symbols in the CAR and CDR of the cons:

>- (define-type vase ’vase thing)
(type vase thing)

>- (define-type faces thing ’faces)
(type faces thing)

>- (types-of ’(vase . faces))

(vase faces cons)

This feature is useful for evaluating LISP as we shall see later.

3.5 Recursive Types

Recursive types are used in Genyris to define more complex structures. A
type definition may be composed of more than one construction rule. For
example association lists could be defined as follows:

(define-type key thing)

(define-type value thing)
(define-type association key value)
(define-type alist nil)

(define-type alist association nil)
(define-type alist association alist)

and

>- (types-of ’((x . "times") (% . "remainder")))
(alist cons)

3.6 Type Definition Syntax

Implementations may include more complex syntax for easy definition of
types based on BNF or other grammars. Syntactic sugar provides faster de-
velopment and more comprehensible code. Here are some possible examples:

(define-type-bnf sparse-array ((fixnum . thing) ... ))
(define-type-bnf number (| fixnum float bignum))
(define-type-bnf point (number . number))

Additional macros can be provided to supply programmers with helpers and
abstractions they expect such as:

e definition of ‘places’ within structures as slot names or patternsﬁ

6Like Standard ML
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e encapsulation in the form of accessor functions
e constructors

A type can be defined in terms of other existing super-types having more
general elements. For example thing can be overridden with more specific
types by the derived type. The use of named places within the structures
will allow the identification of the places to be specialised. For example:

(define-derived-type numbered-item
:based-on pair
:specialize CAR fixnum)

It will be possible to express inheritance in frame and slot type definition
macros by adding things which can be extended by subclasses.

3.7 Anonymous Types

The type system allows unnamed types which are useful when a grammar re-
quires intermediate states. (Such as (fixnum . thing) in the sparsearray
example). If they are of no value to the programmer they can be declared
anonymously. The type system may assign them a secret internal name (e.g.
T004) but display them in the form they were declared. Anonymous types
are not listed by types-of.

3.8 Built-In Genyris Types

Since a Genyris language can classify and identify list types, it is able to
choose the fastest and smallest internal representation of the list structures
requested by the programmer. Because classification occurs during CONS,
the language can dynamically optimise the storage model for the list struc-
ture. Thus lists and trees are physically stored in custom data structures
rather than CONS cells.

Several in-built non-atomic list types will be defined for common and
well understood data types. These in-built types should be equivalent in
performance and function to the non-congruent data structures in Common
Lisp. They include:

e Strings
e Association Lists

e Arrays
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e Structures
e ctc...

Association lists would be defined as shown in section Description of the
definition of these awaits formal specification of Genyris types and practical
experience.

In all cases in-built types are fully accessible by the normal list opera-
tions and are able to be constructed by CONS. Alternative efficient ‘bulk’
constructor functions such as make-array should also be provided by imple-
mentations.

The programmer can force storage of lists into compatible in-built types
with pragma functions provided by the language (or vice versa). In general it
is up to the programmer to choose an in-built type as base structure for the
application. For example if the implementation provides an array type, the
programmer would use it for randomly accessed indexable data. Functions
will be available to interrogate the physical storage type of a Genyris object.

3.9 Type Safety and Declarations

Given that every datum now has additional type information available, the
programmer may choose to restrict the types allowed within symbols in their
programs. Type declarations could appear as either named or anonymous
types. For example in Common Lisp syntax:

(declaim (types ((number . number)) *the-origin*)) ; anonymous
(defun merge (x y)
(declare (alist x y)) ; named

4 FEvaluation

With a list-based type system, the process of evaluating Genyris programs
can take into account the types of the lists to be processed. Genyris intro-
duces type-driven dispatch for list types. Dispatch on type is described in
detail by Abelson and Sussman [I4]. For the same generic function name
the language chooses one function from many depending on the types of the
operands. The same principle is used in C++ vtables and Java polymorphic
method calls.

Many LISP programs consist of considerable conditional code which de-
termines the form of the source lists being evaluated. After the forms have
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been analysed the correct execution behaviour is coded. Genyris allows pro-
grammers to separate the grammatical aspects of the code by moving them
into type declarations. Generic function calls allow the programmer to define
functions for handling particular types.

4.1 Generic Functions

Genyris languages allow the programmer to specify the types of function
parameters. In addition functions can be overloaded. The evaluator executes
the function having a signature with the most specific types. This allows
programmers to write programs which are polymorphic over list structures.
If there is no function with matching parameter types an error is raised.

Generic functions can be defined in forms which allow the type of the
parameters to be specified as follows:

(define-generic ((<type> <parameter>) ...) <body)

Consider the following code fragment from Paul Graham’s implementation
of John McCarthy’s LISP:

(defun eval. (e a)
(cond
((atom e) (assoc. e a))
((atom (car e))
(cond
((eq (car e) ’quote) (cadr e))
((eq (car e) ’atom) (atom (eval. (cadr e) a)))
((eq (car e) ’eq) (eq (eval. (cadr e) a)
(eval. (caddr e) a)))

To rewrite this using Genyris, first we need to define some list types:

(define-type atom symbol)

(define-type quote-form ’quote thing) ; e.g. ’(quote fred ...)
(define-type atom-form ’atom thing) ; e.g. ’(atom z)
(define-type eq-form ’eq thing) ; e.g. ’(eq x y)

Then we write individual generic functions for eval. which apply to the
identified types:

19



(define-generic g-eval. ((atom e) (alist a))
(assoc. e a))
(define-generic g-eval. ((atom-form e) (alist a))
(atom  (eval. (cadr e) a)))
(define-generic g-eval. ((quote-form e) (alist a))
(cadr e))
(define-generic g-eval. ((eq-form e) (alist a))
(eq (g-eval. (cadr e) a) (g-eval. (caddr e) a)))

With source code in this form we can add new evaluation rules to g-eval.
without needing to modify existing code. Whereas in the traditional eval.
function there is a single cond expression which must be maintained. We
can also over-ride an existing definition with a more specific data type. The
dispatcher will always call the most specific available function. For example
we could add integers to g-eval:

(define-generic g-eval. ((fixum e) a) e)

Once the list types have been defined they are available for other functions.
For example we could define generic pretty-printing functions:

(define-generic pretty-print ((quote-form e) stream width)
o)

(define-generic pretty-print ((defun-form e) stream width)
.

(define-generic pretty-print ((cond-form e) stream width)

.2

The use of the dispatch on type gives programmers working with lists the
well-known benefits of polymorphism. Abstract data types can be created
with definition and code located in the same source files, abstract interfaces
can be defined and so forth.

4.2 (Generic Macros

Depending upon the LISP language implementation, FSUBRs or other func-
tions which do not evaluate their arguments can also benefit from list typing.
List types can be defined which correspond to different types of code body.
The FSUBR or macro will be selected by dispatch-on-type to select the ap-
propriate macro for expansion.
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5 Disambiguation

With a large number of defined list types; and many interpretations (types)
defined for the same physical list; and more than one matching generic func-
tion, the dispatcher will be unable to decide which function to execute for
the arguments. For example given the following generic functions:

(define-generic prinl ((pair X)) ...)
(define-generic prinl ((complex X)) ...)
(define-generic prinl ((point X)) ...)

The function call (prinl ’>(12.3 . 34.5)) will be ambiguous and an error
will be raised. An obvious way to resolve this is to revert to a traditional non-
generic function such as (defun prinl-pair (x) ...). However Genyris
languages support explicit tools for resolving ambiguity by use of casts and
contexts.

5.1 Casts

A cast allows the programmer to force the object to be interpreted in a
particular way. This is a signal to the type-dispatch to use the specified
type and no other. For example (prinl (the complex ’(12.3 . 34.5)))
creates a view of the object which only has type of complex. The dispatcher
no longer sees the ambiguity.

5.2 Contexts

To cope with large number of data types and ambiguities, Genyris languages
support the concept of contexrts. A context can be defined which establishes
a priority order for interpretations[] A context can be defined as a sequence
of types or contexts. For example:

(define-context graphics-context
(point rectangle circle))

(define-context my-context
(complex graphics-context))

Genyris languages support macros which allow the programmer to declare
which context applies to regions of code. For example this code will use the
complex version of prini:

"Contexts are akin to Java class-paths. Contexts can also be ‘closed‘ so that no addi-
tional interpretations are allowed within the context.
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(defun my-function (args)
(with-context ’my-context

(prinl ’(12.3 . 34.5))
D

Typically contexts will combine with packages so that a context will be avali-
able for an entire package. This will allow the user to specify the priority of
entire packages.

6 Performance

Nearly forty years ago Christopher Strachey urged us to keep an open mind
about dynamic type determination[12]:

This scheme of dynamic type determination may seem to involve
a great deal of extra work at run time, and it is true that in
most existing computers it would slow down programs consid-
erably. However the design of central processing units is not
immutable and logical hardware of the sort required to do a lim-
ited form of type determination is relatively cheap. We should
not reject a system which is logically satisfactory merely because
todays computers are unsuitable for it. If we can prove a suffi-
cient advantage for it machines with the necessary hardware will
ultimately appear even if this is rather complicated; the intro-
duction of floating-point arithmetic units is one case when this
has already happened.

It would be a shame to reject a design based on imagined performance con-
straints. After all the first LISP was an interpreted system and rather slow.
What matters is the correct semantics. Performance can be optimised later.

We can speculate if an algorithm contains a great deal of examination
of list structures to determine kind, then under a Genyris language, much
of this may already have been performed by the type system. This may
repay the performance debt since the type classification is effectively cached
on behalf of the programmer. Experimentation with implementations will
provide answers.

7 Conclusion

This essay illustrates a new type system for LISP lists. Often type systems
are associated with inflexible programming models. This essay proposes a
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type system that does not diminish the opportunity for flexible programming
rather it provides additional facilities.

The Genyris features added to a LISP language will provide the pro-
grammer with tools for specifying the structure (and grammar) of lists. The
additional type information can be used by an interpreter (or compiler) to
optimise storage. The type system will give a more declarative program-
ming style by separating form analysis from actions. The features provide
polymorphism and a way to bundle data definition together with function
definitions if required.

Genyris encourages unplanned ‘bottom-up’ re-use (see note 4l since type
definitions are matched by the system. Simply keying in a desired list form
into types-of will provide the programmer with a list of all types loaded
which are available for use. Explicit support for multiple interpretations of
list forms allows for ambiguities which are systematically resolved by defini-
tion of contexts.

We are currently blessed with extremely powerful computer hardware,
it seems right to wind back the clock and re-assess LISP. We are bound
to discover new directions that were not feasible back in the 1960s. This
proposal may not seem natural to some readers, however to quote Alan de
Botton [11]:

What is declared obvious and ‘natural’ rarely is so. Recognition of
this should teach us to think that the world is more flexible than
it seems, for the established views have frequently emerged not
through faultless reasoning but through centuries of intellectual
muddle. There may be no good reason for things to be the way
they are.
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B Notes

1. Ice cream sticks are something of a phenomenon. They are manufac-
tured to within microns of accuracy by sophisticated machines. To
quote Schneider-Electric [I]

The machine takes freshly manufactured ice cream sticks at
the rate of 1200/minute and grades them using fifteen param-
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eters including dimensions, texture, splits, knots and hairs.
Any sticks which don‘t meet the required specifications are
ejected either to be used as coffee stirrers or as waste. The
machine boxes the remaining sticks. The fully automated
machine uses lasers to measure the warpage and thickness
and two imaging systems each with two cameras to monitor
the other characteristics.

Even more remarkable is the myriad uses of these humble sticks. They
are hugely popular in craft, being used by children for construction of
thousands of different creations. Student civil engineers compete to
build the strongest and best bridges from them. There are over 5,000
web pages on the internet describing non-ice cream uses of them.

. People are wary of ambiguity, it creates uncertainty and lack of clarity.
In general people avoid it by assigning an interpretation or reject the
ambiguity. Look at figure |3| and these phrases:

Figure 3: by Edgar Rubin

Mary loves visiting relatives.
I saw her duck.
They hit the man with a cane.

Is it easy to hold both interpretations in your mind simultaneously, or
does the brain flip-flop between them? Consider this popular riddle:

A father and his son were in a horrible car accident. The
father went to a hospital and his son went to another hospital
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50 miles away. When it came time to operate on the man’s
son the surgeon said “I cannot operate on this man because
he is my son”.

How is this possible?

The phrase “the surgeon” is ambiguous since it does not specify the
sex of the surgeon. People overcome the ambiguity with an incorrect
assumption based on prejudice that surgeons are male. Hence the ap-
parent contradictory story.

Humans are motivated to ‘jump to conclusions’ in ambiguous situa-
tions. This may arise from our evolution on the savannas of Africa
and our ancestors’ need to instantly detect and avoid physical threats.
Instinctive threat recognition performed by our amygdala bypasses the
conscious brain altogether. [5]. Some researchers think the amygdala
is actually activated in ambiguous situations, enhancing vigilance in
order to obtain more information. [§ We should not be surprised by
the lack of ambiguity in man-made technology if we instinctively feel
threatened by it.

. Dynamic Type Redefinition:

The behaviour of Genyris when types are added is not defined in all
circumstances yet: if a new type is created later which existing forms
comply with, does that type get automatically added to the forms; if
an existing type is redefined does the type disaappear from the types
list; Can a type be deleted. Forms can be re-typed at any time with a
deep copy. From a programmer’s perspective the ideal language would
automatically retype all objects whenever a type is added or modified,
however there are performance and theoretical problems. A more for-
mal model of the Genyris features especially the type system is needed
to clarify and validate the requirements and to form the design of an
implementation.

. Re-Use:

In programming we strive toward re-use by creating ‘generic’ software
than can be used in different ways. However in programming we can
rarely do this without pre-meditation. Some languages (such as LISP)
provide easy ways to develop generic algorithms and programs which
become reusable. Careful development of Object-Oriented classes can
provide frameworks for reuse. Even these may not repay the investment
until some three or four cycles of re-use. [2] Advocates of generic pro-
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gramming (and hackers) say they achieve more re-use than OO method-
ology practitioners.

5. Circular Structures
Circular structures created by functions such as rplacd may create in-
valid typed CONS cells unless the new values conform with the existing
type. Therefore Genyris languages perform type-checking of destruc-
tive operations. It is an open question as to whether the type system
is able to correctly model circular structures. This aspect of the type
system requires further analysis.

6. Contexts: Further definition of context declarations for entire source
files and for dynamic context declarations is required.

7. Type Graph Optimisation: We assert without any proof that a virtual
CONS cell needs only a pointer to a single canonical node in the type
graph. This is desirable because it will reduce the memory required by
the Genyris objects.

8. Backward Compatibility: In general the Genyris features do affect
backward compatibility with basic LISP features since these additional
types. The additon of list-based arrays etc should cohabit with tradi-
tional arrays since they are of different base types and involve different
functions.
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