
Getting Started With Glimpse

Metron Scientific Solutions

January 29, 2012

1 What Is Glimpse?

Glimpse is a Java library for creating interactive data visualization applica-
tions which integrates into Swing or SWT based Java applications. Glimpse
simplifies utilization of powerful GPU hardware like programmable shader
pipelines and texture memory to display large quantities of data at inter-
active speeds. Complicated plots and visualizations can be created by ar-
ranging pre-built components using the popular MigLayout manager. Axes,
timelines, color scales, cursor crosshairs, and other plot embellishments are
provided out of the box, as well as common plot arrangements and layers for
visualizing common data types (like histograms, line charts, heat maps, and
tree maps). Glimpse is also excellent for constructing geographic visualiza-
tion applications. Layers to display bathymetry and topographic contours,
electronic navigation charts, land contours, and arbitrary projected images
are built in.

1

Figure 1: Simple Glimpse Plot

2 Requirements

Glimpse requires Java 1.6.0. Other software dependencies are included with
binary distributions or available using Maven (http://maven.apache.org/).
A wide range of modern graphics cards with OpenGL 2.0 compatibility will
work with Glimpse.

3 Getting Started

The best way to get familiar with what Glimpse offers and how it works is
to check out the large library of examples in the core-examples and extras-
examples modules. Each example consists of a single runnable java class
that demonstrates a feature of Glimpse. Figure 1 shows the output of the
HeatMapExample.

4 Glimpse Canvas

All Glimpse applications start with a GlimpseCanvas which represents some-
thing onto which OpenGL rendering can take place. For Swing applications,
this is a SwingGlimpseCanvas, which is also a JPanel and can be directly

2

http://maven.apache.org/

incorporated into an existing Swing application. SWTGlimpseCanvas pro-
vides the analogous capability for SWT applications. Other GlimpseCanvas
implementations exist for drawing to off-screen buffers.

The following code snippit is all that is necessary to bring up a Swing
JFrame containing a GlimpseCanvas:

public static void main(String[] args)

{

Jogular.initJogl();

SwingGlimpseCanvas canvas = new SwingGlimpseCanvas();

RepaintManager.newRepaintManager(canvas);

JFrame frame = new JFrame("Glimpse Example");

frame.add(canvas);

frame.setSize(100, 100);

frame.setVisible(true);

}

The line Jogular.initJogl() automatically places the necessary OpenGL
native libraries on the java.library.path. Then a new SwingGlimpseCanvas is
constructed. Other constructor arguments allow advanced features like shar-
ing GLContexts between canvases, but the simple zero argument constructor
suffices here. The call to newRepaintManager() adds the newly constructed
canvas to a threaded manager which will repaint the canvas as appropriate.
A Glimpse application should have only one instance of RepaintManager
which all canvases are registered with. Finally, the canvas can be added to
the Swing frame like any other Swing component.

When this snippet is run, a window with a 100 pixel by 100 pixel black
square will appear on the screen. In order to get something more interesting
showing up, we need to add GlimpseLayouts and GlimpsePainters to the
canvas.

5 Glimpse Layout and Glimpse Painter

Glimpse provides tools to break up a single GlimpseCanvas into many (pos-
sibly nested) logical plotting areas which can each be painted on and re-
ceive mouse events. Each plotting area is defined by a GlimpseLayout and

3

Figure 2: Glimpse Plot with Glimpse Layouts outlined

arranged using Mig Layout (http://www.miglayout.com/). Figure 2 out-
lines the GlimpseLayouts from HeatMapExample. Although everything is
rendered in a single OpenGL canvas, Glimpse allows mouse listeners to be
attached to any GlimpseLayout and allows painting to be performed inside
a GlimpseLayout without bleeding into adjacent layouts.

Even better, GlimpseLayouts can be nested, allowing easy construction
of very complicated plots. Figure 3 demonstrates nesting of three simple
heat map plots into a single hybrid plot. The GlimpseLayouts are again
outlined in red. The example class SimpleLayoutExample demonstrates how
Mig Layout is used to achieve this arrangement.

Once the plotting areas have been defined, OpenGL rendering inside
GlimpseLayouts is performed by GlimpsePainters. Multiple GlimpsePainters
can be added to a GlimpseLayout and act like layers. Glimpse provides lots
of pre-built painter in the com.metsci.glimpse.painter package. However,
most applications also want to perform custom rendering. The painter.base
package contains the GlimpsePainter interface, as well as a number of ab-
stract helper implementations. In most cases, GlimpseDataPainter2D is a
good place to start. It handles setting up the OpenGL viewport and scissor
regions and projection matrix so that glVertex() calls will draw to the cor-
rect screen location based on the GlimpseLayout being painted into and the
bounds of the data axes.

4

http://www.miglayout.com/

Figure 3: Nested Plots with Glimpse Layouts outlined

The following example demonstrates a very simple GlimpsePainter which
draws a blue diagonal line from (5.0, 5.0) to (10.0, 10.0) in data space. When
axes are drawn onto the same GlimpseLayout, the line will be at those coor-

5

dinates, regardless of how the plot is panned or zoomed (see Figure 4).

public class SimplePainter extends GlimpseDataPainter2D

{

@Override

public void paintTo(GL gl, GlimpseBounds bounds, Axis2D axis)

{

gl.glColor3f(0.0f, 0.0f, 1.0f);

gl.glLineWidth(3.0f);

gl.glBegin(GL.GL_LINES);

try

{

gl.glVertex2d(5.0, 5.0);

gl.glVertex2d(10.0, 10.0);

}

finally

{

gl.glEnd();

}

}

}

6

Figure 4: Simple Glimpse Painter

7

	What Is Glimpse?
	Requirements
	Getting Started
	Glimpse Canvas
	Glimpse Layout and Glimpse Painter

