
The graph2tab Library, User Guide
Last Updated: 22 May 2012

graph2tab is a generic implementation of a method for producing spreadsheets out of experimental
workflow graph. It can be used to export data from object models like BII, ArrayExpress, FUGE or
MAGE-OM to spreadsheet-like formats, such as MAGE-TAB or ISA-Tab. One of the most important
procedures in the library computes a minimum set of paths that go from source nodes (e.g., biological
sources) to end nodes (e.g., data) and that covers all the nodes and edges in the input graph. This is
based on the computation of a particular minimum flow on the graph, by means of the Ford-Fulkerson
algorithm, which has good performance when dealing with the typical experimental graph.

The package is designed in a way that allows to adapt a particular object model about experimental
work flows and to reuse classes like TableBuilder to produce spreadsheets describing instances of such
model, according to a given target format.

This document assumes an audience of Java developers, dealing with bioinformatics data management
applications and data reporting standards.

Further information about graph2tab can be found in this paper:

Brandizi M, Kurbatova N, Sarkans U, Rocca-Serra P. graph2tab, a library to convert experimental
workflow graphs into tabular formats. Bioinformatics. 2012 May 3, Epub ahead of print.
http://bioinformatics.oxfordjournals.org/content/28/12/1665

which has also a supplemental document, describing in detail the algorithms used in the library, their
correctness and performance:
http://bioinformatics.oxfordjournals.org/content/suppl/2012/04/29/bts258.DC1/supplemental_material_v
1_1.pdf

Summary
Adapting grap2tab to your use case: overview... 1
Set up.. 2
The basics..2
An example of graph model..3
Model wrapping.. 5
Node factories... 7
Table builder .. 7
Invoking the conversion..8
Uneven graphs and their layering... 8

Headers with Undefined order... 10
Layering example in the source code...10
Disabling the layering stage for even graphs... 11
Choosing the initial node set to be passed to the table builder...11

Adapting grap2tab to your use case: overview

In short, what you have to do to use graph2tab, in your particular project about a data converter or
exporter, typically is:

– define your node wrappers and the attributes to the describe the experimental entities the nodes
represent;

1

http://bioinformatics.oxfordjournals.org/content/28/12/1665
http://bioinformatics.oxfordjournals.org/content/suppl/2012/04/29/bts258.DC1/supplemental_material_v1_1.pdf
http://bioinformatics.oxfordjournals.org/content/suppl/2012/04/29/bts258.DC1/supplemental_material_v1_1.pdf

– define your node factory;

– define your table builder;

– if needed, define some criteria to sort nodes, e.g., tell the library that ‘Source Name’ comes
before ‘Sample Name’;

– invoke your table builder with the right set of nodes coming from your to-be-converted model
(such as the sources or the end nodes). Get the results as a matrix, which represent a piece of
output in your target format, such as the SDRF-like table.

Details follow below.

Set up

The graph2tab library is available as a Maven Java project. The quickest way to use it is to include it as
a dependency in your Maven project (see Maven documentation for further information):

<dependency>
 <groupId>org.isatools</groupId>
 <artifactId>graph2tab</artifactId>
 <version>4.2</version>
</dependency>

<repository>
 <id>oerc</id>
 <name>Oxford e-Research Center</name>
 <url>http://frog.oerc.ox.ac.uk:8080/artifactory/repo/</url>
</repository>

You may want to download the sources too, especially to look at the examples we describe in this guide.
The sources are available via GIT at the address:

http://github.com/ISA-tools/graph2tab

We have never tried it without using Maven. If that is your case, we suggest that you use the Assembly
plug-in from the sources to build a Jar, which can then be included in your project:

TO-DO: this is not ready yet, we need to add the Assembly descriptor for this.

The library contains some logging inside it, which is based on the SLF4J framework, your particular
logger should be selected automatically (see the SLF4J documentation for details).

The basics

graph2tab can be used to convert a graph about an experimental pipeline to a tabular view, similar to the
SDRF structure in the MAGE-TAB format, or the Sample/Assay files in the ISA-Tab format.

In order to do that, you must start from a Java object model that is used to represent the experimental
pipeline (e.g., the BII model, or the model defined in the Limpopo MAGE-TAB parser). For example,
you will have instances of classes like BioSource or Hybridization and these will have properties like
factorValues, characteristics, inputs, outputs.

graph2tab is designed to be generic: apart from few basic elements, the graph/table conversion does not
depend neither on the particular graph that is being converted, nor on the particular set of headers that
the output consists of. The library ensures this generality by working with a few basic interfaces.

Node is one of the most important of them, it defines inputs, outputs and attributes for a node. The former

2

point at other instances of the Node interface itself. By means of the getTabValues method, a node exposes
attributes, which essentially are header/value pairs. We explains the details about node's attributes (the
TabValueGroup data structure) below.

uk/ac/ebi/tablib/export/graph_algorithm/Node.java

package uk.ac.ebi.tablib.export.graph_algorithm;

public interface Node extends Comparable<Node>
{

public SortedSet<Node> getInputs ();
public SortedSet<Node> getOutputs ();

public List<TabValueGroup> getTabValues ();

 public String getType ();
public int getOrder ();

}

uk/ac/ebi/tablib/export/graph_algorithm/TabValueGroup.java

public interface TabValueGroup
{

public String getHeader();
public String getValue();
public List<TabValueGroup> getTail ();

}

An example of graph model

An example of how these interface can be used is provided in the package
uk.ac.ebi.tablib.export.graph_algorithm.simple_biomodel_tests (test/ folder). Here, one finds two
examples of how a to-be-converted model can be adapted to graph2tab. One is very simple and it is in
the package dummy_graphs_tests. Here nodes from the input model are directly implementing out Node
interface. While this is so simple, it is not very realistic, because you will typically have your model and
you will not want to derive it from classes in the grap2tab package. So, in such cases, what you need is
something similar to the example in the package simple_biomodel_tests. Here a simple example object
model to describe experiments is defined. This is like what your input will be in use case where you
want to use the graph2tab library. One class of such model is BioMaterial:

uk/ac/ebi/tablib/export/graph_algorithm/simple_biomodel_tests/model/BioMaterial.java

package uk.ac.ebi.tablib.export.graph_algorithm.simple_biomodel_tests.model;

public class BioMaterial extends ExperimentNode
{

public BioMaterial (String name)
{

super (name);
}

/**
 * Biomaterial characteristics are a set of {@link Annotation}s.
 */
public void addCharacteristic (String type, String value, String termAcc, String termSrc)
{

super.addAnnotation (type, value, termAcc, termSrc);
}

/**
 * Biomaterial characteristics are a set of {@link Annotation}s.
 */

3

protected List<Annotation> getCharacteristics () {
return super.getAnnotations ();

}

/*
 * getInputs() and getOutputs() are defined in the parent class (ExperimentNode)
 */
}

uk/ac/ebi/tablib/export/graph_algorithm/simple_biomodel_tests/model/Annotation.java

package uk.ac.ebi.tablib.export.graph_algorithm.simple_biomodel_tests.model;

public class Annotation
{

...

public Annotation (String type, String value, String termAcc, String termSrc) {
 ...
}

public Annotation (String type, String value, OntoTerm ontoTerm) {
 ...
}

public Annotation (String type, String value) {
 ...
}

public String getType () {
 ...
}

public String getValue () {
 ...
}

public OntoTerm getOntoTerm () {
 ...
}

}

Here, Annotation is an example of how a node annotation might look like. Similarly to annotations in
standards like MAGE-TAB, or ISA-Tab, MAGE-OM, an annotation has a type, a value and possibly an
ontology term (identified by a source symbol and an accession). In order to be adaptable to concrete
specific situations, the graph2tab library sees the model nodes in an abstract generic form, where the
node is able to tell what are its inputs and outputs, plus the list of header/value pairs that needs to be
used to represent the node in the final result table, that is, a list like Source Name = ‘source 1’,
Characteristics[Organism] = ‘Mus-musculus’, … Most of the work that you have to do to use the library for
your particular case consists of writing code to convert the attributes from your model, whatever they
are, to such string pairs, i.e.: you have to convert them to instances of TabValueGroup. This is a recursive
data structure, defined as in the listing reported above. The reason for that is that certain groups of
attribute pairs must be kept always together, in order to produce correct results. For example,
Characteristics[Organism] = ‘Mus-musculus’, Term Source REF = ‘NCBI-Tax’, Term Accession = ‘123’ must be
the a successive groups of columns in the resulting table. Hence, a good encoding of this example would
be1:

1 Note this is pseudo-code, not something defined in a particular real language.

4

TabValueGroup (
 header = "Characteristics [Organism]"
 value = "Mus-musculus"
 tail = (
 TabValueGroup (
 header = "Term Source REF"
 value = "NCBI-Tax"
 tail = (
 TabValueGroup (
 header = "Term Accession"
 value = "123"
)
)
)
)
)

With this kind of nesting, you are telling grap2tab that the ‘NCBI-Tax’ term source goes always next to
the organism annotation and that, in turn, the 123 accession goes always next to the NCBI-Tax label
(i.e., the three of them are kept together in the final result).

You may have noted the existence of the methods getType() and getOrder(). This is explained in the
section ‘Uneven graphs and their layering’.

Model wrapping

The typical approach to implement such an adaptation from your model to the graph2tab interfaces is
defining wrappers. The following is an example about the aforementioned Biomaterial. A Biomaterial
wrapper is build, based on a base wrapping class, ExpNodeWrapper. The listing below is an adaptation from
the test code included with the library and available on line.

...
public class BioMaterialWrapper extends ExpNodeWrapper
{

private ExperimentNode base;

BioMaterialWrapper (BioMaterial base)
{

this.base = base;
}

protected List<TabValueGroup> getTabValues ()
{

List<TabValueGroup> result = new ArrayList<TabValueGroup> ();
result.add (new DefaultTabValueGroup (“Biomaterial Name”, base.getName ()));

for (Annotation annotation: base.getAnnotations ())
{
 DefaultTabValueGroup tbg = new DefaultTabValueGroup (

" Characteristic [" + annotation.getType () + "]",
annotation.getValue ());

OntoTerm ot = annotation.getOntoTerm ();
if (ot != null)
{

tbg.append (
new DefaultTabValueGroup ("Term Accession Number", ot.getAcc (),

new DefaultTabValueGroup (
"Term Source REF", ot.getSource ())

));
}
result.add (tbg);

}
return result;

}

5

/** asks base's inputs and use the node factory to wrap them. Caches the result in an internal class
 field, defined by the DefaultAbstractNode ancestor. */

@Override
public SortedSet<Node> getInputs ()
{

if (inputs != null) return super.getInputs ();
inputs = new TreeSet<Node> ();
NodeFactory nodeFact = NodeFactory.getInstance ();
for (ExperimentNode in: base.getInputs ()) inputs.add (nodeFact.getNode (in));
return super.getInputs ();

}

...
@Override
public SortedSet<Node> getOutputs () {

...
}
...

}

Notes

You're free to directly implement the Node interface for defining your wrappers. However, for
common cases, extending DefaultAbstractNode is probably quite easier. The latter defines common
functionality, such as the collection class members for maintaining input/output nodes.

Every node type in your original model has a corresponding wrapper and the two are linked by the
base object received by the constructor.

getInputs(), getOutputs(). Your custom implementation will typically behave like (for getInput()): if
the inputs collection is not null returns it, else initialise it, by getting wrappers for each node that is input
of the base node for the current wrapper. Wrappers are usually created via a custom wrapper factory
(more later on that). In short, what we are doing is creating a graph of wrappers that is isomorphic to the
graph of nodes from your to-be converted model.

getTabValues(). In this particular model (yours may be more complicated), there is only one type of
attribute that can be attached to nodes: the Annotation class. So the getTabValues() method converts
instances of this class into the required list of headers/values. In this simple example, each header is
typed, i.e.., it is like ‘Characteristics[Organism]’, every attribute has a string value and can have an
optional ontology term, which, in turn is made of an accession and a source. Note that the latter two are
nested, as explained in the previous section.

To summarise, the wrapper defines a node identifier as is first TableValueGroup (i.e., ‘BioMaterial
Name’/’source1’), followed by one TableGroup per Annotation, which contains the annotation type, its value
and, optionally, additional pairs like ‘Term Accession Number’/’123’, ‘Term Source REF’/’MO’. The ontology
attributes are nested.

More notes

- The order the attributes are defined with in the wrappers is reflected in the final output table (this also
depends on how nodes of the same types are merged, see below).

- As explained above, those header/value pairs that go together have to be nested, starting from one
TableGroup object and adding other TableGroup to its tail (and tail of tail, in a tree-like recursive fashion).
This way, the headers (and hence columns) that must be reported together in the final table are actually
never split apart during the graph-to-table conversion.

- By nesting table value groups this way, two nodes of the same type (e.g., two sample nodes) may have
different lists of attributes, e.g., one has a ‘Characteristics[cell line]’ attribute and the other does not.
In such a case, you just omit to define any cell line or value for the second one. The converter takes care
automatically of ‘merging’ the two (or more) samples, creating the right set of columns and populating
the lines with proper values or empty cells.

6

- getInputs() and getOutputs() return SortedSet(s). This has a few implications. First, it is a bonus that
allows you to establish some order on the output lines. Typically, nodes are compared on the basis of
attributes like sample name or hybridization name. That is up to you to decide, by implementing proper
versions of compareTo(), equals() and hashCode() for your implementation of the Node interface.
DefaultAbstractNode has sensible default implementations for these methods that take the value of the
value returned by the first TableGroup found in getTabValues(), i.e., things like the ‘Source Name’ or the
‘Sample Name’. This is usually what you are fine with. The implementation in DefaultAbstractNode also
bases equals() and hashCode() on object physical identity. This is usually convenient if you choose to
extend graph2tab with the wrappers approach and making use of a node factory too (see next section).

Node factories

If you adapt graph2tab to your model with the wrappers approach, you typically will use an extension of
AbstractNodeFactory either. This just keeps a map of base nodes (nodes from your model), mapped to
your wrappers. It uses it in the method NodeWrapper getNode(Base node), which creates a new wrapper
and links it to the the given base, but only if this does not exist yet and already inside the node/wrapper
map. Obviously, it stores the new wrapper in the map, to return it in subsequent calls that have the same
base as parameter (instead of creating a new one). This ensures that you create a 1-1 graph of wrappers
from the original graph that the to-be-converted model represents. Indeed, you do not need to care about
these details, you only need to implement createNewNode(), which will be like this:

uk/ac/ebi/tablib/export/graph_algorithm/simple_biomodel_tests/node_wrappers/NodeFactory.java

public class NodeFactory extends AbstractNodeFactory<ExpNodeWrapper, ExperimentNode>
{

private NodeFactory() {}

private static final NodeFactory instance = new NodeFactory ();

public static NodeFactory getInstance () {
return instance;

}

@Override
protected ExpNodeWrapper createNewNode (ExperimentNode base)
{

if (base instanceof BioMaterial) return new BioMaterialWrapper ((BioMaterial) base);
if (base instanceof Data) return new DataWrapper ((Data) base);
if (base instanceof ProtocolRef) return new ProtocolRefWrapper ((ProtocolRef) base);
throw new IllegalArgumentException (

"Node of type " + base.getClass ().getSimpleName () + " not supported"
);

}
}

this method is what the mentioned getNode() will call, when it decides it needs a new wrapper.

Table builder

The TableBuilder class coordinates the conversion job. We suggest you extend it and define a method that
receives nodes from your input graph, as it is done in the constructor SimpleModelTableBuilder(
Set<ExperimentNode> nodes):

uk/ac/ebi/tablib/export/graph_algorithm/simple_biomodel_tests/node_wrappers/SimpleModelTabl
eBuilder.java

public class SimpleModelTableBuilder extends TableBuilder

7

{
public SimpleModelTableBuilder (Set<ExperimentNode> nodes)
{

this.nodes = new HashSet<Node> ();
NodeFactory nodeFact = NodeFactory.getInstance ();
for (ExperimentNode node: nodes) this.nodes.add (nodeFact.getNode (node));

}

}

As one can see, this method just populates the nodes class field, containing node wrappers, and does it by
using your node factory. As for the nodes that should be passed to the table builder, any set of nodes that
allow one to reach all the graph by walking from such nodes upstream (following inputs up to the
sources) and downstream (following outputs up to the sinks/end nodes) is fine. Actually, passing source
nodes, i.e., those without any input, will make the conversion slightly faster (see below in this
document).

Invoking the conversion

Once all is in place, you can go with the conversion, basically invoking getTable() from your table
builder. An invocation example can be found in SimpleBioModelTest in the source code.

Uneven graphs and their layering

What we have explained so far works correctly only upon the condition that the graph to be converted is
‘even’, which means that all the paths from the sources (e.g., bio-sources) to the end nodes (e.g., data)
have the same length. graph2tab supports ‘uneven’ graphs as well, e.g., a graph where you may have
paths of different lengths, with some experimental workflow stages omitted. An example is this:

A graph of this type is converted into tables by means of the same approach described above, which
transforms the initial graph into a set of chains. However, in order to cope with such uneven paths, the
input graph is pre-processed by a ‘layering’ component (if you are curious, this is implemented by the
LayersBuilder class, but you do not need to know anything about it in order to use the library to convert
your experimental workflows). This component distributes the graph nodes into a set of layers, where
every layer reflects the walk distances of the nodes it contains from left-most side of the graph and also
contains nodes all of the same type. In the example above, this would produce:

8

Once the graph is re-arranged this way (i.e., every node gets a layer index), it is easy to scan the graph
and to generate a table that has gaps:

Source Name Sample Name Sample Name Protocol REF Labeled

Extract Name
Data File

Source 1 Sample 1 Protocol 1 Labeled Extract Data 3

Source 1 Sample 1 Data 1

Source 2 Sample 2 Sample 3 Data 2

The layering algorithm implemented in the library is essentially based on the method briefly described
in the MAGE-TAB specification2, with several necessary details (not explicitly considered in that
description) added by us. Once a graph is adapted to the Node interface, there isn’t much else that you
have to care about in order to make graph2tab to compute the node layers. However, because of the
generic nature of the library, there is some information that you are required to provide with. This is
done via the Node.getOrder() method. It works like this: layer indexes are initially assigned to the graph
nodes based on the highest topological distance from their sources (e.g.: ‘Protocol 1’ and ‘Sample 3’ in
the example above would get 2). After that, for each layer, all the nodes in that layer are compared each
other. If two nodes in the same layer are of a different type, getOrder() is invoked to decide which one is
supposed to shift on the right (the one having a bigger or equal order). If you expect to work with
uneven graphs, you do have to provide an implementation of getOrder() in your custom implementation.
Two typical ways to do this are:

– A hash table (i.e., Java Map) of header types is defined (ie, an array of of strings), such as ‘Source
Name’, ‘Sample Name’, ‘Extract Name’ … and the order of a node is computed by considering its
first header (actually Node.getType(), see below) and taking the index of this header in such
predefined array. For example, if the first header returned by a node is ‘Sample’, its order is 2,
because in the predefined array headers it has that index. This approach is equivalent to
providing a list of types which of order is known in advance because of the experimental stage
they represent.

– An alternative is possible when the graph to be exported was initially generated from an existing
tabular format (e.g.: loaded from a MAGE-TAB submission) and stored to a database. In such a
case it is possible to track and store the column index the initial header of a node comes from
and use such index as return value for getOrder(). This kind of solution is interesting for those

2 Section 3.3.2 in http://annotare.googlecode.com/files/MAGE-TABv1.1.pdf

9

who want to be able to re-export originally submitted data and reflect the initial submission as
much as possible. For instance, in the example in the figure above, it may be that ‘Protocol REF’
nodes are not associated to a particular order (i.e., getOrder() returns -1) and the layering
component places such nodes close to their output (as it is the case more often than not). In a
different scenario, ‘Protocol 1’ could be between the two columns about samples (i.e., its output
is an omitted sample) and this could be defined by the column occupied in the submission that
generated this graph.

The use of the order approach is very flexible and can be used for many different custom cases. For
example, you may decide to combine the two criteria above, using a predefined array for all the fields
except the protocol references, for which you may want to apply the column position. Another more
advanced example consists of considering the type of protocol a ‘Protocol REF’ node refers to and
assigning the order on the basis of this. Then additional fields would be configured in the list of possible
fields, e.g.: ‘Sampling Protocol’, ‘Extraction Protocol’ etc. This is the reason why the Node interface has
the method getType(). Normally the type can be associated to the first header (and this is the default
implementation in DefaultAbstractNode). However, in a case like the one at issue, it may be that the first
header is ‘Protocol REF’, while the node type is something like ‘Extraction Protocol’, achieved from the
referred protocol. getType() could be useful when you have entities reported with the same header, but of
slightly different subtype, e.g., you want to distinguish 'treatment protocol' and 'extraction protocol'.

Headers with undefined order

As mentioned above, there will be certain headers that will have an undefined order (which corresponds
to -1 in the graph2tab library), for instance ‘Protocol REF’. Where one of such fields have to be shifted,
the layering procedure considers the order of the nodes on its left and on its right and the other node
being compared, if this has an order different than -1. For instance, in the example above, the Protocol 1
is shifted on the right, since Sample 3, the node that initially shares the layer with such protocol reference,
has an order that is closer to the one of Sample 1 and Sample 2 than the lowest order found on its right,
which is the one of Labelled Extract (order(Sample 3) – order(Sample 1/2) is 0, being the nodes of the
same type). The rationale for this is to prefer a right shift of nodes like protocol references in such
situations, because in real biological cases it is more frequent to report a protocol direct output together
with a named protocol and omit its direct input, rather than the opposite. See the source of LayersBuilder
for details about the implemented shifting criteria. The algorithm used in this class is also described in
the supplemental document about the graph2tab paper (see the introduction to this document).

Layering example in the source code

The graph2tab package contains an example of ‘layered implementation’ in the package layering_tests.
Please see the Junit tests in the class LayeringTests. There, the class ExpNodeWrapper can be found too,
which was reported above. In the real implementation, this contains an implementation of the getOrder()
method that uses the first approach described before (the array of possible headers). The package
layering_tests.model extends simple_biomodel_tests.model with a few nodes that makes it possible to build
examples of uneven graphs.

This is a fragment from ExpNodeWrapper, showing how getOrder() is implemented there:

public abstract class ExpNodeWrapper extends DefaultAbstractNode
{

...
public static final Map<String, Integer> TYPE_ORDER = new HashMap<String, Integer> ()
{{

put ("Source Name", 0);
put ("Sample Name", 1);
put ("Extract Name", 2);
put ("Labeled Extract Name", 3);
put ("Assay Name", 4);
put ("Data File Name", 5);

10

}};
...
public int getOrder ()
{

String header = getType();
Integer order = TYPE_ORDER.get (header);
return order == null ? -1 : order;

}
...

}

Disabling the layering stage for even graphs

By default the TableBuilder class creates and instance of the LayersBuider class and invokes the layering
procedure, before doing the rest of the conversion process. If you are absolutely sure that your custom
implementation will deal with even graphs only, such layering step, while not affecting the results, is not
necessary in such a case. Therefore we have provided an option to disable the layering procedure, so that
you can save some processing time (and a little of RAM too) if you do not need any layering. This is
available via the version of TableBuilder constructor that accepts the parameter isLayeringRequired. Such
parameter is true by default.

Choosing the initial node set to be passed to the table builder

We have already shown that TableBuilder needs a certain subset of nodes from your input graph, in order
to reach all the graph nodes and work out the conversion to a table. A simple working choice for this
consists of all the nodes the graph is composed of. However, the conversion can be speed up a little by
passing the set of source nodes, i.e., nodes that have no input. These must still have the general property
of being connected with the rest of the graph that is to be converted.

11

	Adapting grap2tab to your use case: overview
	Set up
	The basics
	An example of graph model
	Model wrapping
	Node factories
	Table builder
	Invoking the conversion
	Uneven graphs and their layering
	Headers with undefined order
	Layering example in the source code
	Disabling the layering stage for even graphs
	Choosing the initial node set to be passed to the table builder

