HTMLUnitGenerator

Enables user friendly and powerful front end testing of web applications with minimum
required effort to implement.

AUTHOR: TOMAS BJERRE, TOMASBJERRE [AT] YAHOO.COM

Updated January 6, 2012

Contents

1 Introduction

1.1 What is HTMLUnitGenerator?
1.2 Why should I use HTMLUnitGenerator?
2 Flow language
2.1 Introduction
2.2 Defining paths
2.3 Defining URL:s o
24 GotoURL:s e
25 Findelements e
2.6 Clickonelements
2.7 Fillinforms e
2.8 Re-usetestcases e

2.9 USE PrOXY . . v v v v v v i et e e

— =

© 00 IO = kW ww

Chapter 1

Introduction

This is the official documentation of HTMLUnitGenerator. This introduction in-
cludes three questions and three answers. They are intended to quickly get you into
the context of this document.

1.1 What is HTMLUnitGenerator?

It is a compiler. It translates a user friendly DSL! into a more advanced test case.
That way you get clear test cases that are easily maintained while at the same time
powerful and easily introduced in your current test suit.

1.2 Why should | use HTMLUnitGenerator?

1. Easy to learn and fast to work with
The time you need to spend reading up on HTMLUnitGenerator before being
able to produce qualitative test cases using it, is very short.

If you write your test cases using, for example, raw Java and HTMLUnit you
will need to come up with some hierarchy of classes to be able to re use code.
XPath:s and URL:s should typically be defined once and then referenced in all
your test cases. Developing such a structure takes time as well as explaining
and documenting it to your colleges.

2. No need to document test cases
The Flow language (see Section 2) is simple enough to, itself, qualify as doc-
umentation. Anyone, even people with no previous programming experience,
will understand what your test cases do. The Flow language has been designed
with the intention to provide only an absolute minimum number of choices to
the developer, in order to keep all test cases clean and neutral.

'Domain Specific Language

CHAPTER 1. INTRODUCTION

3. Future safe
HTMLUnitGenerator is an open source software. You can write your own
generator if you don’t want to use HTMLUnit anymore. Or maybe you want
to test your code using several different browsers. The idea is to provide
several different generators with HTMLUnitGenerator?.

2Yes, the name will change!

=W N =

Chapter 2

Flow language

This chapter will describe the Flow language. It is the language used to express
test cases.

This chapter starts with a quick look at a test case written in Flow, see Section
2.1, and continued with a complete walk through of the language.

2.1 Introduction

A quick example of a test case written in Flow is presented in Listing 2.1. The
details of this test case is explained later in this chapter.

Url SomeSite is http://www.somesite.domain/

Go to SomeSite
Find a with attribute href set to /some/target

Listing 2.1. Find href of an a tag

2.2 Defining paths

Flow uses XPath! to define containers, like div-tags for example.

Path searchpopup is /html/body/div[7]/div/div[9]
Path search is //#[Qid="eventIdsearch"]
Path website is /html/body

Listing 2.2. Defining XPaths

In Listing 2.2 a div is defined as searchpopup, an element with an id is defined
as search and the entire website content is defined as website.

Yhttp:/ /www.w3schools.com/xpath/

[\

CHAPTER 2. FLOW LANGUAGE

2.3 Defining URL:s

URL:s are used in Flow to go to exact URL:s, see Section 2.4.

Url myUrl is http://www.my.domain/page.html
Url myOtherUrl is http://www.my.domain/page.html

Listing 2.3. Defining URLs

In Listing 2.3 a URL is defined as myUrl and another defined as myOtherUrl.

2.4 Go to URL:s

The Go to statement is used to browse directly to a URL, see Section 2.3.

Url myUrl is http://www.my.domain/page.html
Go to myUrl

Listing 2.4. Go to statement

In Listing 2.4 a URL is defined and used in a Go to statement. This will create a
test case where a browser is opened and the URL http: //www.my.domain/page.html
is visited.

So far, no assertions on the content of the visited page are made. This means
the test will never fail. In order to make assertions you may want to wait for a
while after the page has been loaded, in order for JavaScripts to execute. This can
be done as in Listing 2.5.

Url myUrl is http://www.my.domain/page.html
Go to myUrl and wait 5 seconds

Listing 2.5. Go to statement with wait

In Listing 2.5 the test case will sleep for 5 seconds before continuing execution.
This may work in many situations but it should be avoided. You should instead
wait for a condition to be true and then continue execution. This can be achieved
with wait at most in the Find statement (see Section 2.5).

2.5 Find elements

The Find statement is used to make assertions on the content of the current page.

Url myUrl is http://www.my.domain/page.html
Go to myUrl
Find containing Hello

Listing 2.6. Find statement

In Listing 2.6 a web page is visited and the test will fail unless it contains “ Hello”.
If you want to match a string containing white spaces you must add quotes to
the string, see Listing 2.7.

[\

[\V] =W N =

=W N = [\

[\

2.5. FIND ELEMENTS

Url myUrl is http://www.my.domain/page.html
Go to myUrl
Find containing "Hello World"

Listing 2.7. Find statement with spaces

By default Find will look for the given content within the entire website, /htm-
l/body. You may change this behaviour by adding in [XPath/. Listing 2.8 shows
how the string Hello World is asserted to be found in inside an element with id set

to mypopup.

Path mypopup is //#[Qid="mypopup"]

Url myUrl is http://www.my.domain/page.html
Go to myUrl

Find containing 'Hello World" in mypopup

Listing 2.8. Find statement in given XPath

Boolean logic, and/or, can be used to accept different combinations of containing
strings. Listing 2.9 shows how the string Hello World is asserted to be found along
with Alternativel or Alternative.

Url myUrl is http://www.my.domain/page.html

Go to myUrl

Find containing "Hello World" and containing "Alternativel" or
containing "Hello World" and containing "Alternative2"

Listing 2.9. Find statement with boolean logics

Find can also be used to find tags. In Listing 2.10 an assertion is made making
sure an a tag with attribute href set to /link/category/blandat is available.

Url myUrl is http://www.my.domain/page.html
Go to myUrl
Find a with attribute href set to /link/category/mix

Listing 2.10. Find tag statement

In Listing 2.11 the a tag is asserted to be available within the XPath mypopup.

Path mypopup is //*[Qid="mypopup "]

Url myUrl is http://www.my.domain/page.html

Go to myUrl

Find a with attribute href set to /link/category/mix in mypopup

Listing 2.11. Find tag statement within an XPath

Tags can also be combined, as in Listing 2.12.

Url myUrl is http://www.my.domain/page.html

Go to myUrl

Find a with attribute href set to /link/category/mix and h2 with
attribute class set to alternativel or a with attribute href set to
/link /category /mix and h2 with attribute class set to alternative2

Listing 2.12. Find tag statement with and/or logics

[\

[\

[\V]

w

CHAPTER 2. FLOW LANGUAGE

Several attributes can be asserted to be available in the same tag. Listing
2.13 shows how tag a is asserted to be available with either /link/category/mix or
/link/category/other but then attribute class has to be defined as otherClass.

Url myUrl is http://www.my.domain/page.html

Go to myUrl

Find a with attribute href set to /link/category/mix or attribute a set
to "/link/category/other" and attribute class set to otherClass

Listing 2.13. Find tag with several attributes

Find can combine tags and strings. Listing 2.14 shows how a with attribute href
set to /link/category/mix along with string Alternativel or Alternative? is asserted
to be available.

Url myUrl is http://www.my.domain/page.html

Go to myUrl

Find a with attribute href set to /link/category/mix and containing
Alternativel" or a with attribute href set to /link/category/mix
and containing "Alternative2"

"

Listing 2.14. Find statement with combined tag and containing with and/or logics

The content asserted by Find may not be available, and then the test will fail.
You may accept the content to be available within a period of time, for example
JavaScripts may update the DOM. Listing 2.15 shows how wait at most is used to
wait at most 5 seconds for the assertion to become true.

Url myUrl is http://www.my.domain/page.html
Go to myUrl
Find containing "Hello World" or wait at most 5 seconds

Listing 2.15. Find statement with wait at most

2.6 Click on elements

A click on an element may result in the entire page being reloaded or just a
JavaScript adding some content to the DOM. Listing 2.16 shows a simple example
of an element being clicked.

Path choose is /html/body/div[2]/div

Url baspaket is http://www.bredbandsbolaget.se/tv/kanalpaket/baspaket.
html

Go to baspaket

Click on choose

Listing 2.16. Click on

After clicking the element you will probably want to add a Find statement.
Listing 2.17 show how a waiting period can be added after the click. When waiting
for content to be available it is recommended to use Find with wait at most as in
Section 2.5.

DU W N DU W N =

T W N~

—

2.7. FILL IN FORMS

Path choose is /html/body/div[2]/div

Url baspaket is http://www.bredbandsbolaget.se/tv/kanalpaket/baspaket.
html

Go to baspaket

Click on choose and wait 3 seconds

Listing 2.17. Click on and wait

2.7 Fill in forms

When testing pages that contains forms you may need to add text to them. Listing

2.18 shows how a text field can be populated with content. The URL http://someurl.domain/

is asserted to contain a form named wuserForm which contains a text field named
name. The text field is populated with “Tomas Bjerre”.

Path Website is /html/body

Path choose is //#[@Qid="choose"]

Url SomeUrl is http://someurl.domain/

Go to SomeUrl

Fill in userForm with name as "Tomas Bjerre"
Click on choose

Listing 2.18. Fill in text field in formular

Listing 2.19 shows how multiple text fields can be populated.

Path Website is /html/body

Path choose is //#[@Qid="choose"]

Url SomeUrl is http://someurl.domain/

Go to SomeUrl

Fill in userForm with name as "Tomas Bjerre" and gender as male
Click on choose

Listing 2.19. Fill in multiple text fields in formular

Listing 2.20 shows how the text field name is populated with a unique (random)
string.

Path Website is /html/body

Path choose is //%[@Qid="choose"]

Url SomeUrl is http://someurl.domain/

Go to SomeUrl

Fill in userForm with name as unique string of length 6 starting with
My

Click on choose

Listing 2.20. Fill in text field in formular with unique string

The string in Listing 2.20 can be set to a specific length as in Listing 2.21.

Path Website is /html/body
Path choose is //x[@Qid="choose"]

S U W

T W N~

S U W N

[\V]

CHAPTER 2. FLOW LANGUAGE

Url SomeUrl is http://someurl.domain/

Go to SomeUrl

Fill in userForm with name as unique string of length 6
Click on choose

Listing 2.21. Fill in text field in formular with unique string of specific length

The string in Listing 2.21 may only be partly random as in Listing 2.22. In
Listing 2.22 the string is randomly generated but it will always start with the same
sequence.

Path Website is /html/body

Path choose is //x[@Qid="choose"]

Url SomeUrl is http://someurl.domain/

Go to SomeUrl

Fill in userForm with name as unique string of length 6 starting with
My

Click on choose

Listing 2.22. Fill in text field in formular with unique string of specific length and
start

When selecting an item from a drop down, the same code as above can be used.
But it may be preferred to reference the item as the index number. Listing 2.23
shows how the option number 1 is selected.

Path Website is /html/body

Path choose is //x[@Qid="choose"]

Url SomeUrl is http://someurl.domain/

Go to SomeUrl

Fill in locationForm with floor as option number 1
Click on choose

Listing 2.23. Fill in option by index number

2.8 Re-use test cases

It is ofter preferred to store definitions of XPath:s and URL:s in separate files. Then
they can be re-used in test cases. Also there may be a serious of actions needed in
order to get to a specific state, such actions may also be stored in separate files and
enabled to be re-used. Listing 2.24 shows how test code can be made available in
another test.

See includes/paths. flow
See includes/urls.flow
See includes/goToOrderflow. flow

Listing 2.24. See statement

2.9. USE PROXY

2.9 Use proxy

Test cases may need to be configured to use proxies when run. Listing 2.25 shows
how to set the proxy server to use.

Use proxy myProxyHost with port 8080

Listing 2.25. Use proxy statement

