hawihom

System
manual

Contents

T 0T [T3 4 o] o PRSP 3
LAV = LR ES3 F= 114 o o 3
= L (ol (=To (BT =T 0 g U= o) £ TP UPPTPRRRPPOS 3
YU 11T o o = R 3

T .01 P 4

i F= ATV T T £ PSRN 5
1T =T = 1 (=T o PRt 5
U 1 A (o 3 =Y a (0] o o R 5
1 0T o] = PRSPPI 5
= LSV (o TN U= YOO 6
=10 57 =T 1 PRSP 6
a1 =T o g [ST= R =TT RPN 6

A o g 1 (=T (5[Y PR 7
L =TT T 7
(@70 010118 T o= 4 o] o 7
Users and authentiCation.........oouuuuiii e e 8
L@ o =1] 1= R 10
0 T 14T SRR 11
BroWSer DENAVIOU.......coeie e e e e e e e e e e e e e e e 11

D=7 0] (oY 0 =T o | SRR 12
Server CoONfIQUIAtIONS........ooi e e e e e e e e e e e e e e e e e 12
SYSEEM rEQUIFEMENTS. ...t e e e e e e e e e e e eeeeeeeeeeeeeeeennennnnns 15
1Ty =11 =140 o 17
TrYING OUL YOUF SEIVET ...ttt ettt et e e e e e e e et e e e e e e e e s e e ne e s e e e e e e e e e e e eaaaaaeaeaeeeaanan 21
o =T I (== 1 T TSROt 21
1T =T o PRt 21

TS (=T =Y o= PP 22
101 22
[0 T=To I (=TS 1T Vo TP PP 23
(@] a1 ile 18 =1 4] o 1SS 30
o T 1= P 33
S €= LS 41 U 36
L= ¢ 01 R 38

Introduction

What is Hawthorn?

Hawthorn is a JavaScript-based text chat system. Here’s a screenshot of Hawthorn
running within the Moodle educational environment.

Course Fullname 101
samtest ~ CF101

CF101: Chat
| 'f_ http://192.168.0.100:8080/~sam/moodle/blocks/hg) J

L

Chat | To chat, type messages in the textbox and press Return to send. (Close chat)
. J
Course chat 22:28 Admin User |

‘Open chat for CF101: r « Admin User joined the chat

Group chat
* <Admin User> Hi there, how is
Open chat for test grou everyone?
hawthom
% <Admin User> (...except there's 3
nobody else here.) v SRS
I seem to be talking to myself...
Done &)

25 May - 31 May

Basic requirements

In order to use Hawthorn, you need:
* An existing website with its own user authentication system.

* A server that can run Java applications.

Audience

This document is intended for:
» System administrators who intend to install Hawthorn on their system.
* Developers who intend to implement a Hawthorn connector for a host system.

This is not an end-user document. Technical knowledge and system administration skills
are required.

Terms

This glossary lists basic terms used in this manual and in the Hawthorn system. You don’t
need to understand all this before reading the rest of the manual.

User
Somebody who can connect to the Hawthorn system. A user is identified by a
unique user name.

User name
A short text string consisting only of ASCII characters A-Z, a-z, 0-9, - and _. Not
usually displayed on-screen to users.

Display name
A text string containing arbitrary Unicode characters (except control characters
and the " symbol) that represents the user. This is often displayed to users.

Extra data

Extra data stored per user, defined by the host system. This could include
information that will allow a user picture to be displayed, or other integration
details. In purely standard Hawthorn usage, it is an empty string.

Permissions
User permissions defined by a text string such as rwma. Available permissions are
read, write, moderate, and admin.

Channel
A channel or chat room in which users can talk. Hawthorn channels are completely
independent of each other.

Channel name

A short text string consisting only of ASCII characters A-Z, a-z, 0-9, - and _. Not
usually displayed on-screen to users. Hawthorn does not maintain user-visible
channel names; this is the responsibility of the host system.

Key

An authorisation key (sequence of hexadecimal digits) that permits access to a
Hawthorn channel for a particular user. Created using the SHA-1 hashing
algorithm.

Key time
The time at which a key expires, stored as a number of milliseconds since Jan 1,
1970. Hawthorn keys are granted for a limited time.

Host system
An existing Web system that provides users with access to the Hawthorn chat
system.

Connector
Program code implemented within the host system (not Hawthorn) that provides
links and files that give users controlled access to Hawthorn.

Hawthorn is...

Hawthorn is a text-only Web chat system.

It is based on the following design decisions and principles. If these do not sound
appropriate for your usage, then another system might be better for you.

Integrated

Hawthorn cannot be used on its own. It must be integrated into another Web system
referred to as a host system which provides user information and authentication, and
determines which channels are available.

There is no need for ‘single sign-on’ support for Hawthorn; it has no other way to operate.

Goals

* Simple for programmer to implement connectors on most Web systems and major
platforms.

* Example code for (initially) JSP and PHP.
* Fully-working connector for (initially) the Moodle educational system.

* Additional connectors to be developed and contributed by third parties.

Built to perform

Hawthorn is designed to perform as well as possible.

Goals

* High performance of Hawthorn infrastructure.
* Typical request handling in the 1ms range.

* No performance drain on linked host system.

Hawthorn does not have many features. It is designed to provide basic text chat facilities,

not to compete with major chat systems such as IRC, Jabber (XMPP), or closed systems
such as MSN or Skype.

Goals

* Basic group chat in channels and nothing else.

Easy to use

On the client side, Hawthorn is implemented entirely in JavaScript. This allows operation
on major browsers without the requirement for any plugin.

Goals

* Operate correctly on browsers that cover a large majority of Web users.
» All modern browsers (latest versions of Firefox, Safari, Chrome, and Opera).

* Internet Explorer 6, 7, and 8.

Transient

Hawthorn does not provide guaranteed message delivery or long-term history. In order to
achieve high performance, all data is stored in memory.

Goals

* In-channel data is stored only for minutes in memory.

* Log files can contain all chat messages for review in case of user disputes or
other audit requirements.

Enterprise-class

Hawthorn can cope with a large number of users and can be designed to be robust in the
event of system failure.

Goals

* Flexible server configuration.
» Single-server basic system where redundancy is not required.
* Redundancy through linked live servers.
. Infinite scalability.

* Because Hawthorn channels are completely independent, you can divide
channels between multiple unconnected Hawthorn servers.

* Simple server management.
* No data is stored except for configuration and system logs.
* There is almost no backup requirement.

* Areplacement server can be configured in minutes.

Architecture

Hawthorn has a simple architecture that is designed to be loosely connected. There is no
database and nothing to configure. All information is held in memory.

Overview

Hawthorn systems combine three components:

The Hawthorn server, which is a Java-based server that responds to HTTP
requests. This provides all chat functionality.

An existing Web-based host system, which can be implemented in any language,
does not need to connect to the Hawthorn server, and does not need to be based
on the same machine or network. The host system provides users with links and
authorisation keys that can be used to connect to the Hawthorn server.

Client-side JavaScript, which is delivered by the host system and can be
customised if required. This communicates with the Hawthorn server to implement
the chat system.

Communication

JavaScript & Hawthorn server

The JavaScript code communicates with the Hawthorn server using a method often
referred to as JSON.

The user’s browser initiates communication by creating a JavaScript <script> tag
inside the current web page.

The address of this script is a URL that points to the Hawthorn server, including a
specific command verb and parameters such as the key and user name.

Hawthorn responds to the request using standard HTTP. It outputs JavaScript
code which includes parameters that describe the result of the request.

The user’s browser runs this code, which informs the main JavaScript that a
response has been received and can be processed.

Unlike other methods of JavaScript communication, this allows the Hawthorn server to be
located at a different URL from the server that delivered the page.

Host system < Hawthorn server

There is no communication between the host system and the Hawthorn server.

Hawthorn server < Hawthorn server

When Hawthorn servers communicate, they use a custom format over standard TCP/IP.

7

Users and authorisation

Hawthorn does not store any information about users. User authorisation is managed via
a magic number and SHA-1 hash keys. The magic number is shared between the
Hawthorn server (in its configuration file) and the host system (likewise, somewhere in its
configuration).

Host system Hawthorn

A
Standard Standard Hawthorn
page page request
request response
\J

User browser

Authorisation process

* The host system authenticates the user for normal access to its Web pages.

* When the authenticated user wants to access Hawthorn chat, the host system
generates a key which is provided to the user’s browser.

* The key is a hash of the magic number, user name, display name, channel
name, and an expiry time.

* Via JavaScript, the user’s browser communicates directly with the Hawthorn
server to initiate chat.

Because the host system controls key generation, it can allow users access to Hawthorn
only if they are authenticated — and only with a user name, display name, extra details,
permissions, and on a channel that the host system approves.

While chatting, all communication takes place directly with the Hawthorn server using the
generated key for authorisation. This ensures there is no performance impact on the host
system.

The key lasts for a certain time (usually 1 hour) so that if a user’s access is revoked by the
host system, they cannot continue to use Hawthorn chat. A re-acquire process lets the
user’s browser request a new key from the host system if a chat session lasts longer than
the key expiry time.

Host performance

This process ensures that there is no significant performance drain on the host system,
compared to a chat system directly integrated as part of the host system.

With a 1 hour expiry time, the host system has to support no additional Web requests at
all if a chat session lasts under 55 minutes, and 1 request per 55 minutes if the user stays
in the chat session for longer.

A 90 minute chat session would require 1 request from the host system. Meanwhile, the
Hawthorn server will service approximately 600 requests. If chat is a popular service,
handling 600 requests per user directly (in a host system that is not primarily designed for
the purpose and may already be under heavy load) might have serious performance
implications.

User names

The host system can determine user names, but these may only contain the characters A-
Z,a-z,0-9, - and _.

If the host system already has user names (or numbers) of that form, they can be used
directly. If host user names do not directly follow the same restriction, they must be
converted before creating Hawthorn keys. For example, arbitrary Unicode characters and
_ could be converted into _ followed by the 4-digit hexadecimal Unicode representation.

Some organisations treat user names as ‘secret’ information. For this reason, only users
with moderate permission (see below) are sent the actual user names of other users.
Ordinary users receive hashed versions of user names beginning with the ? symbol.

At present the current JavaScript implementation does not display user names, but they
are required when a moderator chooses to ban another user.

Permissions

A user can be granted permissions by the host system. These permissions are included in
the data used to create the authorisation key.

Permissions are defined by a string containing single letter codes. The codes must be
listed in order. Available codes, and the verbs (see below) they grant access to, are:

* r(read) - able to read messages from the channel (recent, poll, wait).
* w(write) — able to write messages to the channel (say).
* m(moderate) — able to moderate the channel (ban).

* a(admin) — able to view channel logs (1Log).
If granted on the special system channel !system, this also allows viewing of
system logs and of current system statistics.

Extra data

If a host system needs to include additional user details in chat (e.g. a picture URL), these
can be encoded into per-user extra data. The connector for the host system needs to add
these details and customise the chat JavaScript to make use of the extra data.

9

Channels

Hawthorn supports an unrestricted range and number of channels. A channel is a defined
location in which a group of users can chat.

In the current version of Hawthorn, everything said in that channel is visible to everyone in
that channel.

Channel creation and deletion

Channels do not have to be created. Providing a user with a key for a particular named
channel will allow them to enter that channel. If a second user is given access to the
same channel, the two users can chat.

Just as channels do not need to be created, they do not need to be deleted. After all
users have left a channel and all messages have expired from that channel (see below),
the channel itself will be removed from memory automatically.

Channel names

The host system can determine channel names, but these may only contain the
characters A-Z, a-z, 0-9, - and _. If these nhames are required to represent existing
concepts within the host system which use a wider character range, then they must be
converted as per ‘User names’ above.

Message lifetime

The message lifetime can be defined in configuration (see page 30). By default it is 15
minutes. After this time, messages are removed from memory.

The actual history displayed to users when they enter channels is limited to a specified
number of messages (usually 10).

Hawthorn does not provide persistent message storage and is designed as a transient
chat facility. If a server needs to be restarted, all stored messages are lost.

Channel management

Users with ‘moderate’ permission (m) are able to ban users from a channel. When banned,
users cannot connect to that channel for a period of time.

Bans are usually short-term and are also transient like other Hawthorn data; they will be
lost if a server is restarted. Hawthorn does not provide longer-term or stored bans.
Permanent action against users should be taken within the host system, so that the host
system will not grant them Hawthorn keys in future.

Because users are identified by the host system and are not anonymous, it is hoped that
they will be discouraged from inappropriate behaviour.

10

Auditing

By default, Hawthorn logs everything spoken in any chat channel. There is a separate log
file for each channel, organised by channel name. Because the log includes the user
name determined by the host system, this can be traced back to the user’s identity in the
host system.

There is more information about logs on page 33.

Browser behaviour

The user’s browser works together with the Hawthorn server to provide a chat session.

Verbs

User browsers communicate with the Hawthorn server by issuing commands known as
verbs. Key verbs are:

* recent - get recent messages from a channel.
* say - say something on a channel.
* poll - get messages (if any) that have appeared on a channel since the last poll.

For a full list of verbs and parameters, see page 38.

Communication sequence

A user chat with Hawthorn generally follows this sequence:

1. User visits a Web page on the host system with information about a Hawthorn
channel, perhaps including recent messages obtained via the recent verb.

2. User clicks the provided link to open a chat window. This uses the recent verb to
obtain a more detailed list of recent messages as well as a list of people currently
present in the channel.

3. Every few seconds, the user’s browser uses the poll verb to check if there are
new messages. The response also tells the browser when to check next (soon, if
the channel is active; after a longer delay, perhaps 15 seconds, if it is inactive).

4. If the user types a message, this is sent using the say verb.

11

Deployment

This chapter describes how to deploy a Hawthorn system. It covers:
» Server configurations — how to lay out one or multiple Hawthorn server machines.
» System requirements - infrastructure configuration for each individual machine.
* Installation — how to install a Hawthorn server on an individual machine.

Throughout this chapter, some options are noted as [recommended] or [not
recommended], or neither. You are welcome to deploy Hawthorn in a manner that is not
recommended; the recommended options might provide an easy option if configuring
servers from scratch. The reasoning for each recommendation is given as a footnote.

Server configurations

Single server [recommended’]

You can use a single Hawthorn server. This simple configuration is easy to set up.
Hawthorn is a high-performance system, so one server may be sufficient to meet your
performance requirements. The system will become unavailable if you have a hardware or
network failure on the machine.

* Log files should go to a local disk. System log files are required. Chat logs are
optional.

* If you expect low usage, you can configure the server on the same machine as
another Web server using a different port.

Multiple linked servers [recommended?]

You can link two or more Hawthorn servers. When two servers are linked, users can
connect to channels on either one and will see the same messages.

* The servers must be able to connect to one another on the same server port.

* Two linked servers offer more performance than a single server, but not as much as
two independent servers; linking servers reduces performance. If you link servers,
it is probably best to use as few as possible, and not more than three.

» Chat systems that expect a large number of servers typically use an hub/leaf
architecture where most servers only need to communicate with one other
server, and messages are not passed on.

« Hawthorn is not built this way. Every server connects to every other server. If
you require high capacity, the solution is to use independent Hawthorn
systems (see below).

1 Basic install suitable for small system that does not need high availability.
2 Efficient way to achieve availability with simple installation and best chance of seamless server
changeovers.

12

Hawthorn’s JavaScript system can automatically select between the servers. It
selects a server at random. If one server is not available, it can pick the other one.

* This random selection has an equal chance of picking each server.
Consequently, all servers should be of equal capacity.

» A failure that occurs in the middle of a chat session will usually not be apparent
to the user. When any request fails, it will automatically be transferred to the
other server. Users only see an error if all servers fail.

* If network connections do not report failure, but hang indefinitely, there is a
time out (currently 20 seconds) after which a request will be treated as failed
and passed to the other server.

« Hawthorn does not offer guaranteed integrity. It is possible that some user
messages might not get through during a failure, without any error display.
However, the system does avoid duplicated messages.

If your two servers have different power and network infrastructure, this provides
for a fault-tolerant system without the need for any extra hardware or configuration.

When a second server comes back up, it does not acquire message history from
the first server; Hawthorn data is transient. The second server begins with no data
and only receives messages from that point on.

Fail-over servers [not recommended?]

If you have front-end network hardware it may be possible to use Hawthorn in a fail-over
configuration. In this configuration, two Hawthorn servers are set up independently of
each other (not linked). The front-end hardware directs all requests to one of the servers.
If that server fails, requests are directed to the other. At all times, one server is in use, and
the other remains idle and ready.

This relies on suitable front-end hardware. The front-end hardware needs to itself
be fault-tolerant if you require a fault-tolerant system.

Because there is no connection between Hawthorn servers performance is
identical to a single server.

Hawthorn’s JavaScript would be given only a single server address in this case.

At the point of fail-over, all message history will be lost. Unless the fail-over is
instant, users may see error messages and need to reconnect.

3 Inefficient for two reasons: one server is wasted, and there’s an additional piece of hardware in the
network path. Harder to install because the front-end server must be configured.

13

Load balancing [not recommended’]

You can also use load-balancing hardware in front of a pair of linked Hawthorn servers
(rather than relying on the JavaScript load balancing).

You may be able to use more intelligent load balancing that takes into account
server load to better balance demand on the servers.

The JavaScript system is given a single address. It cannot itself select between the
servers. If the load balancer directs it to a server that has failed, users will see an
error. Users will not be able to reconnect until the load balancer realises that the
server is down.

As HTTP servers, Hawthorn servers are extremely limited. If the load balancer
provides features that assume a full HTTP server, these will not work correctly and
should be disabled.

Multiple independent systems [recommended®]

In very heavy loads, more than one Hawthorn server might be required simultaneously.
You can use a linked system of two or three servers, but beyond that the system is
unlikely to scale well.

The solution is to divide your channels into two separate groups. Each group will be
served by different Hawthorn server(s). If you require these servers to be redundant, each
group will need a pair of servers configured in one of the manners described.

A simple way to divide channels would be to take a numeric hash of the channel
name. If this is odd, count it in one channel group; even is the other one.

You could also make the host system allocate channels in a different way.

The provided connectors do not currently include support for multiple channel
groups, although the JSP and PHP libraries remain usable. You might need to
implement a custom connector.

4 Less efficient due to additional hardware; requires extra configuration.
5 Provides infinite scalability for very large systems.

14

System requirements

Operating system

Hawthorn can run on Linux [recommended?®], Mac OS X’, or even Windows?®, as well as
other platforms. It is likely to run acceptably on any platform.

Hawthorn can run in 64-bit mode [recommended®] or 32-bit. Performance differences will
be minimal.

Java

Hawthorn is a pure Java application requiring Java 5 or Java 6 [recommended'?].

CPU

Hawthorn performance is limited by CPU power. A fast CPU will be an advantage.

Hawthorn is able to scale to at least two processor cores. It may scale successfully to
four or more, but this has not been tested. There is a potential limitation because key
network operations (accepting new connections, reading request data) are currently
handled on a single thread. (See the information about MAIN_THREAD_BUSY in the
server statistics, page 36.)

If your server has many processors, you should carry out load testing to ensure that
Hawthorn makes efficient use of them. It may even be beneficial to run multiple Hawthorn
servers (linked or, ideally, serving different channels) on the same machine.

Disk

Apart from the application binary and its configuration file, Hawthorn only uses disk space
for log files.

Hawthorn needs write and read permission to a single log folder, and read permission to
its binary and configuration file.

More information about logs can be found on page 33.

Memory

Hawthorn does not have large memory requirements. Any modern machine should have
plenty of memory.

Standard server operating system with high-performance multithreading and networking.

Reputed issues with multithreading. Not widely used as server operating system.

Reputed issues with network performance. Configuration is different to other operating systems.
64-bit mode offers slight performance improvements (not just greater memory addressing capability)
when using Intel processors. On other processor architectures it shouldn’t make any difference.

10 Java 6 offered significant improvements to performance for server applications. Later Java 6 updates
may offer additional performance gains.

© oo~NO®

15

Network

Hawthorn works via HTTP connections to a single server port.
The default port is 13370 [recommended''].

Because Hawthorn is designed to handle many hundreds of connections per second,
your system kernel’s HTTP performance may be more critical than usual, and more
system effort may be spent initiating and closing connections.

Firewall configuration
Configure your organisation’s firewall to allow access:
* From the public Internet to the Hawthorn port (TCP).

* Between any linked servers, also on the Hawthorn port (TCP).

Port 80

You may wish to configure this to port 80 in order to avoid any possible firewall problems,
although this generally ought not to be necessary as Hawthorn works through most Web
proxies.

Running on ports below 1024 generally requires running Hawthorn as root [not
recommended']. It may be possible to use the Apache Foundation’s jsvc utility to
initialise Hawthorn as root, then reduce its privileges; this has not been tested.

11 There’s no particular reason to change it.

12 Running servers as root means that a bug in the server could allow attackers full access to the machine
through various mechanisms. Hawthorn is unlikely to suffer from this type of bug, but it’s better not to
take the risk.

16

Installation

Installation requires the following steps:

Create a Hawthorn user and group.

Install the hawthorn. jar program file.

Create a folder for logs.

Create the configuration file.

Run Hawthorn to test that it works.

Set up your machine to run Hawthorn automatically.

Note for Windows users: Windows does not support standard POSIX permissions, so the
security procedures and commands described here do not apply. Please use Windows
security features to implement similar security restrictions.

Create Hawthorn user and group

For security reasons you should create a user account for Hawthorn. We suggest you call
this user account hawthorn. Only the Hawthorn server will use this user account. It will
have permission to read the Hawthorn configuration file and write Hawthorn logs.

You should also create a group. We suggest you also call this group hawthorn. Users in
this group will have permission to read the Hawthorn logs.

All other users will not have permission to read or write the logs and configuration file.

Linux:

Create a group called hawthorn and a user called hawthorn, which is a member of
that group. The user should be configured so that you can’t actually log in with it
from the console. Procedures vary for different distributions, but the useradd
command may be the one you need.

Mac OS X 10.57:

sudo dscl . create
sudo dscl . create
sudo dscl . create
sudo dscl . create
sudo dscl . create
sudo dscl . create
sudo dscl . create
sudo dscl . create

/Users/hawthorn

/Users/hawthorn RealName "Hawthorn server"
/Users/hawthorn UniqueID 493%
/Users/hawthorn PrimaryGroupID 493
/Users/hawthorn UserShell /usr/bin/false
/Users/hawthorn NFSHomeDirectory /var/empty
/Groups/hawthorn

/Groups/hawthorn PrimaryGroupID 493

13 Apple keep changing the way this works. If using a different version, try Google for instructions.
14 The number 493 is an arbitrary value less than 500. If it is taken, try another one.

17

Install program file

The program file hawthorn. jar is provided in the standard download. This is the only
program file you need to deploy.

Install this file in a suitable location. For example purposes, these instructions
assume it’s /UnixApps/hawthorn/hawthorn. jar.

Make sure it is readable by the hawthorn user. Since it is publicly available, you
might as well make it readable by all users.
sudo chmod a+r /UnixApps/hawthorn/hawthorn.jar

Create a folder for logs

Hawthorn needs a folder for its logs. You should create a new folder that is not used by
other applications. If you run multiple Hawthorn instances, these must use different
folders.

The folder can be local disk [recommended™), or in another file system location such as
an NFS-mounted share.

Create the log folder. For example purposes, these instructions assume it’s
/UnixData/hawthorn-1logs.

Change its owner to the hawthorn user, and group to the hawthorn group. Set
permissions so that the user can read and write, and the group can only read. (The
X permission is also required to access the folder.)

sudo chown hawthorn:hawthorn /UnixData/hawthorn-logs

sudo chmod u=rwx,g=rx,o= /UnixData/hawthorn-logs

15 Local disk gives very high performance for log writes, although Hawthorn log writes are buffered so it
probably doesn’t make much difference..

18

Create configuration file

Hawthorn uses a single XML configuration file. This file includes the magic number that
provides authorisation control, so it’s important to keep it safe. It also contains other
configuration settings. Here’s a minimal configuration file:

<hawthorn>

<logfolder>/UnixData/hawthorn-logs</logfolder>
<magicnumber>23d70acbe28943b3548e500e297afbl6</magicnumber>
<servers><server this='y'>192.168.0.100</server></servers>
</hawthorn>

» Save the configuration file in a suitable location. For example purposes, these
instructions assume it’s /UnixData/hawthorn-conf/config.xml. You can use the
same folder as for logs if you prefer.

» Set the log folder and server address.

* Enter a new magic number (hexadecimal, 40 digits recommended). If you want
Hawthorn to make one up for you, delete the <magicnumber> section entirely and
then run Hawthorn with this unfinished configuration file. It will suggest a suitable
one. Do not use the example above on a production system. The magic number
must be kept secure as it would allow users to impersonate any other user and
obtain unrestricted server access.

* Change the file’s owner to the hawthorn user and group, and set permissions so
that nobody but this user can read the file.
sudo chown hawthorn:hawthorn /UnixData/hawthorn-conf/config.xml
sudo chmod u=r,go= /UnixData/hawthorn-conf/config.xml

Other configuration options are available. See page 30 for a full list. In particular, if you
want to route Hawthorn requests through a proxy or load-balancer, see page 22.

Check Java version

From the command line, run java -version. This reports the Java version in use. If you
have multiple Java versions, ensure that Hawthorn is using the appropriate version (Java
6, reported as 1.6). You might need to give a specific path to Java if it is using the wrong
version.

19

Run Hawthorn

To test that it’s working correctly, you can run Hawthorn from the command line.
Hawthorn takes a single command-line parameter: the location of the configuration file.
You should also include Java configuration parameters:
« -server selects the server VM. The server VM performs better than the client
VM, which is default on some platforms.

* -do4 selects the 64-bit VM. If you are using a supported 64-bit processor and
operating system, add this flag.

* -Xmx256M sets the memory limit. The default is often 64 megabytes, which is rather
low. Required memory depends on the historytime Hawthorn setting (default 15
minutes) and the quantity of usage. You can determine the required memory by
load-testing.

* -Xms256M causes Java to claim the memory immediately rather than waiting until it
is required. This can save memory-allocation time later, and makes the system’s
physical memory usage more consistent.

In addition, you should run Hawthorn as the hawthorn user. Doing this while testing lets
you ensure that file permissions are set correctly. On most platforms you can do this by
adding sudo -u hawthorn to the start of the command line.

Here is an example command line:

sudo -u hawthorn java -server -d64 -Xmx256M -Xms256M -jar
/UnixApps/hawthorn/hawthorn. jar /UnixData/hawthorn-conf/config.xml

* Run Hawthorn.

* Using another terminal window, check in the Hawthorn log folder. You should see a
log file.

* Look at the log file to make sure it shows startup information and doesn’t indicate
any errors.

* Kill the Hawthorn process (for example by pressing Ctrl-C in its terminal).

Make Hawthorn run automatically

In order to deploy the server, you need to make it run Hawthorn automatically so that
Hawthorn will come up if the machine recovers after losing power.

This script should launch Hawthorn using the hawthorn user account. You will need to
include a mechanism to restart Hawthorn in case of problems or if you want to change
the configuration file (which is only read on startup).

You can write this script yourself, or use the examples included in operating system sub-
folders of the bin distribution folder.

16 The server VM may not be available by default on 32-bit Windows installs. If this is the case you will get
an error. To get access to the server VM, install the latest Java 6 JDK and use the Java runtime installed
in that.

20

Trying out your server

Now that you have installed the server, you need to put in place the systems that will use
it for chat.

Testing with pure HTML

If you add ‘test key’ information to the configuration file and manually launch the server,
you can test using a basic HTML page that can be loaded on any computer. See
readme.txt in the connectors/htmlexample folder of the distribution.

Testing with JSP or PHP

If you have a JSP or PHP installation, look at the readme. txt in the relevant
connectors/ example project. These example projects cannot be used in production
environments, but allow you to conveniently test the server.

Installing a real connector

At time of writing, the only system with a provided connector is Moodle.

To install the Moodle connector (or another one if more are provided later), see the
instructions in the readme. txt in the relevant connectors/ folder.

Writing your own connector

If you need to write your own connector, get started by trying one of the example
connectors mentioned above first. The connector development guide, provided in the
distribution as connectors/connectordevelopment.pdf, documents the process of
creating your own connector..

Load testing

If you are expecting any serious load on your server, you should carry out load testing.
Hawthorn comes with a built-in load testing usage simulator that you can use for this
purpose, or you can use standard load testing software such as Apache JMeter.

See page 23 for full load testing instructions.

Finished

That’s it — your server is installed.
Thanks for trying Hawthorn. | hope it’s useful for you.

21

Reference

This section contains detailed information that was summarised earlier in the manual.

Proxies

It is possible, but not recommended, to run a Hawthorn system behind a proxy or load
balancer.

Logging client IP addresses

Most proxies send the request to Hawthorn with an additional header that includes the
client’s genuine IP address. Otherwise, Hawthorn would log all requests with the proxy’s
address.

This header is usually called Client-IP or X-Forwarded-For. Set up your proxy to
provide the header, then set the name of the header in Hawthorn’s configuration file:

<ipheader>(Client-IP</ipheader>

Multiple servers

If you run multiple connected servers, the server-to-server connections cannot go via a
Web proxy or load balancer. Even though they go to the same port, server connections
are not true HTTP connections and cannot be proxied.

Your server settings in the configuration file must point directly to the real server
machines.

Load testing

Before using a proxy for a live Hawthorn system, ensure that load testing is done through
the same proxy or (if the proxy is in use already) an equivalent test proxy. This will help
you diagnose any problems that might apply, and ensure that your load testing is
otherwise realistic.

If the proxy handles other systems, you may wish to run load testing for the expected
level of load via the live proxy while monitoring its performance, to ensure that the
expected level of Hawthorn usage does not degrade your proxy’s performance.

22

Load testing

You should load test your Hawthorn system to determine the approximate user load that
it can handle. If this load is below, or close to, the load you expect in real use, you should
increase the performance of your Hawthorn server(s).

Test system

You need one or more computers to run a load tester. Do not use the server computer as
a test system.

The server you are testing should be your live (but not yet deployed) system, or an
equivalent system. Do not test a system while it is actually in use, unless you don’t mind if
it falls over!

A note about TIME_WAIT

Hawthorn relies on extremely short-lived connections. TCP restrictions mean that after it
is closed, each connection consumes a port number on the client machine for up to 4
minutes, a time known as TIME_WAIT.

A single system is limited to approximately 64K ports, although typically only around 20K
ports are actually used for these temporary port assignments. If 20K ports are used and
TIME_WAIT is 4 minutes, this means it can support 20K connections per 240 seconds =
~80 connections per second.

This restriction does not apply to the server. Consequently it is unlikely to be a problem in
real use, but it can get in the way of load testing.

While load testing, the TIME_WAIT limitation results in two possible outcomes:

* ‘Lumpy’ processing where a queue builds up, stays there for some time with all
threads in C (connecting) status, then eventually clears. If you monitor CPU usage,
this should be visible as obvious peaks and troughs.

* Exceptions: NoRouteToHostException: Cannot assign requested address.

You can verify that this is the problem by trying to use a Web browser on the client
computer immediately after this exception occurs. Visit a common site, such as Google.
The web browser will fail to connect because no temporary outgoing port is available.

Hawthorn can deliver performance far in advance of 80 connections per second, so a
typical system is not adequate for use as a load testing client without configuration. The
following solutions are available:

* Use more than one client computer to achieve the required test load while not
going beyond the TIME_WAIT limitation.

» Temporarily configure TIME_WAIT to achieve a larger number of connections from
a single computer. (This is usually more practical.)

23

Configuring TIME_WAIT on Linux

Remember: make this configuration change on the load-testing client machine(s), not the
server!

Configure TIME_WAIT using sysctl as follows:
sudo sysctl -w net.ipv4.tcp_fin_timeout=>5
If this doesn’t work, search for documentation on your specific Linux distribution.

Remember to set it back to the previous value before you try to use the computer for
Internet connections.

Configuring TIME_WAIT on OS X

Remember: make this configuration change on the load-testing client machine(s), not the
server!

On OS X you cannot configure TIME_WAIT directly, but you can configure the ‘MSL’ time,
and TIME_WAIT is expressed as a multiple of this time.

sudo sysctl -w net.inet.tcp.ms1=1000

This short time is suitable only for local networks. Make sure to set it back (the default is
15000) before you try to use the computer for Internet connections.

If you need more connections, you can also configure the port range used for these
temporary ports. The default starting port is 49152. You could supply a larger range such
as:

sudo sysctl -w net.inet.ip.portrange.hifirst=20000

This makes less difference so is unlikely to solve the problem on its own.

Configuring TIME_WAIT on Windows 2000/XPY

Remember: make this configuration change on the load-testing client machine(s), not the
server!

1. Open the registry editor (Start / Run / regedit).

2. Navigate to HKEY_LOCAL_MACHINEN\SYSTEM\CurrentControlSet\Services\
Tcpip\Parameters.

3. Look for the value name TcpTimedWaitDelay. If it doesn’t exist, right-click on a
blank area, choose New / DWORD value, and type that name.

4. Right-click on the value name and choose Modify, then type a suitable value such
as 5.

This short time is suitable only for local networks. Make sure to set it back (the default is
240 decimal; or if the value didn’t exist before, you could delete it again) before you try to
use the computer for Internet connections.

17 http://technet.microsoft.com/en-us/library/cc938217.aspx

24

LoadTest simulator basics

Hawthorn comes with a simulator called LoadTest. This simulator is able to imitate real
usage. It creates a large number of users who connect to the server, poll for messages,
and say things.

Minimal parameters
To run a simulation, you need to decide:

* The number of simulated users who will have a chat window open (and possibly
be talking in it) at any one time.

* The number of drive-bys per minute. Drive-bys are visits to other pages that
include a Hawthorn recent call to display recent chat messages in a channel: the
user isn’t actively chatting, but a single request will be made to the Hawthorn
server for each visit to that page.

If you know which pages of an existing system will include Hawthorn recent calls, you
may be able to use your present Web logs to estimate a good peak value for drive-bys.
Unfortunately, there will probably be a high degree of guesswork involved in the more
important users parameter.

Testing strategy

There are many possible testing strategies. One would be:
* Estimate the parameters you really expect.
* Do a simulation run with these settings.

» If the server copes, double both parameters and try again. Repeat until the server
can no longer cope.

25

Running a test

Once you’ve decided on your parameters and testing strategy, here’s how to run an
actual test. (You might like to try this with very small values first just to make sure it’s
working.)

1.

Install hawthorn.loadtest. jar (from the bin folder of the distribution) onto your
load testing client machine.

2. Make sure you have configured TIME_WAIT on the client machine as above.

3. On the client machine, run a command line like the following. Include your server’s

own host IP address and magic number, along with the parameters you chose.
java -jar hawthorn.loadtest.jar host=192.168.0.1
magicnumber=23d70acbe28943b3548e500e297afb16 users=1000
drivebys=100 > loadtest.1000.100.csv

You should see screen output immediately. (Final output was redirected to a CSV
file, but the test displays information as it runs.)

Monitor CPU usage on the client machine. If the CPU nears 100% after the
warm-up period is complete, then you cannot run that many test users on the
machine, so the test is invalid. Exit from the test (Ctrl-C) and decrease the number
of users. You will need to use multiple client machines.

Monitor the displayed test information (see below). If the Queue figure gets high,
that indicates that the system is unable to push events through fast enough. That
probably indicates that a load limit has been reached; however, if the value isn’t
continuously increasing, you may be able to get more accurate results by using
more threads in the load tester (add threads=30 to the command line).

Monitor the server machine to determine how it is handling the load. During the
test, take a look at CPU usage and at the server statistics (see page 36) to see how
well it’s holding up. (USER_REQUEST_TIME and MAIN_THREAD_BUSY are
significant here.) You may also want to keep an eye on network traffic to see what
additional traffic you could expect as a result of this usage.

The test lasts for five minutes. When it’s finished, examine the report in the CSV file
listed above. The CSV file contains information about the load test (time,
parameters) and a single line at the end with the actual results.

Information displayed during test

During the test, a line of information is displayed every 5 seconds. This includes:

Time since start of test, in seconds.

Total number of events sent so far.

Total number of errors and exceptions (should both be 0).

Current queue size. If all test threads are waiting, the queue will grow.
Mean event time so far (averaged over the whole test, not a current figure).

Threads. Each thread is shown as a . (inactive), C (connecting), or R (receiving).

26

If the Queue figure gets high, that indicates that the system is unable to push events
through fast enough. That probably indicates that a load limit has been reached; however,
if the value only appears occasionally, you may be able to get more accurate results by
using more threads in the load tester (e.g. add threads=50 to the command line).

When there is a large queue, there might be a delay in stopping the test because the test
doesn’t stop until it completes all events that were scheduled to happen before the
scheduled test completion.

Interpreting the results

You should expect a 0 in the Errors and Exceptions columns. If the number is not 0O,
make sure your machines are correctly configured (they can connect to each other, the
magic number is correct, and so on).

The Event mean column includes the mean time it took to process an event, in
milliseconds. An acceptable average time might be in the 10 millisecond range.

Note: The reported time will be higher than the time the server reports in its statistics
pages. The server processing time does not include network transmission delays or the
network connection overhead; and if the server is heavily loaded so that
MAIN_THREAD_BUSY gets high, it won’t be able to start timing at the right point either!
Under normal conditions the server reported times more accurately reflect the server’s
effort in handling a request, but the load test times more accurately reflect a potential user
experience.

A server has probably not reached load limits if all of the following are correct:

» Server CPU usage did not hit 100% during the test (or only for brief periods due to
other system activity).

* The Event mean load test result column contains an acceptable value, such as
20ms.

* The Seconds result column shows the expected number of seconds (300 for a
five-minute test).

* The Queue mean load test result column, indicating inaccuracies of the test, is
near zero. (See example below.)

* The MAIN_THREAD_BUSY_PERCENT value in Hawthorn’s statistics (see page 36)
did not approach 100. (If you need to check it after the test, this per-minute value is
available in the system logs; look at the values covering your test period.)

* Hawthorn performance during the test remained acceptable — for example, the
Statistics page appeared quickly when viewing from another machine.

Watching the load test ‘live’

The load test happens on channels with names like Loadtestchan?2. If you connect to
one of these channels while the load test is happening, you can get an idea of what’s
going on. The example JSP web application provides one way of getting access to a load
test channel.

27

Multiple load test clients

If your live servers are faster than the machines you have available to run load tests (or
just because the load tester is not as efficient as the server), you will need to run multiple
load test client machines in order to generate enough load.

To run multiple clients, simply set them both up as above. Get ready to run each test, then
start them at the same time. During the test, make sure to monitor CPU usage of all client
machines, especially if they are not identical. If any of them get into the 100% range, the
test becomes invalid, so you need to reduce the user count on that machine and try
again.

Testing multi-server setups

When using a linked multi-server setup, be sure to test that configuration. If you have two
linked servers, run at least two load-testing machines simultaneously, pointing one to
each server.

Advanced usage

If you’d like to change the way it generates data, the load test system has several other
configuration options (for example if you think the frequency of say commands is not
realistic). Please view the APl documentation under com.leafdigital.hawthorn
.loadtest.LoadTest for a current and complete command line parameter list.

Example results

| ran the load test for between 250 and 2,000 users on an old PC: a 1.6 GHz AMD Duron
running Windows 2000 and 32-bit Java 1.6.0_13 (server VM).

Hawthorn settings were all left at defaults.

For each user count, | arbitrarily set the drive-bys value to one-tenth, so this test
measures mainly the effect of active users.

The following table and graphs summarise the results from these runs. Note:

* | omitted the ‘Errors’ and ‘Exceptions’ columns from the table, because these were
always zero.

* Three columns were added that do not appear in the load test output: the user and
drive-by counts, and my estimate (eyeballed) of typical CPU usage during the run.

Users Drive-bys Events Seconds Events/s Event mean Queue mean ~CPU

250 25 26,699 300 88 4.25 0.05 20%
500 50 53,092 300 176 3.07 0.08 35%
750 75 80,076 300 266 4.00 0.083 50%
1,000 100 106,194 300 353 7.54 7.89 70%
1,250 125 130,781 300 435 16.26 489 95%
1,500 150 145,318 305 476 60.97 114.84 100%
1,750 175 143,419 305 470 75.53 396.03 100%
2,000 200 134,492 305 440 91.92 738.85 100%

28

100 500 800

N n
90 /! 4%0 S 700

80 400
D) — 600
E 70 Va 350 o S
[0 / C
£ 60 o 300 / < 500 |
7 i 2
@ 50 ® 250 / Q 400 .
S /) / o /
g 40 | % 200 J § 300 |
§ 30 o 150/ =
) / 200
= 20 100/
F
[S i
0 0 Oe—8—=a —8—d
250 750 1250 1750 250 750 1250 1750 250 750 1250 1750
Users Users Users

These results indicate that the system in question can happily sustain 1,000 active users
(if they behave similarly to the simulated load-test users). 1,250 is about the absolute
maximum. This is indicated by all relevant factors: event mean, queue mean, and CPU.
The system can cope with a maximum of about 450 requests per second and, when it is
running within capacity, typical request processing time is about 4ms including network
delays.

One important value is queue length. If the mean queue length isn’t near zero, then results
from the load test are invalid (genuine performance would be worse). This is because the
load tester uses a limited number of threads to simulate users, and waits for threads to
become available if they are all busy; this is the ‘queue’. Real usage does not have this
limitation. In this case, the queue length indicates that results above 1,500 users are not
accurate. The results for 1,000 and 1,250 users have small queue lengths; it might be
possible to increase the load tester’s thread count and rerun these tests to obtain a more
accurate result.

If higher capacity is required, note that Hawthorn settings can be tuned. Increasing the
minpoll setting to 5 seconds allowed this machine to handle 2,000 users.

Using other load testing systems

Because all Hawthorn requests are standard HTTP GET requests, you can also use any
other web load tester, such as Apache JMeter, to test Hawthorn performance.

29

Configuration

This is the full list of options you can put in a Hawthorn configuration file.

Setting

Effect

Required settings

<magicnumber>

<logfolder>

<servers>

Optional settings

<logdays>

<loglevel>

<logchat>

<detailedstats>

Secret number used for SHA-1 authorisation key hashes.

This number must be kept secure. If you suspect the number has
been released, change it immediately.

Folder used for Hawthorn log files.

This folder must exist and be writeable by the Hawthorn system.
All log files (system and all channels) are stored in this folder.

The folder must not be shared by any other Hawthorn instance.

You can use forward slashes / in the path name, even in
Windows.

List of servers in the Hawthorn system.
This must contain at least one <server> tag:
<server this="y" port="13370">192.168.0.1</server>

When using multiple linked servers, the other server(s) should also
be defined here (but without this="y", obviously).

Number of days after which Hawthorn logs are deleted.

If you set this to zero, Hawthorn will never delete its logs. The
default is 7 days.

Level of logging.

Set this to DETAIL if you want every HTTP request to be logged
(not recommended). NORMAL is the default.

Whether chat messages are logged.

Set this to n if you don’t want this server to log messages sent to
chat channels. y is the default.

Whether per-verb command statistics are enabled.

Set this to y if you want Hawthorn statistics to record details for
each individual command verb. n is the default; this includes only
the single standard USER_REQUEST_TIME statistic.

30

<historytime>

<minpoll>

<maxpoll>

<pollscale>

<ipheader>

Time in milliseconds to retain channel history.

Old channel messages are removed from memory after this time.
The default is 900000 (15 minutes).

This setting has a significant impact on memory usage.
Minimum polling delay in milliseconds.

Hawthorn tells clients to wait this long before making another poll
request to check for messages, when a new message has
recently been sent to the channel.

The default is 2000 (2 seconds).

This setting has a significant impact on the number of requests
sent to the server by active users, so affects performance.

Maximum polling delay in milliseconds.

Hawthorn tells clients to wait this long before making another poll
request to check for messages, when there has been no new
message on the channel recently.

The default is 15000 (15 seconds).

This setting has a significant impact on the number of requests
sent to the server by users in idle channels, so affects
performance.

Time in milliseconds for polling delay to reach maxpoll.

Immediately after a new message has been sent to the channel,
the polling delay is minpoll. After pollscale milliseconds, the
delay is maxpoll. (The polling delay is gradually increased
between those points.)

The default is 60000 (1 minute).
Header to check for user’s IP address.

If Hawthorn is behind a load-balancer or other proxy, this should
be set to the HTTP header used to provide the original IP address
of the user, so that it can be correctly stored in Hawthorn logs.
Typical settings would be X-Forwarded-For or Client-IP.

The default is to use the directly-reported IP address and not
check HTTP headers.

31

<eventthreads>

<testkey>

Number of event processing threads.

Hawthorn uses event processing threads (in addition to a main
thread and some other utility threads) to handle all requests.
These may block but only very rarely, so the number of event
processing threads should generally be just a few more than, the
number of hardware threads supported by the machine.

The default is the number of available logical processors (‘logical’
means that a HyperThreading core counts as 2), plus 2. You
probably do not need to change this value unless you are trying to
limit the server’s CPU usage.

Generate key for testing.

When testing the server (for example by using the HTML setup

provided in lib/html), it may be useful to generate a test key you
can use to access features. If included, Hawthorn will print this

key to standard output when the server starts up. Example:

<testkey channel="cl1l" user="ul" displayname="User 1"
extra="" permissions="rwma"/>

You can include this key more than once if required.

32

Hawthorn log files are all stored in a single log folder defined by the 1ogfolder

configuration option.

* There is one system log for the server for each day. This file has a name like
Isystem.192.168.0.1_13370.2009-05-15.10g. (! system, followed by the IP
address and port, followed by the date.)

o If your server has an IPv6 address, : symbols in the address are replaced with !
so that the filename does not cause problems.

* There is one log file per channel per day. This file has a name like channel . 2009-
05-15.10g (where channel is the channel name).

« If the logchat configuration option is turned off, there won’t be any channel
logs.

* Log files are automatically deleted according to the value of the 1ogdays
configuration option.

Log format and behaviour

All log files are plain text. Each line contains the current time followed by other data.

Log files are written efficiently. As a consequence, there may be a delay of a few seconds
before new information appears in a file.

System log

The system log includes:

» Server start-up information (logged whenever the server starts up). This lists all
configuration options and some system information (Java version, Java VM
runtime, and so on) which could be useful in diagnosing problems.

* Information about connection to linked servers, if any.

* System errors and warnings.

* Audit information whenever the following events happen on any channel:
* Ban.
* Log view.
« Statistics view.

» Statistics, logged per day, hour, and minute. These are the same statistics shown
on the server statistics page. See page 36 for details.

If the Toglevel configuration option is set to detail, every single HTTP request to the
server is logged. This is not recommended for production servers because it creates huge
volumes of log entries, but may be useful when tracing problems.

33

Example lines
15:20:00 STARTUP Hawthorn system version 0.9.0 (2009-05-17 13:39)
* First line of startup information.

16:12:29 SERVERTO 192.168.0.100:1338 ERROR Connect failure: Connection
refused

* Connecting to the remote server failed.

16:12:30 SERVERFROM 192.168.0.100 CONNECTED
* Received a connection from the remote server.

16:12:59 SERVERTO 192.168.0.100:1338 CONNECTED
* Connecting to the remote server succeeded.

15:20:21 AUDIT BAN admin (192.168.0.100) banned ul on channel c2
* A user banned someone.

15:17:47 AUDIT LOG b (192.168.0.100) obtained log for a on 2009-05-16
* A user obtained a channel log.

15:13:26 AUDIT STATISTICS admin (192.168.0.100) viewed statistics page
* A user obtained the statistics page.

16:16:00 STATISTIC M [MEMORY_USAGE_KB] 4222

» Per-minute statistics (current data, or, for those which use averages, from the
previous minute). The hourly and daily data are marked STATISTIC Hand D.

Errors and warnings

If errors occur, you may see Java stack traces in the log. These are displayed on a single
line, with | in place of line breaks.

A warning is displayed if an event thread blocks. This generally happens only when
viewing the statistics page, and doesn’t cause a problem. If it is logged frequently,
something might be wrong.

Detailed log examples

16:13:44 REQUEST 192.168.0.100 /hawthorn/say?channel=... [full path]
* An HTTP request received from the given IP address.

16:13:59 SERVERTO 192.168.0.100:1338 REQUEST SAY... [full message]
* Information passed to a remote server.

16:13:59 SERVERFROM 192.168.0.100 REQUEST SAY... [full message]

* Information received from a remote server.

34

Channel logs

Channel logs include all SAY, JOIN, LEAVE, and BAN messages sent to the channel.

In addition to the message contents and basic user details, each line also includes the IP
address of the user in question. This may be useful if tracking down inappropriate
behaviour.

Example lines
14:54:03 JOIN 192.168.0.100 ul "User 1"

* Auser from 192.168.0.100 with user name u1 and display name User 1 joined the
channel.

14:54:04 SAY 192.168.0.100 ul "User 1" hi there

* The user from 192.168.0.100 with user name u1 and display name User 1 said ‘hi
there’.

14:54:17 LEAVE 192.168.0.100 ul "User 1" explicit
* The user from 192.168.0.100 with user name u1 and display name User 1 left the
channel explicitly by clicking the ‘Close’ button. (The other possible leave event

type, timeout, occurs if they leave without telling the server by closing the window
in another way.)

14:54:17 BAN 192.168.0.99 admin "Admin User" ul "User 1" until 18:54:17

* Auser from 192.168.0.99 with user name admin and display hame Admin User
banned u1 until 18:54.

35

Statistics

The statistics page is available through a direct browser HTTP request to the Hawthorn
server. You can access it through links provided by the connector in use:

* In the Moodle connector there is a link on the admin page for the Hawthorn chat
block.

* For testing, the HTML, JSP, and PHP examples can all generate statistics links.
(You need to request the a permission.)

When you view the statistics page it shows current information in two categories.
USER_REQUEST_TIME is the latest information and is updated every time you reload the
page, but other details were recorded the last time that the minute changed. For example,
if you view the page at 17:54:39, you’ll see values obtained at approximately 17:54:00.

Information for the current hour and current day appears below. In the example above,
these would cover, respectively, from 17:00:00 or 0:00:00 up to 17:54:00. Most statistics
are shown as averages (means) of the per-minute values.

The statistics page does not automatically reload; reload it manually to update.
If you want to see data for previous time periods, examine the server logs.

If the configuration option detailedstats is enabled, statistics for each verb, for the
statistics page itself, and even for favicon' requests, are displayed in all three sections.
These are shown with graphs in the same format as USER_REQUEST_TIME.

Statistic Meaning

USER_REQUEST_TIME Time taken to handle user HTTP requests.

Shows the number of requests, the mean and medium processing
times, and a histogram indicating the spread of times.

This is counted from the moment when a user connection is
accepted by the server, to the point where response data has
been sent to the networking system. It is less than the delay
experienced by clients because:

* Networking delays (transfer time, the time in setting up a
TCP connection) are not included.

* If the server’s main thread is busy (see
MAIN_THREAD_BUSY_PERCENT), the connection may not be
accepted immediately.

One way to see a more accurate estimate of client times is to use
the load testing system (page 23).

When there is no message immediately available, requests for the
wait verb only include the time taken to set up the initial request,
not the time spent waiting.

18 The favicon is the icon that displays in the browser address bar while viewing the statistics page.

36

CHANNEL _COUNT
CLOSE_QUEUE_SIZE

CONNECTION_COUNT

EVENT_QUEUE_SIZE

MAIN_THREAD_BUSY_
PERCENT

MEMORY_USAGE_KB

The current number of open channels.

Number of connections waiting to be closed.

When a connection is finished with, it is closed on a separate
server thread. If the server is busy, this thread might get a little
behind in closing connections.

Number of currently-open connections.

Unless the wait verb is in use, this number is likely to be small
because connections are closed immediately after sending a
response.

Does not include connections waiting to be closed (see
CLOSE_QUEUE_SIZE).

Events waiting to be processed.

Each request generates an internal server event. These events are
processed on the server event threads. If these threads are busy,
a queue might build up.

Proportion of time that the server’s main thread is active.

The server has a top-priority main thread which accepts
connections and reads request data before passing work on to
the event threads.

This design may limit system scalability. If the main thread is
active for 100% of the time, it doesn’t matter how many other
processors might be available.

Current memory usage in kilobytes.

The Java memory system relies on garbage collection. It is normal
for memory usage to gradually increase over time; periodically,
the system will do garbage collection that removes unnecessary
data.

If you want to know the ‘true’ memory usage, you can force
garbage collection from the link at the bottom of the statistics

page.

37

Verbs

Command verbs are issued as HTTP GET requests; each verb corresponds to an HTTP
path (the say verb has the path /hawthorn/say, for instance). Verbs have parameters,
given as HTTP parameters after a 7.

All verbs require identity and authorisation parameters (user name, display name, extra
data, permissions, key, and key expire time); verbs have additional parameters as below.

Verb

Parameters

Effect

say

ban

leave

recent

channel,
message, unique

channel, ban,
bandisplayname,
banextra, until,
unique

channel

channel, maxage,
maxnumber,
maxnames, filter

The specified message (plain text) is added to the channel
and sent to other users on request. A unique identifier
ensures that messages aren’t added twice (this could
otherwise happen in certain failure situations).

If the user is not present in the channel, they are
automatically joined; a join message is sent.

Requires w permission.

The user with user name ban is banned from the channel
until the time until (expressed in standard form,
milliseconds since 1970). If the user is currently in the
channel, they are forced to leave.

bandisplayname and banextra are used to send
information about the banned user to other channel users.
The unique identifier avoids duplicates.

Requires m permission.

If the user is currently in the channel, a leave message is
sent.

Leave messages are automatically sent after a timeout, but
this verb sends one immediately.

There is no join verb; other verbs cause automatic joins.
Requires w permission.

Obtains recent messages from a channel, and information
about users present in the channel.

Messages are retrieved as far back as the maxage (in
milliseconds). This must be at most equal to the server’s
historytime setting. Up to maxnumber messages are
returned (the most recent) along with up to maxnames
names of those present in the channel.

If the filter is set to say, then only standard messages (not
join, leave, or ban messages) are retrieved.

Requires r permission.

38

wait

poll

log

channel,
lasttime

channel,
lasttime

channel, date

Obtains messages sent to a channel since lasttime. If
there are no messages, this verb waits up to 50 seconds
or until a new message is retrieved before returning.

If the user is not already in the channel, they are joined to
it; a join message is sent.

This method works well and is much more efficient for the
server than polling, but there are issues in browser
support: some browsers force an hourglass cursor during
the wait period. In addition, it’s possible that web proxies
might not like long-lasting connections.

Consequently this verb is not used by default in current
Hawthorn JavaScript. You can test it in JavaScript if you
set a parameter when creating the HawthornPopup object
(see JavaScript comments).

Requires r permission.

Obtains messages sent to a channel since lasttime.
Even if there are no messages, this verb returns
immediately.

If the user is not already in the channel, they are joined to
it; a join message is sent.

The verb also returns a suggested poll delay based on the
configuration settings minpoll, maxpoll, and pollscale.
By default, clients are suggested to wait 15 seconds
before polling again if there has been no activity in the
channel. If there has been recent activity, the next poll
action may be in 2 seconds, allowing for real-time
conversations when the channel is active.

Requires r permission.

Retrieves (from disk) full logs of the channel on the given
date (YYYY-MM-DD format).

This verb is not currently used in the standard Hawthorn
interface, but can be seen in the HTML example.

Requires a permission.

39

