

Developing JAX-RS Web Applications Utilizing
Server-Sent Events and WebSocket

Martin Matula
Sr. Development Manager

Updated by Peter Doschkinow
Java Architect

Change History

Version Date Name Notes

00.01 Oct, 2012 Martin Matula Initial version

00.02 May, 2013 Peter Doschkinow Document and code updated to match new APIs
(Jersey, JSON, WebSocket, JAX-RS)

JavaFX client added (exercise5)

Table of Contents

CHANGE HISTORY .. 2

TABLE OF CONTENTS ... 2

INTRODUCTION ... 4

EXERCISE 1: EXPOSING RESTFUL API .. 6

Step 1: Exploring the Initial Project .. 6

Step 2: Adding JAX-RS Resources ... 7

EXERCISE 2: ADDING SERVER-SENT EVENTS ... 11

EXERCISE 3: ADDING WEB SOCKETS ... 14

Step 1: Implementing Web Socket End-Point .. 14

Step 2: Implementing Message Encoding/Decoding ... 15

Step 3: Broadcasting Web Socket Messages ... 17

EXERCISE 4: IMPLEMENTING A JAVA-BASED SSE CLIENT ... 21

Step 1: Explore the initial SSE Client project .. 21

Step 2: Exploring the details of SSeClientApp class ... 22

Step 3: Retrieving the list of drawings using JAX-RS client API ... 23

Step 4: Listening to SSE ... 24

EXERCISE 5: IMPLEMENTING A JAVAFX BASED CLIENT .. 25

Step 1: Explore the initial JavaFX project .. 25

Step 2: Ajust the Drawing Board Web Application... 27

Step 3: Implement a WebSocket- and SSE-client in the Drawing Board JavaFX project... 29

Step 4: Implement the Java – JavaScript bridge in the Drawing Board JavaFX project .. 32

SUMMARY .. 35

APPENDIX: SETTING UP THE LAB ENVIRONMENT ... 36

Introduction

In this lab we are going to demonstrate some of the upcoming features of JavaEE 7 as well as
value-add features we are working on for GlassFish, the JavaEE reference implementation. We
will develop a web application that allows users to collaboratively draw simple pictures. Here is
how the architecture of our application is going to look like:

The application will be deployed to GlassFish, and will consist of a JavaScript front-end running in
the browser, communicating with the Java back-end running on the server. The back-end is going
to expose REST API and web sockets. The front-end is going to utilize these to access the data
and render them in the browser. This lab focuses on the Java back-end development, so we
won't dive into how the JavaScript portion of the application is implemented. Also keep in mind
this is not a "best practices" kind of lab. The main focus is on demonstrating the technology,
rather than discussing the best practices when developing HTML5-based web applications.

Here are the projects we are going to utilize:

 GlassFish – open source application server, reference implementation of JavaEE (includes
all of the other projects mentioned below)

 Jersey – open source framework for building RESTful web services in Java, reference
implementation of JAX-RS

 Tyrus – open source web socket runtime, reference implementation of Java API for
WebSocket

 JSON Processing – open source implementation of Java API for JSON Processing

Development of this application is split into five exercises. In the first one, we are going to
develop a simple RESTful API for our web application, in the second one we will add server-sent
events and the third exercise is focused on web sockets. In the next two exercises we are
concerned with the client-side: the fourth exercise we will implement a Java based SSE-Client
and lastly in the fifth exercise we are going to implement a JavaFX client with a WebSocket- and
SSE-Support and the same functionality as the Browser- and JavaScript-based client from
exercise 3.

We are also going to briefly look at the client programming model by developing a simple console
application. This will be done in the last (fourth) exercise of this lab. This application will interact
with the Drawing Board application we will develop in the first three exercises.

If you ever get stuck while following the lab guide, you can look at the solution for the exercise.
Solutions are located in <lab_root>/solutions directory (<lab_root> being the location of the lab
files where also this lab guide document resides).

If you need to install the lab environment yourself, the Appendix at the end of this document
describes how to do that.

Once you finish the lab, you can find out more about the related technologies we used in this lab
by following the links in the Summary section of this document.

Exercise 1: Exposing RESTful API

In this first exercise, we are going to create and expose a simple RESTful API for CRUD (create,
retrieve, update, delete) operations on top of drawings. To save time, instead of starting from
scratch, there is an existing project in the <lab_root>/drawingboard we are going to add this
functionality to.

Step 1: Exploring the Initial Project

Let’s first look at what’s already in the project:

1. Start NetBeans and open the project drawingboard from <lab_root> directory.
2. Expand “Drawing Board Web Application”/”Web Pages” folder in the project view. This

folder contains the front-end of our application. It utilizes AngularJS JavaScript framework.
The main entry point to the application is the index.html, which loads the framework scripts
and style sheets. We define two views – main.html for working with the list of drawings and
drawing.html for working with a single drawing. Most of the application-specific front-end
logic is implemented in controller.js file, where we define controllers for these two views.
The controllers take care of interacting with the backend, receiving the server-sent events
as well as opening WebSocket connections. Detailed description of the JavaScript part of
the application is beyond the scope of this hands-on-lab, as we are focusing on building
the back-end part in Java.

3. Expand “Source Packages” node of the project. You can see the project currently has one
Java package with two classes. DataProvider class is a simple utility class serving as an
in-memory data store for drawings. It defines operations for creating, retrieving, updating
and deleting the drawings. The second class in the package defines Java representation of
a drawing.

4. Let’s run the project to see how the initial page looks like. To do that, first right-click on the
project node and choose “Clean and Build” in the pop-up menu, then right-click again and
choose “Run”.
NOTE: When you click on Run, a dialog may appear asking you to choose which
application server you want to run the application with. Select "GlassFish 4.0-b84", you
can check "Remember Permanently" and click OK.
The NetBeans will start GlassFish, deploy our application and open a web browser at the
application URL (in this case http://localhost:8080/drawingboard/).

5. The initial screen of the application has a text field where you can enter a name for a new
drawing and hit Enter or click the New button to issue a command to create a new drawing
with that name. This will not work at the moment, as we haven’t exposed the RESTful API
the front-end tries to use to create the new drawing.

6. You can confirm that the front-end makes HTTP requests to the back-end by enabling the
network monitoring in Chrome browser. To do that, choose Tools->Developer Tools in the
Chrome application menu. The Developer Tools will show up at the bottom of the browser
window. Switch to the Network tab.

http://localhost:8080/drawingboard/

7. Now, type something into the Drawing Name text field of our application (e.g. “test”) and hit
Enter. In the Network tab of Developer Tools you should see the frond-end made HTTP
POST request to /drawingboard/api/drawings URL, but the server responded with “404 –
Not Found” status code, since we haven’t exposed anything at that URI yet.

8. Once done, close the Developer Tools pane.

Step 2: Adding JAX-RS Resources

Now we are going to expose the RESTful API. Here is how we want the API to look like:

URI HTTP Method Description

<app_context>/api/drawings POST Creates a new drawing

<app_context>/api/drawings GET Retrieves the list of all drawings

<app_context>/api/drawings/{id} GET Retrieves a drawing with id = {id}

<app_context>/api/drawings/{id} DELETE Deletes a drawing with id = {id}

1. First, we need to add a dependency on a Jersey library and GlassFish to our project.
Double-click “Project Files”->pom.xml file to open it and add the following dependencies
just before the closing </project> tag:

<dependencies>

 <dependency>

 <groupId>org.glassfish.jersey.media</groupId>

 <artifactId>jersey-media-moxy</artifactId>

 <version>${jersey.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>${javaee7.version}</version>

 <scope>provided</scope>

 </dependency>

</dependencies>

We are going to use MOXy to map Java objects (particularly the Drawing bean) to/from
JSON, hence the dependency on jersey-media-moxy. Both dependencies have the scope
set to "provided", which means the respective jars won't be bundled in the application war
file. This is because GlassFish (our target deployment server) already contains these
libraries out of the box, so no need to include them in the war.

2. Let’s rebuild the project (right-click on the project, click on “Build” in the pop-up menu) to
get these new dependencies downloaded from maven.

3. Now, create a new DrawingsResource class (right-click on the
com.mycompany.drawingboard package and choose New->Java Class in the pop-up
menu).

4. We will expose this class at “drawings” URI (relative to the JAX-RS application URI). To do
that, annotate the class with @Path(“drawings”) (add import for javax.ws.rs.Path).

5. Attach also @Consumes and @Produces annotations to the class to indicate the class
expects/returns JSON messages:

@Path("drawings")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

public class DrawingsResource {

}

NOTE: Whenever copy-pasting the code from this document, fix imports Java imports after
the code is copied, either by following the NetBeans hints (Alt+Enter) on each line, or by
using the Optimize Imports feature (Ctrl+Shift+I or Cmd+Shift+I when on MacOS) which
fixes all imports at once. You can also use Alt+Shift+F (Ctrl+Shift+F on MacOS) to
reformat the code.

6. Let’s add a method named “create()” that will be used to create new drawings. We’ll map it
to HTTP POST. The method will return "201 – Created" response with "Location" HTTP
header set to the URI of the newly created drawing:

@POST

public Response create(@Context UriInfo uriInfo, Drawing drawing)

{

 return Response.created(uriInfo.getBaseUriBuilder()

 .path(DrawingsResource.class).path("{drawingId}")

 .build(DataProvider.createDrawing(drawing))

).build();

}

Note we are using JAX-RS @Context annotation to inject UriInfo, which provides
contextual request-specific information about the request URI. The class provides us with
the base URI of our application. We use it to construct the full URI of the newly created
drawing. The second method parameter will receive the content of the HTTP request
converted to an instance of Drawing object (using JSON un-marshaller provided by MOXy
library).

7. Now, add a "getAll()" method that returns the list of all drawings (mapped to HTTP GET):

@GET

public List<Drawing> getAll() {

 return DataProvider.getAllDrawings();

}

As you can see, the method simply returns List<Drawing> - this is possible thanks to the
concept of JAX-RS message body writers/readers that you can plug in to implement
mapping to/from a specific media type to a java type (in this case we will be utilizing MOXy
message body writer that knows how to convert Java objects into JSON strings).

8. The third resource method we are going to add is the "get()" method. It is actually going to
be what we call a sub-resource method, because it will be exposed at a URI containing
one additional path element – the drawing ID. So the method itself is going to be annotated
with @Path annotation:

@Path("{id:[0-9]+}")

@GET

public Drawing get(@PathParam("id") int drawingId) {

 Drawing result = DataProvider.getDrawing(drawingId);

 if (result == null) {

 throw new NotFoundException();

 }

 return result;

}

As you can see, we are utilizing so called path parameter in this method. We use regular
expression in the definition of the path parameter named "id" to indicate the parameter
should only match path elements that contain numbers. So, a HTTP GET request to a URI
like "…/drawings/1234" would match this resource method taking "1234" as the value of
the "id" path parameter, however "…/drawings/abc" will not match.
Also note that the method utilizes NotFoundException() which is new to JAX-RS 2.0 and
when thrown, produces "404 – Not Found" response code. Our method throws it when no
drawing with the given ID was found.

9. Another sub-resource method we will add is "delete()". It will be mapped to the same path
as "get()":

@Path("{id:[0-9]+}")

@DELETE

@Consumes("*/*")

public void delete(@PathParam("id") int drawingId) {

 if (!DataProvider.deleteDrawing(drawingId)) {

 throw new NotFoundException();

 }

}

10. Finally we need to add a JAX-RS application class that encapsulates the JAX-RS runtime
configuration for our project. Add a new class named "JaxrsApplication", annotate it with
@ApplicationPath("api"), make it extend "Application" class, which is the JAX-RS API
configuration class.
NOTE: If REST Resources Configuration dialog appears while performing this step in
NetBeans, simply click Cancel.
The resulting class should look as follows:

@ApplicationPath("api")

public class JaxrsApplication extends javax.ws.rs.core.Application

{

 @Override

 public Set<Class<?>> getClasses() {

 final Set<Class<?>> classes = new HashSet<Class<?>>();

 classes.add(DrawingsResource.class);

 classes.add(MoxyJsonFeature.class);

 return classes;

 }

}As you can see, we register the DrawingResource class as a JAX-RS resource class and
enable MoxyJsonFeature which takes care of the automatic conversion between Drawing
objects and their JSON representation.

11. We are done with the implementation part, let's rebuild and run the application to try it out
(right-click on the project and click Run).

12. Once the application page opens in the browser, try entering some text into the Drawing
Name text field and hit Enter. It will still look like nothing happened, since we haven't
implemented the server-sent events part that would notify the JavaScript front-end that a
new drawing has been added, however, if you hit Refresh in your browser, you should see
the new drawing is there. This confirms our RESTful API works and the front-end is able to
use it to create and retrieve drawings. You can try clicking the "x" next to the drawing to
delete it and refresh again to see the changes.

13. We can also test the API directly (instead of using the front-end of our application). To
retrieve the list of drawings in JSON format, you can enter the URI of our
DrawingsResource (http://localhost:8080/drawingboard/api/drawings) directly into the
address bar of the browser and hit enter. That will send an HTTP GET request to our
resource and you should see the JSON string representing the list of drawings.

14. To directly make POST and DELETE requests to our REST API you can install and use
the Postman Chrome add-. To try adding a new drawing, you can enter
http://localhost:8080/drawingboard/api/drawings address into the request URL field of
Postman, switch the method to POST, click on the Headers button and add "Content-
Type" header set to "application/json", switch to "raw" view of the message entity to be
able to enter a JSON string and type in the following for example:

{"name" : "my drawing"}

After you click the Send button, this will create a new drawing named "my drawing". Feel
free to try DELETE as well and to experiment further.

This concludes the first exercise where you learned how to expose simple RESTful API from your
application using JAX-RS and Jersey. In the following exercise we are going to add support for
change notifications using Jersey's implementation of the HTML5 concept called Server-Sent
Events.

http://localhost:8080/drawingboard/api/drawings
http://localhost:8080/drawingboard/api/drawings

Exercise 2: Adding Server-Sent Events

Now that we have the basic REST API working, it is time to add the SSE notifications, so that the
front-end gets automatically updated whenever someone adds/removes a drawing.

1. The SSE support for Jersey resides in jersey-media-sse maven module, so let's add this
dependency to our application pom.xml file by copy-pasting the following into the
<dependencies> section of that file:

<dependency>

 <groupId>org.glassfish.jersey.media</groupId>

 <artifactId>jersey-media-sse</artifactId>

 <version>${jersey.version}</version>

 <scope>provided</scope>

</dependency>

2. Rebuild the project so that the dependency gets downloaded (right-click the project and
choose Build).

3. Jersey defines a class named SseBroadcaster, that can be used for broadcasing server-
sent events. Let's add a broadcaster instance to the DataProvider class and use it to send
events whenever any changes are made to the collection of drawings. Open the
DataProvider class and add the following field declaration:

private static SseBroadcaster sseBroadcaster

 = new SseBroadcaster();

4. Now, find the createDrawing() method and insert the following just before the line with the
return statement:

sseBroadcaster.broadcast(new OutboundEvent.Builder()

 .name("create")

 .data(Drawing.class, result)

 .mediaType(MediaType.APPLICATION_JSON_TYPE)

 .build());

This will create a new event named "create", sending the newly created drawing object as
JSON in the data field of the event, and broadcasts it to all the clients registered in the
broadcaster instance (we'll add the client registration shortly).

5. Next, we are going to add event notification to DataProvider.deleteDrawing() method. Add
the following code before the return statement:

sseBroadcaster.broadcast(new OutboundEvent.Builder()

 .name("delete")

 .data(String.class, String.valueOf(drawingId))

 .build());

As you can see, this generates an event named "delete" and data field containing the ID of
the drawing being deleted.

6. We've just added the event notification code, but how is the client registration to the
broadcaster going to work? Jersey has a concept of an "event channel", which is
essentially a long-running running connection established by the client the server uses to
send the event data to. Events sent from the server are a long-running response (typically
to a HTTP GET request made by the client) being sent from the server in "chunks".
EventChannel is a class in the Jersey API that represents this SSE connection. Let's add a
method to the DataProvider class for registering a new EventChannel to the broadcaster:

static void addEventOutput(EventOutput eo) {

 sseBroadcaster.add(eo);

}

7. Now we have to add a resource method to our DrawingsResource class responding to
HTTP GET request, establishing the SSE EventChannel connection. Open the
DrawingsResource class and add the following method to it:

@GET

@Path("events")

@Produces(SseFeature.SERVER_SENT_EVENTS)

public EventOutput getEvents() {

 EventOutput eo = new EventOutput();

 DataProvider.addEventOutput(eo);

 return eo;

}

As you can see, this method adds another sub-resource mapped to …/drawings/events
URI, it produces a response of type text/event-stream
(SseFeature.SERVER_SENT_EVENTS constant value), which is the standard media type
for SSE and all it does is creating a new EventOutput instance, registering it to our
broadcaster (through the DataProvider.addEventOutput() method we added in the
previous step), and returning it. Jersey keeps the connection open, and releases the
container thread for processing other requests (i.e. open SSE connections don't block
container threads).

8. Finally we need to add a special configuration for SSE to our JaxrsApplication (so that
Jersey knows how to convert the event objects to the stream of data sent on the wire).
Doing that is simple – just go to the JaxrsApplication class and add SseFeature.classto the
list of registered classes like this:

classes.add(SseFeature.class);

9. Let's run the project to see if it works (right-click on the project and click Run). Once the
browser opens, try adding a new drawing again – this time you should see the new
drawing is displayed in the list of drawings right away. Since the front-end now receives
the events.

10. Try opening another browser window, so that you have the application in two windows
side-by-side. Try adding/deleting drawings in one window and watch how the list of
drawings gets automatically updated in both.

11. Before we move on to the next exercise, let's quickly look at how the event listening is
implemented on the JavaScript side. Open controller.js file in the Web Pages folder of the
project. Between lines 22 and 35 you can see the following code:

// listens to server-sent events for the list of drawings

$scope.eventSource = new

EventSource("/drawingboard/api/drawings/events");

var eventHandler = function (event) {

 $scope.drawings = DrawingService.query();

};

$scope.eventSource.addEventListener("create", eventHandler,

false);

$scope.eventSource.addEventListener("delete", eventHandler,

false);

// clean up

$scope.$on("$destroy", function (event) {

 $scope.eventSource.close();

});

As you can see, on the JavaScript side, EventSource object (available in HTML5-
compliant browsers) is used to establish an SSE connection – it makes an HTTP GET
request to the URI passed to it in the constructor. The request hits our
DrawingsResource.getEvents() resource method, which keeps the connection open and
registers the stream (EventOutput) to the broadcaster. You can register event handlers on
the EventSource object based on the event name. In the code above we are adding
listeners for the two types of events we are firing (create and delete) – both use the same
event handler, which simply reads an updated list of drawings from the server.

This concludes the second exercise. You've learned how you can leverage Jersey API to enable
server-sent events in your server-side application. In the following exercise we are going to look
at how to utilize another HTML5 technology – web sockets – to do bi-directional communication
between the server and the clients.

Exercise 3: Adding Web Sockets

So far we have been dealing with the main page of our application, showing the list of drawings.
In this exercise we are going to implement the functionality for the drawing detail page. This page
opens when a user clicks on a particular drawing. We are going to use web socket to transmit the
list of existing shapes of a particular drawing to the client and then continue using the open web
socket connection to broadcast and receive any changes this user and other users make to the
drawing. This will enable collaborative editing of the drawing by multiple users in real time.

To implement the web socket functionality on the server side, we are going to use the new Java
API for WebSocket that is bundled in nightly builds of GlassFish 4.0 and is coming as part of Java
EE 7.

The JavaScript front-end is trying to establish a web socket connection at the following URI:

ws://host:port/drawingboard/websockets/{drawingId}

So, we will have to make our web-socket endpoint handle that URI space.

Step 1: Implementing Web Socket End-Point

1. Similarly to JAX-RS, the web socket API is annotation-based. To expose a class as a
server web socket end-point, you need to annotate it with the standard @ServerEndpoint
annotation. So, create a new class named DrawingWebSocket and annotate it with
@ServerEndpoint, setting the path-value parameter of the annotation to "/websockets/{id}",
as that is the URI at which the class should listen for incoming connections:

@ServerEndpoint(

 value = "/websockets/{id}"

)

public class DrawingWebSocket {

}

In this way we will have the drawing id injected as parameter into our handler methods by
the web socket runtime automatically. Let's implement the method to handle opening of a
new web socket connection. To do that, add a new method and annotate it with @OnOpen
annotation (the name of the method is not significant, but let's call it onOpen):

@OnOpen

public void onOpen(@PathParam("id") Integer drawingId, Session

session) {

} The web socket runtime passes the drawing id and a session object as parameters to this
method. The session object contains contextual information for the connection being
opened (such as the request URI for example) and methods enabling to send messages to
the connection peer.

2. As part of onOpen() method we are going to add the new WebSocket session to the map
of drawing sessions that we maintain in the DataProvider class:

DataProvider.addWebSocket(drawingId, session);

3. Now we can implement a method for handling incoming messages on an existing
connection. That's what @OnMessage annotation is used for. The body of the message
gets passed to the method as a parameter. Since the front-end sends a JSON
representation of a shape that was added to the drawing, it would be nice if we could
somehow map that to Drawing.Shape object automatically. Luckily, the web socket API
has a notion of decoders and encoders that are similar to JAX-RS message body
readers/writers. They allow mapping of Java objects to/from messages. Since we will
define a decoder and encoder for Drawing.Shape object, we can declare the parameter of
our message hander to be of type Drawing.Shape, and the web socket runtime will
automatically call our decoder to do the conversion:

@OnMessage

public void shapeCreated(@PathParam("id") Integer drawingId,

Drawing.Shape shape, Session session) {

 DataProvider.addShape(drawingId, shape);

}

4. To complete the web socket end-point implementation, we should do some clean-up when
a session closes. To do that, add onClose() method:

@OnClose

public void onClose(@PathParam("id") Integer drawingId, Session

session) {

 DataProvider.removeWebSocket(drawingId, session);

}

Step 2: Implementing Message Encoding/Decoding

Now that we have the basic implementation of the end-point, we need to add the encoder and
decoder for Shape objects:

1. To process JSON, we are going to try out another API coming in JavaEE 7 – Java API for
JSON Processing.

2. Add a new class named ShapeCoding and make it implement Decoder.Text and
Encoder.Text interfaces:

public class ShapeCoding implements Decoder.Text<Drawing.Shape>,

Encoder.Text<Drawing.Shape> {

 @Override

 public Drawing.Shape decode(String message) throws

DecodeException {

 }

 @Override

 public boolean willDecode(String message) {

 // all messages will be decoded by this decoder

 return true;

 }

 @Override

 public String encode(Drawing.Shape shape) throws

EncodeException {

 }

}

3. Implement the decode() method as follows:

public Drawing.Shape decode(String s) throws DecodeException {

 // temporary workaround for a web socket implementation issue

Thread.currentThread().setContextClassLoader(getClass().getClassLo

ader());

 Drawing.Shape shape = new Drawing.Shape();

 try (JsonReader reader = Json.createReader(new

StringReader(s))) {

 JsonObject object = reader.readObject();

 shape.x = object.getInt("x");

 shape.y = object.getInt("y");

 shape.type = Drawing.ShapeType.valueOf(

 object.getString("type"));

 shape.color = Drawing.ShapeColor.valueOf(

 object.getString("color"));

 }

 return shape;

}

As you can see, the JSON Processing API is quite low level – it does not provide direct
Java binding to POJO's (that's what another upcoming JSR – Java API for JSON Binding
will be targeting), anyway, it is quite easy to work with in this case. Since we are always
expecting just one type of object – Drawing.Shape.

4. We've seen how you can read JSON using the JSON Processing API. Let's see how you
can produce JSON. Implement the encode() method as follows:

@Override

public String encode(Drawing.Shape object) throws EncodeException

{

 // temporary workaround for a web socket implementation issue

Thread.currentThread().setContextClassLoader(getClass().getClassLo

ader());

 StringWriter result = new StringWriter();

 try (JsonGenerator gen = Json.createGenerator(result)) {

 gen.writeStartObject()

 .write("x", object.x)

 .write("y", object.y)

 .write("type", object.type.toString())

 .write("color", object.color.toString())

 .writeEnd();

 }

 return result.toString();

}

Again, the code should be quite self-descriptive.
5. Now we need to register the ShapeCoding class as the decoder and encoder on the

DrawingWebSocket end-point. Open the DrawingWebSocket class and update the
@ServerEndpoint annotation as follows:

@ServerEndpoint(

 value = "/websockets/{id}",

 decoders = ShapeCoding.class,

 encoders = ShapeCoding.class)

Step 3: Broadcasting Web Socket Messages

OK, so we have the web socket end-point to receive the web socket messages. But if we ran the
application now, it would still not work. That is because all the front-end does when you try to
draw a shape on the canvas is it sends a web socket message describing that shape to the
server. It is then server's responsibility to add the shape to the actual drawing object and
broadcast that change back to all the clients (including the one that sent the original message).
The front-end adds the shape to the canvas only as a result of receiving the web socket message
from the server. But we are not sending anything yet, so nothing will be drawn. In this section we
are going to complete the puzzle. We will add methods to the DataProvider for registering and

unregistering of web socket sessions. And then in the addShape() method we need to broadcast
the change to all sessions registered for that particular drawing.

Let's start:

1. Open DataProvider class and add the following static field. We are going to use it to store
the web socket session registrations:

private static final MultivaluedHashMap<Integer, Session>

 webSockets = new MultivaluedHashMap<>();

It is a "multi-valued" map, which maps a drawing ID to a list of web socket sessions that
are associated with that drawing ID.

2. Now we can add a method that associates a new web socket session with a drawing ID.
We will be calling this method from DrawingWebSocket.onOpen() when a new connection
opens and so, as part of this method we should let the connecting client know, what
shapes already exist in the drawing, so that it can correctly render the current state of the
drawing. Add the following method to the DataProvider which does that:

static synchronized void addWebSocket(int drawingId,

 Session session) {

 // associate the session with the drawing ID

 webSockets.add(drawingId, session);

 Drawing drawing = getDrawing(drawingId);

 // if the drawing exists and has shapes,

 // send all these shapes to the client

 // so that it can draw them

 if (drawing != null && drawing.shapes != null) {

 for (Drawing.Shape shape : drawing.shapes) {

 try {

 session.getBasicRemote().sendObject(shape);

 } catch (IOException | EncodeException ex) {

 Logger.getLogger(DataProvider.class.getName())

 .log(Level.SEVERE, null, ex);

 }

 }

 }

}

In this code you can nicely see, how you can use the session object to send messages to
the remote peer (i.e. the other end of the web socket connection).

3. When the web socket connection closes, we should remove the session from the
webSockets map. So, let's add a method for unregistering the session:

static synchronized void removeWebSocket(int drawingId,

 Session session) {

 List<Session> sessions = webSockets.get(drawingId);

 if (sessions != null) {

 sessions.remove(session);

 }

}

4. Now we'll add a helper method for broadcasting a shape to all web socket sessions
associated with a given drawing:

private static void wsBroadcast(int drawingId,

 Drawing.Shape shape) {

 List<Session> sessions = webSockets.get(drawingId);

 if (sessions != null) {

 for (Session session : sessions) {

 try {

 session.getBasicRemote().sendObject(shape);

 } catch (IOException | EncodeException ex) {

 Logger.getLogger(DataProvider.class.getName())

 .log(Level.SEVERE, null, ex);

 }

 }

 }

}

5. Let's call this method from DataProvider.addShape(). Add the following right before the
line with "return true;" in the addShape() method:

wsBroadcast(drawingId, shape);

6. Finally we will call DataProvider.addWebSocket() from DrawingWebSocket.onOpen() and
DataProvider.removeWebSocket() from DrawingWebSocket.onClose(). Add the following
code in DrawingWebSocket.onOpen():

DataProvider.addWebSocket(drawingId, session);

And update the DrawingWebSocket.onClose() method as follows:

@OnClose

public void onClose(Session session){

 DataProvider.removeWebSocket(drawingId, session);

}

7. That's it. Let's try to run the application to confirm everything works. Once the browser
comes up, open another browser window at the same URI like in the last exercise. Add a
new drawing, open it in both windows and start drawing in one of the windows to see if the

same is drawn in the other one. You can try hitting the Back button to get back to the list of
drawings and click on the drawing again to see that when opening the drawing again, all
the existing shapes will get drawn (thanks to the code in DataProvider.addWebSocket()
method). Try switching between the browser windows (draw in one, then the other),
change the shapes and colors.

8. Before we move on to the next exercise, let's also quickly go through how the web socket
communication is implemented on the JavaScript side. Open the controller.js file (under
Web Pages node) again. The code that opens the web socket connection and listens to
web socket messages is between lines 46 and 51:

// open a web socket connection for a given drawing

$scope.websocket = new WebSocket("ws://" + document.location.host

 + "/drawingboard/websockets/" + $routeParams.drawingId);

$scope.websocket.onmessage = function (evt) {

 $scope.drawShape(eval("(" + evt.data + ")"));

};

The front-end sends web socket messages to the server in the mouseDown event handler
on line 106:

$scope.websocket.send(

 '{"x" : ' + posx +

 ', "y" : ' + posy +

 ', "color" : "' + $scope.shapeColor +

 '", "type" : "' + $scope.shapeType + '"}');

This concludes the third exercise. At this point our application is complete. In the next chapter we
will develop a very simple client using the new client API in JAX-RS 2.0 and the Jersey client API
for receiving Server-Sent Events.

Exercise 4: Implementing a Java-based SSE Client

In this last exercise of our lab we will develop a Java-based restful client application and see the
basics of JAX-RS 2.0 client API and the proprietary client-side SSE API in Jersey.

Step 1: Explore the initial SSE Client project

1. Open the project drawingboard-client from <lab_root> directory.
2. Expand the “Drawing Board SSE Client”/”Project Files” node of the project and double-

click the pom.xml file to open it.

The POM file of the project already contains all the necessary dependencies required to
implement the client-side logic:

<dependency>

 <groupId>org.glassfish.jersey.core</groupId>

 <artifactId>jersey-client</artifactId>

 <version>${jersey.version}</version>

</dependency>

<dependency>

 <groupId>org.glassfish.jersey.media</groupId>

 <artifactId>jersey-media-moxy</artifactId>

 <version>${jersey.version}</version>

</dependency>

<dependency>

 <groupId>org.glassfish.jersey.media</groupId>

 <artifactId>jersey-media-sse</artifactId>

 <version>${jersey.version}</version>

</dependency>

3. Expand the “Drawing Board SSE Client”/”Source Packages” node of the project. You can

see that the project contains a single com.mycompany.drawingboardclient package

with two classes.

Drawing class is the class you should be familiar with from the previous exercises. This

class defines a Java representation of a drawing. We will use this class to process the
drawing data returned from the server.

SseClientApp is the second class in the package. The class represents a Drawing

Board Swing GUI application envelope that has been provided for your convenience. You
will be filling the empty methods in this class to provide the necessary logic that connects
the Swing client application to the Drawing Board Web Application developed in previous
exercises.

4. Let’s run the project to see how the initial client application looks like.
To do that, first right-click on the project node and choose “Clean and Build” in the pop-up
menu. Then right-click on the project node again and choose “Run”.

The NetBeans will start the application and the Main application window should open:

5. The initial application has a text field containing the URL of the drawing resource, a

“Start”/”Stop” button, a status label for displaying application status messages, a drawing
list view and a text area for displaying the information about the received SSE events.

6. You can click the “Start”/”Stop” button a few times to see that the status of the application
is changing accordingly. Other than changing the status, the application does not do
anything useful at the moment, as we haven’t implemented the necessary client-side logic
yet.

7. Once done, close the application.

Step 2: Exploring the details of SSeClientApp class

1. In the Projects view, double-click the SseClientApp class to open it in the editor pane.

You should see the class open in “Design” view. Click the “Source” button in toolbar

located at the top of the opened SseClientApp class editor pane to switch to the source

view of the class.

2. The SseClientApp class code starts with a no-arg constructor that initializes the GUI

components as well as an executor service that is internally used to execute long-running
tasks in a thread separate from the Swing event dispatcher thread.

3. The next section contains a generated initComponents() method containing the actual

Swing component assembly and initialization logic, followed by two event handling

methods – onStartStop(…) and onClose(…).

Let’s look at the onStartStop(…) method in more detail. The method uses the started

boolean variable to manage the main application state. Whenever a button is clicked, the
value of the variable is inverted and content of GUI components is updated based on the

new value of the application state. The method contains an if … else clause for

separate handling of logic specific to starting and stopping the application. Notice the two

most important pieces of this methods code the calls to connect(url) and

disconnect(eventSource) methods. In this exercise we’ll focus on implementing

those two methods to provide the business logic for the client application.

4. The next section of the class contains the main(…) method definition followed by the

declaration of the class fields. Let’s skip that section and move to the last section that
contains a set of methods we need to implement as well as a few helper methods that
provide a more convenient manipulation of the state of application’s GUI components.

5. We have already introduced the first two methods in this last section – connect(…) and

disconnect(…). One other method we will be implementing is the getDrawings(…)

method that is used from within the upateDrawings(…) method bellow to update the list

of individual drawing nodes in the application’s GUI.
6. Feel free to explore the rest of the helper methods. Since we’re not going to use them

directly in our implementation, we’re not going to describe these methods in more detail
here.

Step 3: Retrieving the list of drawings using JAX-RS client API

1. First we need to create the JAX-RS client we will use to make the HTTP requests. Open

the SseClientApp class add a new private field definition:

private final Client jaxrsClient;

You may place the field definition anywhere in the class, but to keep things organized, you
should consider adding the new field right to the top of the existing field declarations.

2. Then update the SseClientApp() constructor by adding the initialization code for the

newly introduced jaxrsClient field right below the line initializing the executor field:

this.jaxrsClient =

ClientBuilder.newClient().register(MoxyJsonFeature.class);

We’ll be re-using the same client instance in our connect(…) method whenever the

application “Start” button is clicked.

3. Now, we'll proceed with implementing the first part of the logic in the connect(…) method

that will retrieve the list of drawings from the server-side drawings resource and update the

drawingsListModel that is backing up the drawingsList GUI component.

First, create a new WebTarget pointing to the list of drawings and pass the created

WebTarget instance to the updateDrawings(…) method. Add the following to the

beginning of the connect(…) method:

final WebTarget drawingsResource = jaxrsClient.target(drawingsUrl);

updateDrawings(drawingsResource);

4. The updateDrawings(…) method is passing the created WebTarget instance to the

getDrawings(…) method. We can now implement the getDrawings(…) method by

using the WebTarget instance we just created to make client requests to the drawings

resource. We are going to make an HTTP GET request to retrieve a list of drawings.

Replace the body of the getDrawings(…) method with the following code:

return drawingsResource.request(MediaType.APPLICATION_JSON)

 .get(new GenericType<List<Drawing>>() {});

In the above code we are saying we want to make HTTP GET request (hence calling the

get() method), accepting a response of "application/json" media type from the server

(that's what the request() method indicates) and we want to unmarshall the response

into List<Drawing> type. Note we are wrapping this in GenericType when passing it to

the get() method. This is needed to make the information about the generic type

parameter available to Jersey during the runtime (due to type erasure in Java, unless we

use GenericType, Jersey would see only List during the runtime, without the Drawing

type parameter. It would thus not know it should be a list of Drawing objects).

5. Let's run the application, click “Start” button and see if it correctly displays the list of
drawings.
Note that, at this point, in case you modify the list of drawings using the browser UI after
the application is started, you will need to stop and start the application again to see the
refreshed list of drawings.

Step 4: Listening to SSE

One last thing to add is the client code that listens to the server-sent events. Let's add that to our
client:

1. Replace the return null; line in the connect(…) method with the following code:

final WebTarget eventsResource = drawingsResource.path("events");

final EventSource eventSource = new EventSource(eventsResource) {

 @Override

 public void onEvent(InboundEvent inboundEvent) {

 String eventData;

 try {

 eventData = "Event "

 + inboundEvent.getName() + ": "

 + inboundEvent.getData();

 } catch (IOException ex) {

 eventData = "Failed to process event: " + ex.getMessage();

 }

 appendEventData(eventData);

 updateDrawings(drawingsResource);

 }

};

updateStatus("Listening to the SSE...");

return eventSource;

EventSource is a Jersey API class similar to the one that's available to JavaScript in

HTML5. As the constructor parameter we are passing WebTarget pointing to the events

URI and we are implementing onEvent() method, which gets called for every incoming

event. EventSource object automatically establishes the connection (by making a HTTP

GET request to the passed web target) and calls the onEvent method and all the

registered listeners (besides implementing the onEvent() method you can also

implement event listeners and register them to the event source object) for every event.

This is all asynchronous – i.e. happens on a separate thread – the call to EventSource

constructor returns immediately.
2. To make sure our application closes the event source when stopped, implement the

disconnect(…) method to simply close the event source instance as follows:

eventSource.close();

3. At this point we are done. Run the application and try adding/removing drawings using the
web browser – you should see events being printed out to the application GUI and the list
of drawings should get updated as you modify the list of drawings through the web
interface.

This concludes exercise 4 of this lab, which served as a quick introduction to the basics of the
JAX-RS and Jersey client-side programming model.

Exercise 5: Implementing a JavaFX based client

In this last exercise of our lab we will develop a JavaFX-based client with the same functionality
as the AngularJS-based browser client. We will use the JavaFX WebView component (which
wraps a WebKit implementation) to display the html pages and execute the embedded
JavaScript. Since the underlying WebKit does not support WebSocket and SSE, we will
implement this in Java. We will only minimally modify the JavaScript code to replace the
WebSocket/SSE handling with hooks to the Java code using the Java – JavaScript bridge as
documented at http://docs.oracle.com/javafx/2/api/javafx/scene/web/WebEngine.html and
http://docs.oracle.com/javafx/2/webview/jfxpub-webview.htm. The HTML and CSS code will not
be modified. Exercise 5 is a nice example of a hybrid Java/JavaScript application showing how
JavaFX can be used to extend existing and non-trivial JavaScript applications.

Step 1: Explore the initial JavaFX project

1. Open the project drawingboard-javafx from <lab_root> directory.
2. Expand the “Drawing Board JavaFX”/”Project Files” node of the project and double-click

the pom.xml file to open it.

The POM file of the project already contains all the necessary dependencies required for a
client-side WebSocket and SSE implementation:

<dependency>

http://docs.oracle.com/javafx/2/api/javafx/scene/web/WebEngine.html
http://docs.oracle.com/javafx/2/webview/jfxpub-webview.htm

 <groupId>org.glassfish.tyrus</groupId>

 <artifactId>tyrus-client</artifactId>

 <version>${tyrus.version}</version>

</dependency>

<dependency>

 <groupId>org.glassfish.tyrus</groupId>

 <artifactId>tyrus-container-grizzly</artifactId>

 <version>${tyrus.version}</version>

</dependency>

<dependency>

 <groupId>org.glassfish.jersey.core</groupId>

 <artifactId>jersey-client</artifactId>

 <version>${jersey.version}</version>

</dependency>

<dependency>

 <groupId>org.glassfish.jersey.media</groupId>

 <artifactId>jersey-media-moxy</artifactId>

 <version>${jersey.version}</version>

</dependency>

<dependency>

 <groupId>org.glassfish.jersey.media</groupId>

 <artifactId>jersey-media-sse</artifactId>

 <version>${jersey.version}</version>

</dependency>

3. To keep the pom.xml simple we will do a little hack to get the JavaFX runtime on the Java
classpath, so that we don’t have to define a special dependency for JavaFX: just copy
<jdk_home>/jre/lib/jfxrt.jar to <jdk_home>/jre/lib/ext. By the way, in JDK8 jfxrt.jar is located
exactly there. If you do the HOL on a VirtualBox image, this is probably already done for
you.

4. Expand the “Drawing Board JavaFX/Source Packages” and “Drawing Board JavaFX/Other
Sources” nodes of the project. You can see four classes below

com.mycompany.websocket.draw.sample.javafx and two resources below

src.main.resources. JavaFXDrawing and DrawingController together with

drawing.xml and drawing.css implemnt the skeleton of the JavaFX application, that

was built with the JavaFX SceneBuilder. Explore the application’s artefacts by double-

clicking on them. Note that a double-click on drawing.xml starts the SceneBuilder.

5. Let’s run the project to see how the initial client application looks like.
To do that, first right-click on the project node and choose “Clean and Build” in the pop-up
menu. Make sure that the web application from exercise 3 is still deployed and GlassFish
is running. Open a browser against it and add a couple of drawings. Then right-click on the
project node again and choose “Run”. You will note that the JavaFX client shows the list
of drawings created in the browser, but when you click on a drawing name, you see
something like:

which shows that something is broken. Also when you go back to the drawing list in the
JavaFX app and add some more drawings, they will appear in the browser, but won’t be
reflected in the JavaFX view. This is because for now only JAX-RS is working(the
AngularJS code in WebView) but the WebSocket and SSE implementations are not there
yet.

6. Once done, close the application.

Step 2: Ajust the Drawing Board Web Application

1. Starting point is the web application we developed in exercise 3. The WebKit integrated in
WebView treats JavaScript code differently. While most browsers today do not stop the
execution of JavaScript when referencing non existing functions or properties, this seem
not to be the case with the JavaScript engine in WebView. That is why we need to
introduce a variable in controllers.js that is used to tell us if the the JavaScript code is
executing in a normal browser or JavaFX, so that we can avoid the problem of a missing
WebSocket/SSE implementation in JavaFX/WebKit:

var javaFXClient = navigator.appVersion.indexOf("JavaFX") > 0;

2. This results in the following modifications in the MainController function of controllers.js :

// listens to server-sent events for the list of drawings

if (!javaFXClient)

 $scope.eventSource = new

EventSource("/drawingboard/api/drawings/events");

…

if (!javaFXClient) {

 $scope.eventSource.addEventListener("create", eventHandler,

false);

 $scope.eventSource.addEventListener("update", eventHandler,

false);

 $scope.eventSource.addEventListener("delete", eventHandler,

false);

}

// clean up

$scope.$on("$destroy", function(event) {

 if (!javaFXClient)

 $scope.eventSource.close();

});

3. In DrawingController from controllers.js we need first to escape the WebSocket API in
JavaScript for JavaFX clients and next to redirect its usage to Java by using new
JavaScript functions(starting with window.) calling into Java, that will be registered when
we setup the WebView component in JavaFX:

// open a web socket connection for a given drawing

if (!javaFXClient) {

 $scope.websocket = new WebSocket("ws://" +

document.location.host + "/drawingboard/websockets/" +

$routeParams.drawingId);

 $scope.websocket.onmessage = function(evt) {

 $scope.drawShape(eval("(" + evt.data + ")"));

 };

}

else

 window.webSocketOpen.open("ws://" + document.location.host

 + "/drawingboard/websockets/",

$routeParams.drawingId);

// clean up

$scope.$on("$destroy", function(event) {

 if (!javaFXClient){

 // sometimes when this function is called, the websocket

is already closed

 if ($scope.websocket.readyState > 0)

 $scope.websocket.close();

 }

 else {

 // sometimes when this function is called,

$scope.drawing.id is undefinded

 if ($scope.drawing.id > 0)

 window.webSocketClose.close($scope.drawing.id);

 }

});

4. Run the modified Drawing Board Web Application. The browser clients should work as in
exercise 3. The Drawing Board JavaFX client won’t work better then in Step 1, since we
still have to implement a WebSocket- and SSE-Client in JavaFX and to register and
implement in Java the new JavaSctipt functions(window.*) we used above.

Step 3: Implement a WebSocket- and SSE-client in the Drawing Board JavaFX project

1. We are going to implement the WebSocket client in WSClient.java in the same package as
DrawingController and JavaFXDrawing. It will expose a WebSocket session for sending of
drawings in JSON format trough the Java – JavaScript bridge from controllers.js running in
the WebView component. WSClient.java will also receive JSON representations of
drawings through WebSocket broadcasts from the server and call JavaScript to make
them appear in the WebView. Note that the JavaScript code has to be executed on the
JavaFX application thread, hence the usage of Platform.runLater(). Here is the code for
WSClient.java:

package com.mycompany.websocket.draw.sample.javafx;

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

import javafx.application.Platform;

import javafx.scene.web.WebView;

import javax.websocket.ClientEndpoint;

import javax.websocket.OnClose;

import javax.websocket.OnMessage;

import javax.websocket.OnOpen;

import javax.websocket.Session;

/**

 *

 * @author pdos

 */

@ClientEndpoint

public class WSClient {

 private Session session;

 private WebView webview;

 public WebView getWebview() {

 return webview;

 }

 public Session getSession() {

 return session;

 }

 public WSClient(WebView webview) {

 this.webview = webview;

 }

 @OnOpen

 public void onOpen(Session session) {

 this.session = session;

 System.out.println("Connection had opened.");

 }

 @OnMessage

 public void onMessage(String message) {

 final String js_script =

 "var elem =

angular.element(document.getElementsByClassName(\"form-

horizontal\"));"

 + "var sc = elem.scope();"

 + "sc.drawShape(eval(" + message + "));";

 System.out.println("script to execute: " + js_script);

 Platform.runLater(new Runnable() {

 @Override

 public void run() {

 webview.getEngine().executeScript(js_script);

 }

 });

 }

 @OnClose

 public void closeConnection(Session session) {

 System.out.println("Connection had closed.");

 }

}

2. Next we implement a SSE client in DrawingsEventSource.java using Jersey’s client API for
SSE. It receives SSE broadcasts from the server about adding and removing of drawings
and calls JavaScript code in controllers.js to refresh the drawings model in AngularJS.
Note that the JavaScript code has to be executed on the JavaFX application thread, hence
the usage of Platform.runLater().

package com.mycompany.websocket.draw.sample.javafx;

import java.io.IOException;

import javafx.application.Platform;

import javafx.scene.web.WebEngine;

import javax.ws.rs.client.WebTarget;

import org.glassfish.jersey.media.sse.EventSource;

import org.glassfish.jersey.media.sse.InboundEvent;

/**

 *

 * @author pdos

 */

class DrawingsEventSource extends EventSource {

 private WebEngine engine;

 private String js_script =

 "var elem =

angular.element(document.getElementsByClassName(\"table\"));"

 + "var sc = elem.scope();"

 + "var svc = elem.injector().get('DrawingService');"

 + "sc.drawings = svc.query();"

 + "sc.$apply();";

 public DrawingsEventSource(WebTarget target, WebEngine engine)

throws NullPointerException {

 super(target);

 this.engine = engine;

 }

 @Override

 public void onEvent(InboundEvent inboundEvent) {

 try {

 System.out.println("Event "

 + inboundEvent.getName() + ": "

 + inboundEvent.getData());

 System.out.println("script to execute: " + js_script);

 Platform.runLater(new Runnable() {

 @Override

 public void run() {

 engine.executeScript(js_script);

 }

 });

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

}

Step 4: Implement the Java – JavaScript bridge in the Drawing Board JavaFX project

1. Extend DrawingController.java with a couple of private fields to wire references to the
WebSocket- and SSE clients we implemented above. We will also need a
WebSocketContainer for bootstrapping of a WebSocket communication and a HashMap of
active WebSocket sessions that correspond to drawings that are being edited():

private DrawingsEventSource eventSource;

private WSClient wsClient;

private WebSocketContainer container =

ContainerProvider.getWebSocketContainer();

private HashMap<String, WSClient> webSocketSessions = new

HashMap<>();

2. Implement setupEngine() method. Here we define the Java – JavaScript Bridge for
JavaScript  Java callbacks that come from controllers.js and initialize the SSE client
side. That means that we map JavaScript functions to Java methods following specific
conventions, as described in
http://docs.oracle.com/javafx/2/api/javafx/scene/web/WebEngine.html. Essentially we
define a public Java class and a global JavaScript function that correspond to each other
and have a single method with the same signature. It is important that this code is
executed after the page that contains the JavaScript code was
loaded(WorkerStateSUCCEDED):

private void setupEngine() {

 engine.getLoadWorker().stateProperty().addListener(

 new ChangeListener<Worker.State>() {

 @Override

 public void changed(ObservableValue<? extends

Worker.State> ov,

 Worker.State oldState, Worker.State newState) {

 if (newState == Worker.State.SUCCEEDED) {

 JSObject global =

 (JSObject) engine.executeScript("window");

 global.setMember("webSocketOpen", new

WebSocketOpen());

 global.setMember("webSocketClose", new

WebSocketClose());

 global.setMember("webSocketSend", new

WebSocketSend());

 initSSE();

 }

 }

 });

}

http://docs.oracle.com/javafx/2/api/javafx/scene/web/WebEngine.html

3. Implement initSSE():

private void initSSE() {

 Client client = ClientBuilder.newClient();

 // create a web target pointing to the drawings resource

 WebTarget t =

client.target("http://localhost:8080/drawingboard/api/drawings");

 // start listening to SSE

 eventSource = new DrawingsEventSource(t.path("events"),

engine);

}

4. Implement the callback methods corresponding to the Java – JavaScript bridge
established in step 4.2 taking into account how they are called in DrawingController from
controllers.js. Note that the WebSocket code is completely standard based and
implementation independent():

public class WebSocketSend {

 public void send(String drawing) {

 try {

 System.out.println("sending drawing: " + drawing);

wsClient.getSession().getBasicRemote().sendText(drawing);

 } catch (IOException ex) {

Logger.getLogger(DrawingController.class.getName()).log(Level.SEVE

RE, null, ex);

 }

 }

}

public class WebSocketOpen {

 public void open(String baseURL, String drawingId) {

 try {

 System.out.println("Setting WebSocket to " + baseURL +

drawingId);

 wsClient = new WSClient(webview);

 URI clientURI = new URI(baseURL + drawingId);

 container.connectToServer(wsClient, clientURI);

 webSocketSessions.put(drawingId, wsClient);

 } catch (URISyntaxException | DeploymentException |

IOException ex) {

Logger.getLogger(DrawingController.class.getName()).log(Level.SEVE

RE, null, ex);

 }

 }

}

public class WebSocketClose {

 public void close(String drawingId) {

 System.out.println("Closing socket for drawing " +

drawingId);

 WSClient client = (WSClient)

webSocketSessions.get(drawingId);

 if (client == null) return;

 try {

 client.getSession().close();

 } catch (IOException ex) {

Logger.getLogger(DrawingController.class.getName()).log(Level.SEVE

RE, null, ex);

 }

 }

}

5. Build and run the Drawing Board JavaFX project. Play with different concurrently running
browser or JavaFX clients. The experience should be the same:

This concludes exercise 5 of this lab, which served as a quick introduction to a hybrid(Java-
JavaScript) JavaFX application using the client-side programming model of WebSocket and
Jersey’s Server-Sent-Events and an AngularJS application.

Summary

In this lab you got a sneak peek of some of the new features coming in JavaEE 7, such as Java
API for WebSocket, Java API for JSON Processing and JAX-RS 2.0 Client API. We've also seen
how to utilize server-sent events support that comes with Jersey – the JAX-RS reference
implementation. Here are some additional resources that can help you get more information on
these technologies and build your own applications utilizing these:

GlassFish:

 Project website: http://glassfish.java.net

 Community blog: http://blogs.oracle.com/theaquarium

Jersey/JAX-RS:

 Project website: http://jersey.java.net

 JAX-RS project website: http://jax-rs-spec.java.net

Tyrus/WebSocket API

 Project website: http://tyrus.java.net

 JSR project website: http://websocket-spec.java.net

JSON Processing

 Implementation project website: http://jsonp.java.net

 Specification project website: http://json-processing-spec.java.net

JavaFX

 JavaFX documentation: http://docs.oracle.com/javafx/index.html

http://glassfish.java.net/
http://blogs.oracle.com/theaquarium
http://jersey.java.net/
http://jax-rs-spec.java.net/
http://tyrus.java.net/
http://websocket-spec.java.net/
http://jsonp.java.net/
http://json-processing-spec.java.net/

Appendix: Setting up the Lab Environment

This lab was developed and tested with the following configuration:

 JavaSE 7 (http://www.oracle.com/technetwork/java/javase/downloads/index.html)

 Chrome web browser (https://www.google.com/intl/en/chrome/browser/)

 Postman REST Client extension for Chrome
(https://chrome.google.com/webstore/detail/fdmmgilgnpjigdojojpjoooidkmcomcm)

 NetBeans 7.3 (http://netbeans.org/downloads/index.html)

 GlassFish 4.0-b84 promoted build
(http://dlc.sun.com.edgesuite.net/glassfish/4.0/promoted/glassfish-4.0-b84.zip)

To be able to easily deploy and run the application project from NetBeans, you need to register
the GlassFish 4.0-b84 promoted build in NetBeans as follows:

1. Click on the Services tab in NetBeans.
2. Right-click on Servers, choose Add Server… in the pop-up menu.
3. Select GlassFish Server 3+ in the Add Server Instance wizard, set the name to GlassFish

4.0-b84 and click Next.
4. Browse to where you installed the GlassFish build (point to the glassfish4 directory that got

created when you unzipped the above archive), click Next.
5. Click Finish on the next screen.
6.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.google.com/intl/en/chrome/browser/
https://chrome.google.com/webstore/detail/fdmmgilgnpjigdojojpjoooidkmcomcm
http://netbeans.org/downloads/index.html
http://dlc.sun.com.edgesuite.net/glassfish/4.0/promoted/glassfish-4.0-b84.zip

