
Image I/O-Ext – User Guide
V. 1.0

Eng. Daniele Romagnoli
Eng. Simone Giannecchini

Page 1 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     



1 – Introduction
This simple guide will provide you some instructions about how to use the Image I/O-Ext project 
capabilities and how to extend them by adding new plugins. 

2 – Pre-Requirements
Before using the Image I/O-Ext, you should have already setup all the required elements. In case 
you need help on achieving this, you may look at the Image I/O-Ext Setup Guide, available here:
https://imageio-ext.dev.java.net/svn/imageio-
ext/tags/1.0.1/documentation/ImageioExt-SetupGuide.odt  1  
After completing all the required steps suggested in that guide you should be ready to use the 
Image I/O-Ext Project. During the following instructions we assume you are using Eclipse as IDE. 

First of all, you may download Eclipse from this site: http://www.eclipse.org/downloads/
From the “Eclipse IDE for Java Developers” section, click on the link located in the right side, 
referring the proper OS version you need (Windows/Linux).

3 – Usage
Image I/O-Ext extends the Java SUN's Image I/O which is a pluggable architecture for working with 
images stored in files and accessed across the network by means of a wide set of packages which 
allow to perform data access (read/write operations) and data manipulation, as well as a set of 
classes to define new image readers, image writers. Basically you would get access to a data 
source using a specific  plugin  which  is  able to manage that  specific  data format.  Let  us now 
introduce some tips on how to leverage on the Image I/O-Ext capabilities. As stated in the home 
page of the Image I/O-Ext project, it is composed of a main framework leveraging on GDAL which 
is a raster Geospatial  Data Abstraction Library capable of managing a very large set of  raster 
formats.  The explanations  available  in  the following  sections  are  mainly  focused on the  main 
framework capabilities. 

3.1 – Setup Customizations
When creating a new project which requires to use the Image I/O-Ext, you need to add several 
required libraries.  Supposing you have already built  and installed the Image I/O-Ext  project  as 
explained in the Setup Guide, you will find all what you need in your Maven2 Repository. Basically 
the Image I/O-Ext project core is built on top of 3 main libraries, available with the following JARs:

● imageio-ext-gdal

● imageio-ext-gdalframework

● imageio-ext-customstreams

Finally, depending on the specific format on which you need to get access, you must also add the 
proper library which provides access to it. As an instance, if you need to work on MrSID files, you 
also need to add the imageio-ext-gdalmrsid jar. 

Before starting with some examples on how to perform data access and manipulation, plese note 
how each module composing the Image I/O-Ext project contains a set of Junit test case classes 

1When prompted for user identification, just specify “guest” (without quotes) as user, with no password
Page 2 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

https://imageio-ext.dev.java.net/svn/imageio-ext/tags/1.0.1/documentation/ImageioExt-SetupGuide.odt
https://imageio-ext.dev.java.net/svn/imageio-ext/tags/1.0.1/documentation/ImageioExt-SetupGuide.odt
http://www.eclipse.org/downloads/
https://imageio-ext.dev.java.net/svn/imageio-ext/trunk/documentation/ImageioExt-SetupGuide.odt


which are mainly used by maven to test the project functionalities. To acquire confidence with the 
basic Image I/O (and Image I/O-Ext) data access/data manipulation ways, you can take a look on 
them with Eclipse, as explained in the following subsections.

3.1.1 – Build and import Eclipse projects
Maven  allows  to  build  ready-to-use  Eclipse  projects  by  automatically  setting  the  required 
dependencies of each project. In case you need to setup eclipse projects for the main framework 
go in your imageio-ext\library folder and run: 

mvn eclipse:eclipse (this will build ready-to-use projects containing the main framework).

Finally, if you are interested in building eclipse projects for all the available Image I/O-Ext plugins, 
you should enter in your imageio-ext\plugin folder and run again: 

mvn eclipse:eclipse -PconfigProfile (Where configProfile represents one of the 3 profiles 
you can specify:  base  or full as explained in the setup guide, chapter 3.9.3 (Windows) or 4.8.2 
(Linux) )

Alternatively, if you are interested in a single plugin, you may enter in the proper subfolder, as an 
instance, imageio-ext\plugin\gdalmrsid and run again mvn eclipse:eclipse
At this point, you should be ready to run Eclipse and import the just produced projects as follow. 
From the Eclipse File menu: File->“Import”->“General”->“Existings Projects into Workspace”-> and 
select the root directory where you previously downloaded the whole Image I/O-Ext project. When 
ready,  the  “Projects:” window  should  contain  all  the  projects  previously  built  with  “mvn 
eclipse:eclipse”. Select the ones you are interested in and go on. 

3.1.2 – Setup dependencies on Eclipse
As stated in 3.1, some of these projects need several dependencies (as an instance, the GDAL-
based plugins require imageio-ext-gdalframework.jar,imageio-ext-gdal.jar,imageio-
ext-customstream.jar and some others) which are contained in the Maven2 repository. 

Page 3 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

Figure 1: Importing Projects from Eclipse  



Be  sure  you  have  properly  set  the  M2_REPO classpath  variable  as  explained  here  below.  
Open the properties of one of your just imported projects and select “Java Build Path” entry in the 
left column. Then go to the “Libraries” Tab and check if your M2_REPO variable has been defined.
To define it, click on “Add Variable”->“Configure Variables...”->“New...” Set “M2_REPO” as Name 
and a proper location as Path. Usually, the local maven2 repository is located on the user folder of 
your OS installation, as an instance:

● “C:\Documents and settings\YourUser\.m2\repository” on Windows XP

● “C:\Users\YourUser\.m2\repository” on Windows Vista 

● “/home/youruser/.m2/repository” on Linux 

At this point, everything should be ready to run your first test.

3.1.3 – Test run customizations on Eclipse
Select  a  test  class  from  src/test/java  folder  of  an  imported  plugin  and  select  Run  As->Java 
Application. Note that all tests do not display image loaded. If you want to view the images in the 
available tests, just specify a proper JVM argument for the test run as follow. Select a test class 
and select “Run As” -> “Run...”2 . Then go in the Arguments TAB and add the following line in the 
“VM arguments:” box: -Dorg.geotools.test.interactive=true as shown in Figure 3. 

2Depending on your Eclipse IDE version, the available menu command may be “Open Run Dialog...” instead 
of “Run...”

Page 4 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

Figure 2: Configuring M2_REPO dependencies

Figure 3: Customizing Run



On Linux, in case the required libraries (.SO) are not found during tests, you should check the 
LD_LIBRARY_PATH environment  variable3.  Select  the test  class from src/test/java of  a plugin 
project  and  select  Run  As->Open  Run  Dialog.  Then  select  the  “Environment”  tab  and  check 
whether the LD_LIBRARY_PATH has been properly specified. If such a variable is not yet defined, 
just add it using the “Select...” button. Be sure it also contains a path where the required libraries 
have be placed, as an instance, the “/usr/local/lib/” path. If missing, simply add it using the 
“Edit...” button, and append the “:/usr/local/lib/” string to the value of such a variable.

3.2 – Read Access
Let  suppose you need to obtain an image from a file  stored on your  disk (as an instance on 
C:\data\sample.sid). Depending on your needs, the read access could be performed in several 
different ways. 

3.2.1 – Simplest Read Access
Use the following code in a method of your class to get an image by reading all the data available 
from the underlying file:

final File file = new File(“C:/data/sample.sid”); 
final ImageReader reader = new MrSIDImageReaderSpi().createReaderInstance();
reader.setInput(file);
final RenderedImage image = reader.read(0);

This example may be useful to read a whole dataset. However, customizing a read operation is a 
more frequent task since, for example, you could need a subset of the dataset, or you could need 
to reduce the memory requirements. To achieve this objective, you may provide an image read 
parameter as argument of the read operation. The following example illustrates how to extract a 
portion of a bigger image and scale its resolution down to a lower level.

3.2.2 – Source settings parametrization read
Let's  suppose your  MrSID file  is  big  (a 10000x10000  pixels 
dataset representing sea and shores) and you need to load a 
rescaled  view  (4  times  smaller)  of  a  portion  of  the  original 
image: a region composed of 5000x3600 pixels starting at the 
x,y pixel coordinates (5000, 6400), as illustrated in Figure 4. 

With the following settings the read operation will get an image 
of 1250x900 pixels.

The following lines of code allow to obtain the requested 
parametrized read operation: 

final File file = new File(“C:/data/bigsample.sid”); 
final ImageReader reader = new MrSIDImageReaderSpi().createReaderInstance();
reader.setInput(file);
final ImageReadParam param = reader.getDefaultReadParam();

3In case you have used the deploy module, all the required libraries should have be placed by Maven in your 
JRE and everything should already work.

Page 5 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

Figure 4: source  settings



param.setSourceSubsampling(4, 4, 0, 0);
param.setSourceRegion(new Rectangle(5000, 6400, 5000, 3600));
final RenderedImage image = reader.read(0, param);

It is also possible to specify a subset of the source bands to be read. Let's suppose you want to 
generate a Gray image from the first component of the RGB image of the previous MrSID example. 
Using the image read parameters, you need to specify the desired source band as well as the 
destination  type  of  the  image  to  be  generated.  When  specifying  a  destination  image  or  a 
destination type you need to take on account the additional read parameters such as subsampling 
and source region which can be involved in the destination sizes computation. The following lines 
of code contains4 a possible example of the instructions needed to obtain this:

...

SampleModel sm = spec.getSampleModel();
final int width = reader.getWidth(0);
final int height = reader.getHeight(0);
final ImageReadParam param = new ImageReadParam();
final int ssx = 2;
final int ssy = 2;
param.setSourceSubsampling(ssx, ssy, 0, 0);

final Rectangle sourceRegion = new Rectangle(50, 50, 300, 300);
param.setSourceRegion(sourceRegion);

param.setSourceBands(new int[]{0});

Rectangle intersectedRegion = new Rectangle(0, 0, width, height);
intersectedRegion = intersectedRegion.intersection(sourceRegion);

final int subsampledWidth = (intersectedRegion.width + ssx - 1) / ssx;
final int subsampledHeight = (intersectedRegion.height + ssy - 1) / ssy;

ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
ColorModel cm = RasterFactory.createComponentColorModel(sm.getDataType(), cs, false,

false, Transparency.OPAQUE); 

param.setDestinationType(new ImageTypeSpecifier(cm, sm.createCompatibleSampleModel(
    subsampledWidth, subsampledHeight).createSubsetSampleModel(new int[]{0})));

final RenderedImage image = reader.read(0, param);

3.2.2.1 – Note on destination settings

The Image I/O specification states that when defining a destination image, its color model and 
sample model needs to correspond to one of the image type specifiers returned by the image 

4Code for creating reader instance, file and setting input are omitted 
Page 6 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     



reader, otherwise an exceptions will be thrown during the read. Due to the general purpose nature 
of  the  Image  I/O-Ext  framework,  the  available  image  readers  will  always  return  an 
ImageTypeSpecifier built  in  compliance  with  the main  properties  of  the  underlying  dataset5 
such as width, height, number of bands and color interpretation. For this reason, if you need to 
build,  as an instance, a destination image with a reduced set of bands, setting the destination, 
using  the  setDestinationType method  should  be  preferred  since  this  approach  avoids  the 
ImageTypeSpecifier compliance checks which will fail using the setDestination method.

3.2.3 – JAI ImageRead
In the previous examples we have performed data access directly using the read methods of an 
ImageReader instance.  However,  there  is  another  way  to  perform  data  access  and  data 
manipulation with better performances: using the JAI-Image I/O Toolkit.

3.2.3.1 – Little Introduction on JAI and JAI-Image I/O Toolkit

JAI-Image I/O Toolkit  provides Image I/O-based read and write  operations for  Java Advanced 
Imaging (JAI  ImageRead and ImageWrite  operations).  The JAI  is  a  set  of  APIs  which  allows 
sophisticated,  high  performance  image  processing  functionalities,  such  as  rescales,  rotations, 
crops, convolutions, bands compositions, shears, sub-samplings and much more. Moreover, JAI 
provides  built-in  support  for  a  wide  set  of  mechanisms  such  as  tiling,  tile-caching,  deferred 
execution and operations chaining. Let us provide a minimal introduction on these topics in order 
to know how data may be accessed/manipulated. Basically:

● Tiling refers to the technique of building a tessellation of a big image in smaller squares, 
allowing to load and process only a reduced subset of this, with the advantage of a reduced 
memory consumption and a minor loading time. 

● Tile-Caching refers to the capability of caching tiles which need to be frequently used or 
involved in some type of processing. 

● Deferred execution refers to a mechanism which allows loading data only when they are 
really need. 

● Operations  chaining  refers  to  a  technique  which  allows  the  user  to  sets  a  chain  of 
operations by concatenating them one after the other as needed, building directed acyclic 
graph. The graph starts from a source (as an instance an originating image) and ends with 
a sink (as an instance, the rendering on the monitor). In such a context, the meaning of the 
term deferred execution is that no data pixels are loaded in memory until a sink needs to 
actually  use  data  from  the  preceding  operations  (like  in  pixel  evaluation  or  image 
rendering).

The JAI ImageRead operation is the bound between the JAI and the Image I/O for reading images 
using the Deferred Execution Model. Internally, it basically computes and get tiles when needed, 
involving the tile-caching mechanism. 

Being  the  Image  I/O-Ext,  as  its  name  suggests,  an  extension  of  the  standard  Image  I/O 
architecture, it may be easily involved in JAI ImageRead and JAI ImageWrite operations.

Note that when using the JAI ImageRead, a call to the underlying ImageReader's read method 
will be performed for any tile which needs to be accessed for the data loading. This approach is 
different with respect to the type of data loading performed by a manual call to the read method 
which simply loads all you need at one time. For this reason, in several circumstances you may 
5Moreover, due to an inner limitation of the SampleModel class, the SampleModel dimensions are equal to 
the Tile sizes in case the image width * image height product exceeds the 2^31 -1 value.

Page 7 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     



notice that rendering an image using a not  properly configured JAI ImageRead operation may 
require a lot of time. This mainly happens when the underlying dataset is striped, having each tile 
composed of a data row, requiring a JNI access to the underlying GDAL DLLs for each row/tile to 
be  managed.  However,  this  issue  may be  easily  solved  by  specifying  an  ImageLayout  when 
creating the JAI operation. 

3.2.3.2 – JAI ImageRead Example code

The following lines of code allow to perform a simple ImageRead operation using the JAI-Image 
I/O toolkit with Image I/O-Ext:

final File file = new File(“C:/data/bigsample.sid”); 
final ImageReader reader = new MrSIDImageReaderSpi().createReaderInstance();
final ParameterBlockJAI pbjImageRead;
final ImageReadParam param = new ImageReadParam();

param.setSourceSubsampling(4, 4, 0, 0);
      param.setSourceRegion(new Rectangle(5000, 6400, 5000, 3600));

final ImageLayout l = new ImageLayout();
l.setTileGridXOffset(0).setTileGridYOffset(0).setTileHeight(512)

.setTileWidth(512);
pbjImageRead = new ParameterBlockJAI("ImageRead");
pbjImageRead.setParameter("Input", file);
pbjImageRead.setParameter("readParam", param);
pbjImageRead.setParameter("reader", reader);

RenderedOp image = JAI.create("ImageRead", pbjImageRead,
new RenderingHints(JAI.KEY_IMAGE_LAYOUT, l));

  
After  the  last  instruction  it  is  possible  to  concatenate  further  JAI  operations  such  as,  as  an 
instance, rotate, rescale, crops and much more. It is also worth to point out that no data has yet 
been loaded, due to the deferred execution.

3.3 – Metadata
The Image I/O architecture is capable to expose additional information (metadata) related to the 
supplied source. Since some data formats allow to store different images within the same data 
source, Image I/O distinguishes between the concept of stream metadata, which is used to report 
information about the whole data set we are referring to, and image metadata which is used to 
report information about a single image belonging a wider set.  

As an extension of the Image I/O architecture, the main framework of Image I/O-Ext is able to 
return image and stream metadata (the last one simply representing names and descriptions of all 
the datasets available in the same datasource). In such a context, the main framework defines a 
GDALCommonIIOImageMetadata used  to  represent  image  metadata  with  a  set  of  properties 
common to  any dataset  independently  by  the  specific  format  implementation.  The typology  of 
information common to any dataset are: 

● descriptive info (dataset name and description, used driver, CRS)
● raster properties (width, height, tile sizes, number of bands)

Page 8 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     



● bands properties 
● geoTransformation 

See the source code for further information about the  GDALCommonIIOImageMetadata's format 
structure.  In  case  a  format  may  contain  specific  metadata,  a  suitable 
GDALCommonIIOImageMetadata's subclass instance could be used6. 

3.3.1 – Writable Metadata

As you will see on chapter 3.4, for a write operation it is possible to specify image metadata to be 
written to the output. The writer attempts to get several properties from the provided metadata 
such as georeferencing, projection, as well as auxiliary information to be written to the destination 
file. If the image to be written comes from a previous read which has been performed by an Image 
I/O-Ext reader leveraging on GDAL, you can simply ask it to obtain the related image metadata 
and reuse this as argument of  the write  operation.  In other cases,  such a metadata could be 
unavailable, as an instance, if your image has been created from scratch or the originating image 
has been loaded by an external image reader. In such a case you may leverage on the writable 
metadata class (GDALWritableCommonIIOImageMetadata) to set all the required fields and then 
use this as argument of the write operation. Note that you can also obtain a writable instance from 
a  GDALCommonIIOImageMetadata  object  using the asWritable  method and then set  the 
properties of this new writable copy.

3.4 – Write Access
After a brief introduction on read access topics, it's time to introduce some explanations about the 
write capabilities. First of all,  in the main page of Image I/O-Ext project you will  find a brief list 
containing the type of data access supported (R/W) for each format in order to know which plugin 
is actually able to perform write operations.  

Let us now start with a very simple write operation defining a JAI ImageWrite operation using the 
GeoTIFF plugin,  where  we suppose the originating  RenderedImage has already been created 
using a previous read operation as explained in chapter 3.2.

ImageWriter writer = new GeoTiffImageWriterSpi().createWriterInstance();
final File file = new File(“C:/data/output.tif”);
final ParameterBlockJAI pbjImageWrite = new ParameterBlockJAI("ImageWrite");
pbjImageWrite.setParameter("Output", outputFile);
pbjImageWrite.setParameter("writer", writer);
pbjImageWrite.addSource(image);
final RenderedOp op = JAI.create("ImageWrite", pbjImageWrite);

In addition to the classic image write parameters customization, such as source region settings and 
subsampling  factors,  some  format  specific  image  writers  provides  support  for  special 
customizations of the write process. In this guide, no specific examples will be offered in such a 
context since this type of customization is strictly related to the format specifications. Anyway, the 
JPEG2000 (Kakadu based) as well  as the GeoTiff plugins contains useful code for learning on 
such a topic. As an instance, a JPEG2000 data source may contain several views of the same 
image representing different resolution levels. When writing a new JPEG2000 sample, it is possible 
to define the number of desired resolution levels using a proper image write parameter.

6Take a look on the MrSID plugin to see an example.
Page 9 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

file:///C:/Work/data/output.tif


3.4.1 – Notes on write operations

3.4.1.1 – Operations modifying the bounding box

Although this  project  may be exploited  within  a GIS context  to  obtain  data access and raster 
manipulations capabilities, some concepts GIS-related are not handled since very powerful GIS 
applications already exist to achieve this task. For this reason, in case you need to write an image 
coming from a customized read operation, or in case your image has been manipulated with the 
result  of  the invalidation of  the original  geoTransformation, you should specify a proper image 
metadata instance, containing updated geoTransformation information. 

3.4.1.2 – Memory allocation setting

The write operations are built  on top of the underlying GDAL drivers capabilities.  Some GDAL 
drivers only allows to create a copy of an already existent GDAL dataset. For this reason, the 
Image I/O-Ext framework attempts to build an in memory dataset (MEM dataset) from an input 
Image to be used as a source of the copy. However, since data for the source image could be very 
big in size (gigabytes), creating a MEM dataset could be memory wasteful. For this reason it is 
possible to define a maximum amount of memory to be used for this approach to prevent drastic 
memory uses. A runtime, in case the memory requested to setup a MEM dataset is greater than 
the specified threshold, a temporary GeoTIFF dataset is created on top of the available data as a 
source  of  the  copy.  To  define  the  threshold  value  you  need  to  define  the 
it.geosolutions.gdalmemoryrastermaxsize  system  property  with  a  value  specifying  the 
maximum amount  of  memory to be used to create a MEM dataset.  As  an instance,  to  set  a 
maximum amount of 32 Megabytes you can specify as argument of the JVM the line:
-Dit.geosolutions.gdalmemoryrastermaxsize=32M
If specifying:

● a simple integer value: it will be considered as size in bytes
● a value ending with the “K” char: it will be considered as size in kilobytes 
● a value ending with the “M” char: it will be considered as size in megabytes 

3.4.1.3 – Persistable Auxiliary Metadata 

A format, depending on its specifications, may support a reduced set of metadata. To overcome 
this limitation it is possible to enable the Persistable Auxiliary Metadata which allows to add extra 
metadata to a dataset. The additional metadata are stored within a file having the same name of 
the data file, with extension “aux.xml”. To enable the PAM mechanism you can externally setup an 
environment  variable  “GDAL_PAM_ENABLED”  with  the  value  “YES”  or  use  the  setGdalPAM 
method of the  GDALUtilities class with a boolean specifying if you need to enable or disable 
PAM.

4 – Capabilities Extensions
As stated in chapter 3, although Image I/O-Ext provides several unrelated capabilities, its main 
feature is allowing to access and manipulate a set7 of  raster  data formats via GDAL. For this 
reason,  exposing a plugin  for  almost  any raster  format supported by GDAL, could  be a good 

7The home page of the project (https://imageio-ext.dev.java.net/) reports a list of the actually 
supported formats as well as the type of supported access (read/write)

Page 10 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

https://imageio-ext.dev.java.net/


objective  of  this  project.  You  may  find  the  list  of  all  GDAL's  supported  formats  at: 
http://www.gdal.org/formats_list.html
In case a format is not yet supported by Image I/O-Ext, it is possible to define a new plugin for it.

Basically  all  you need to do is writing a specific  ImageReader/ImageReaderSpi as well  as a 
specific  ImageWriter/ImageWriterSpi in case you need to support write operations too8. You 
can take a look on the already defined plugins to understand how they are formed.

4.1 – Basic Steps
Any ImageReaderSpi needs to specify a set of basic properties which describes the capabilities 
of the specific image reader provided, such as, as an instance:

● the suffixes associated with the supported formats 
● a set of human-readable names for the supported formats 
● a list of MIME types associated with the supported formats 
● the name of the associated plugin 

For this reason, when defining a new plugin, the developer needs to set all these properties in the 
ImageReaderSpi's  subclass.  You can take a look on the source code of  the already defined 
plugins to see how to set these properties. 

Moreover, any plugin leveraging on GDAL needs to specify the formats it is supporting in order to 
let  the  main  framework  interact  with  the  proper  GDAL  driver.  For  this  reason,  the 
GDALImageReaderSpi's subclass need to specify in the constructor, the name of the GDAL driver 
which will be used by the plugin. 

To better understand how to set these properties you can take a look on the source code of the 
already defined plugins. 

4.2 – Writer related settings (if available) 
The basic operations required when defining a new writer are similar to the ones involved when 
setting up the reader. You need to define all the SPI properties as well as the constructor body. 

Defining a writer plugin may require an additional set of settings since the underlying GDAL format 
drivers allow to specify a set of options before the creation of a file (a write operation), by setting a 
list of Strings having the form ”OptionName=OptionValue”. For this reason, before introducing how 
to define format specific capabilities, let us briefly illustrate how the framework allows to customize 
write operations.   

4.2.1 – Internal Architecture
The framework contains a GDALCreateOptionsHandler class which allows to properly handle a 
set  of  format  specific  create  options,  each  one  is  represented  by  an  instance  of  the 
GDALCreateOption class. This structure allows to set create option properties such as: 

● name of the option
● range of accepted values
● data type of the value9 

8Be sure the underlying GDAL Driver supports creation for that format.
9Although create operation are always set as strings, the related value may represent, as an instance, a 
numeric quantity. Specifying the data type allows proper checks be performed.

Page 11 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     

http://www.gdal.org/formats_list.html


● optional default value

The  main  framework  also  defines  a  GDALImageWriteParam extending  the  Image  I/O 
ImageWriteParam. Basically, it allows adapting image write parameters by means of an internal 
instance of a GDALCreateOptionsHandler. 

4.2.2 – Required settings for new plugins
When defining a plugin for a format supporting create options mechanism, it is worth to define a 
proper  GDALCreateOptionsHandler's subclass as well  as a proper  GDALImageWriteParam's. 
By this way, a write operation may be parametrized by setting the properties of an instance of this 
class which leverages on the underlying options handler. Basically, you need to define a specific 
XXXCreateOptionsHandler extending  GDALCreateOptionsHandler.  In  the  constructor,  you 
need to setup the list of all the create options available for that format, by defining names, value 
type and validity values. To acquire confidence on these operations you can take a look on the 
source code of the Image I/O-EXT's Jpeg2000 (Kakadu based) or the GeoTIFF plugins. After this 
step,  you  need  to  define  a  specific  XXXImageWriteParam extending  GDALImageWriteParam 
where to define a proper set of setter methods.

Page 12 of 12

 GeoSolutions S.A.S. ---  Via Carignoni 51, 55041 Camaiore (LU)    Italy     


	2 – Pre-Requirements
	3 – Usage
	3.1 – Setup Customizations
	3.1.1 – Build and import Eclipse projects
	3.1.2 – Setup dependencies on Eclipse
	3.1.3 – Test run customizations on Eclipse

	3.2 – Read Access
	3.2.1 – Simplest Read Access
	3.2.2 – Source settings parametrization read
	3.2.2.1 – Note on destination settings

	3.2.3 – JAI ImageRead
	3.2.3.1 – Little Introduction on JAI and JAI-Image I/O Toolkit
	3.2.3.2 – JAI ImageRead Example code


	3.3 – Metadata
	3.3.1 – Writable Metadata

	3.4 – Write Access
	3.4.1 – Notes on write operations
	3.4.1.1 – Operations modifying the bounding box
	3.4.1.2 – Memory allocation setting
	3.4.1.3 – Persistable Auxiliary Metadata 



	4 – Capabilities Extensions
	4.1 – Basic Steps
	4.2 – Writer related settings (if available) 
	4.2.1 – Internal Architecture
	4.2.2 – Required settings for new plugins



