
Image I/O-Ext – Setup Guide
V. 1.0.5

Eng. Daniele Romagnoli
Eng. Simone Giannecchini

Page 1 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

Table of Contents
1 Introduction...5

2 Windows instructions...6

2.1 JAVA..6

2.2 ANT...6

2.3 MAVEN 2...6

2.4 JAI...6

2.5 JAI-ImageIO Toolkit...7

2.6 SWIG...7

2.7 GDAL...7

2.7.1 GDAL requirements..7

2.7.1.1 Kakadu ..7

2.7.1.2 MrSID ..8

2.7.1.3 ECW ..8

2.7.1.4 HDF4 ...9

2.7.2 GDAL Configuration...9

2.7.2.1 Preliminar variables settings ..10

2.7.2.2 Kakadu specific configuration option ..10

2.7.2.3 MrSID specific configuration option ..11

2.7.2.4 ECW specific configuration option ...11

2.7.2.5 HDF4 specific configuration option ..11

2.7.3 Building GDAL...12

2.7.3.1 Generating JAVA Bindings...12

Variable settings...12

Running SWIG...12

2.7.3.2 Final Settings..12

2.8 ImageMagick & Jmagick..12

2.9 Image I/O-EXT Project...13

2.9.1 DLL deployment instructions (Optional) - [deploylibs] property....................................13

2.9.2 JMagick libraries deployment instructions (Optional)- [jmagick] profile........................13

2.9.3 Image I/O-Ext Project building ..14

2.9.3.1 Testing Image I/O-Ext modules with Maven..14

2.9.3.2 Testing JPEG2000 Kakadu (GDAL) writer capabilities...14

3 Linux instructions...16

Page 2 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

3.1 JAVA..16

3.2 ANT...16

3.3 MAVEN 2...16

3.4 JAI...17

3.5 JAI-ImageIO Toolkit...17

3.6 SWIG...17

3.6.1 Manual SWIG installation..17

3.7 GDAL...17

3.7.1 GDAL requirements..18

3.7.1.1 Kakadu ..18

3.7.1.2 MrSID ..18

3.7.1.3 ECW ..19

3.7.2 GDAL Configuration...19

3.7.2.1 Kakadu configuration option ..20

3.7.2.2 MrSID configuration option ..20

3.7.2.3 ECW configuration option ..20

3.7.3 GDAL Building...20

3.7.3.1 Generating JAVA Bindings...20

3.8 Image I/O-EXT Project...21

3.8.1 Libraries deployment instructions (Optional) - [deploylibs] property..............................21

3.8.2 Image I/O-Ext Project building ...22

3.8.2.1 Testing Image I/O-Ext modules with Maven..22

3.8.2.2 Testing JPEG2000 Kakadu (GDAL) writer capabilities...23

4 Mac OS X Instructions...24

4.1 JAVA & ANT..24

4.2 MAVEN 2...24

4.3 JAI...24

4.4 JAI-ImageIO Toolkit...24

4.5 SWIG...24

4.5.1 Manual SWIG installation..25

4.6 GDAL...25

4.6.1 GDAL requirements..25

4.6.1.1 Kakadu ..25

4.6.1.2 MrSID ..25

Page 3 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

4.6.2 GDAL Configuration...26

4.6.2.1 Kakadu configuration option ..26

4.6.2.2 MrSID configuration option ..26

4.6.3 GDAL Building...27

4.6.3.1 Generating JAVA Bindings...27

4.7 Image I/O-EXT Project...27

Page 4 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

1 Introduction
This guide will provide you with the instruction instructions to build and set up all the libraries as
well as the various tools needed to use the Image I/O-Ext Project.

The Image I/O-Ext project requires the same tools for both Windows and Linux operating systems.
However, the set of operations needed to properly configure each tool may OS-defendant. For this
reason, the instructions have been separated in OS specific chapters. You can jump directly to the
one that matches your platform of choice and skip the others.

Page 5 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

2 Windows instructions

2.1 JAVA
First of all, you need your machine has the last JAVA 1.5.0_XX installed. You may download it
from this site: http://java.sun.com/javase/downloads/index_jdk5.jsp.

As an instance, select the JDK 5.0 Update 17 and download the Windows Offline Installation on
your hard-disk and run the installer.

Finally, make sure to properly set a JAVA_HOME environment variable1 referring to the location of
the JDK (As an instance, C:\ProgramFiles\Java\jdk.1.5.0_17)

NOTE: On Windows Vista you will need to choose an install location other than the default (the
program files folder has access restrictions on it which will prevent maven from installing additional
DLL files as part of our build process). As an example C:\java\jdk.1.5.0_17 will work just
fine.

2.2 ANT
Apache ANT is another needed tool. You can download the last version from:
http://ant.apache.org/. When you downloaded it (as an instance, on
C:\ProgramFiles\Apache-ant-1.7.0), make sure to properly set an ANT_HOME environment
variable referring to that location. Then, edit the PATH environment variable by adding the Ant's
bin directory (as an instance, C:\ProgramFiles\Apache-ant-1.7.0\bin).

2.3 MAVEN 2
Maven 2 (in the following instructions it will be simply called “Maven”) is another important tool
needed by the Image I/O-Ext project. You can download the last version from
http://maven.apache.org/download.html
Download the last maven-xxx-bin.zip version and unzip it somewhere on your hard-disk, as an
instance on C:\ProgramFiles\Apache-maven-2.0.9.

Then, edit the PATH environment variable by adding the Maven's bin directory (as an instance,
C:\ProgramFiles\Apache-maven-2.0.9\bin).

2.4 JAI
Go to https://jai.dev.java.net/binary-builds.html and select the daily builds link.
Then, download the proper windows version. After you downloaded it, extract the content of the lib
folder on your JAVA_HOME\lib folder as well as on your JAVA_HOME\JRE\lib. (where
JAVA_HOME defines your JDK, as an instance, C:\programFiles\java\jdk1.5.0_17).

1To set an environment variable on Windows XP, open the Control Panel -> System. Then, in the
“Advanced” tab, click “Environment Variables”. Lastly, click the “NEW” button from the System variables box
to add a new Environment Variable. Define the name of the Environment Variable (as an instance:
JAVA_HOME) and provide a value for this variable (as an instance, the path of your JDK ->
C:\ProgramFiles\Java\jdk.1.5.0_17). Note that if you open a windows command line or the Visual
Studio Command Prompt prior to change or set new environment variables via the Control Panel, these
changes will not be updated on your command line window. Thus you need to close your command line and
open a new one.

Page 6 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://java.sun.com/javase/downloads/index_jdk5.jsp
https://jai.dev.java.net/binary-builds.html
http://maven.apache.org/download.html
http://ant.apache.org/

2.5 JAI-ImageIO Toolkit
Go to https://jai-imageio.dev.java.net/binary-builds.html and select the daily builds
link. Then, download the proper windows version. After you downloaded it, extract the content of
the lib folder on your JAVA_HOME\lib folder and on your JAVA_HOME\JRE\lib. (where
JAVA_HOME defines your JDK, as an instance, c:\programFiles\java\jdk1.5.0_17).

2.6 SWIG
Make sure you have properly downloaded SWIG, the Simplified Wrapper and Interface Generator
which allows to produce JAVA bindings for C/C++ code. You can obtain it at this site:
http://www.swig.org/download.html
You should download the last swigwin version which includes a prebuilt executable. (When this
guide has been released, the last available swigwin version was 1.3.31 available at:
http://prdownloads.sourceforge.net/swig/swigwin-1.3.31.zip)

After you downloaded it, extract the zipped file on your hard-disk (as an instance on
C:\ProgramFiles\Swig)

2.7 GDAL
GDAL, which stands for Geospatial Data Abstraction Library, provides data access to several
raster data formats. Image I/O-Ext deeply leverages on this complex library which needs to be
properly configured.

2.7.1 GDAL requirements
Depending on the format you wish to support, you need to properly download and setup several
libraries prior to build GDAL. The following instructions describe how to achieve this for the
following formats:

– Kakadu (v. 5.2.6)

– MrSID (v 6.0.7 or v 7.0.0)

– ECW (v 3.3)

– HDF4 (v. 4.2r1)

NOTE: If you have no time to follow all the instructions contained in the following sections or if you
encounter problems which you cannot solve, you may leverage on the ready-to-use DLLs available
for the Image I/O-EXT project using the deploy module. This module will deploy all the DLLs in the
proper location (In such a case, the available GDAL DLL is built to support MrSID, ECW and
HDF4). However it is worth to point out that this approach is not recommended and it should be
used only as last resort. Anyway, the instructions to auto deploy DLL are contained in section 2.9.1

2.7.1.1 Kakadu

Supposing you have your own Kakadu licensed source code, you need to build the Kakadu DLL.

The visual studio solution for kakadu allows to build a shared Debug DLL. We need to change
some settings to build a shared Release DLL. Otherwise, sometimes, memory allocations errors
could occur especially when you build GDAL with support for several external formats (which need
additional DLLs) since some libs may use MSVCRT71D and some others MSVCR71.

Page 7 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://prdownloads.sourceforge.net/swig/swigwin-1.3.31.zip
http://www.swig.org/download.html
https://jai-imageio.dev.java.net/binary-builds.html

First step is opening the proper ready-to-use Visual Studio Solution2 of kakadu coresys (located in
kakadu\VERSION\coresys) and change the solution properties (right click on the solution ->
Properties). Select “Configuration Properties” and switch the Configuration value from “Debug” to
“Release”.

Then, you are ready to build your solution. After you done this, open the Kakadu apps solution
(located in kakadu\VERSION\apps). Change the Configuration properties to Release in the same
way you just do it for Coresys solution and build this solution. If some errors occur for a specific
project, rebuild that one.

2.7.1.2 MrSID

As a first requirement, you need the LizardTech Decoding Software Development Kit (DSDK). You
can download it free of charge from this site: http://developer.lizardtech.com (You need to
be registered in order to download it). After logged in, select “Download” -> “Software
Development Kits” -> “Download SDK's”. Select the proper version of SDK to be downloaded
(select the GeoExpress SDK for Windows - VC7.1).

When your download is completed, unzip the DSDK somewhere on your hard disk, as an instance,
on C:\work\libs\MrSid. Note that the lib/Release_md folder will contain the lti_dsdk_dll.dll.

2.7.1.3 ECW

Download the Image Compression SDK (source code) from ERDAS site at this address:

http://www.erdas.com (You need to be registered in order to download it).

From the main site, select the menu “products” -> “ECW JPEG2000 Codec SDK”. Download the
ECW JPEG2000 Codec SDK Source Code 3.3 file and extract this somewhere on your hard disk,
as an instance on C:\work\libs\libecwj2-3.3.

Make sure you have Microsoft Windows® Server 2003 R2 Platform SDK installed. If not yet
installed, download it from this location:
http://www.microsoft.com/downloads/details.aspx?FamilyID=484269e2-3b89-47e3-
8eb7-1f2be6d7123a&DisplayLang=en

2As an instance, if you are using Visual Studio .Net 2003, open the coresys_2003.sln solution file.
Page 8 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://www.microsoft.com/downloads/details.aspx?FamilyID=484269e2-3b89-47e3-8eb7-1f2be6d7123a&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=484269e2-3b89-47e3-8eb7-1f2be6d7123a&DisplayLang=en
http://www.erdas.com/
http://developer.lizardtech.com/

After you have installed Microsoft Windows® Server 2003 R2 Platform SDK you will need to
register the header files with Visual Studio. Select from the start menu Visual Studio Registration
> Register PSDK Directories with Visual Studio.

Then, open the ready-to-use Visual Studio Solution available in C:\work\libs\libecwj2-
3.3\Source\C\NCSEcw\NCSEcw\NCSEcw.sln.

Edit the properties of the solution (right click on it) and select the Configuration Manager button to
open the Configuration Manager. Finally, set “Release” as Active Solution Configuration and close
the windows.

Then, you are ready to build your solution which will produces NCScnet.dll, NCSEcw.dll,
NCSUtil.dll.

2.7.1.4 HDF4

As a first requirement, you need to download the binary distribution of HDF4 release from this site:
http://hdf.ncsa.uiuc.edu/release4/obtain.html
Scroll this page until you find the link to the binary distribution file for Windows and download it.
When your download is completed, unzip the binary somewhere on your hard disk, as an instance,
on C:\work\libs\HDF4.
Then, enter in the release subfolder and create a libpath folder where you need to copy 4
*.lib files contained in release\lib and release\dll subfolders. They are: hd421.lib,
hd421m.lib, hm421.lib, hm421m.lib
This could seem a strange workaround but it avoids errors when building GDAL against HDF4.

It is finally worth to point out that HDF4 leverages on some external libs: JPEG, ZLIB, SZIP. Make
sure you have them. http://hdf.ncsa.uiuc.edu/release4/obtain.html also contains 3
links to download the required libraries: From the External Software section -> External Libraries
used by HDF, for each library, you need to select the “Pre-Compiled Binaries” link and select the
Windows version.

2.7.2 GDAL Configuration
Firstly, you need to download GDAL 1.4.5 from OSGeo SVN.

You may use Tortoise SVN (available at: http://tortoisesvn.net/downloads) to download it.

Create a GDAL folder on your Hard-disk and open the contextual menu on it (It's the menu which
appears when you click on some element with the right's button of your mouse) and select “SVN
Checkout...”. Finally, specify http://svn.osgeo.org/gdal/tags/1.4.5/gdal as “URL of
repository”.

Although TortoiseSVN is a very helpful/easy-to-use program, it can reduce the performances of
your machine. If you need a very light SVN client3 you can download the Collabnet Subversion
Command Line client, available at: http://downloads.open.collab.net/collabnet-
subversion.html
When installed SVN, to checkout GDAL, you simply need to run the following command:
svn co http://svn.osgeo.org/gdal/tags/1.4.5/gdal gdal-1.4.5
3Alternatively, you could also download SmartSVN at:
http://www.syntevo.com/smartsvn/download.html

Page 9 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://downloads.open.collab.net/collabnet-subversion.html
http://downloads.open.collab.net/collabnet-subversion.html
http://www.syntevo.com/smartsvn/download.html
http://tortoisesvn.net/downloads
http://hdf.ncsa.uiuc.edu/release4/obtain.html
http://hdf.ncsa.uiuc.edu/release4/obtain.html

After this, you need to apply the patch available at this location (User=guest , with no password):
https://imageio-ext.dev.java.net/svn/imageio-
ext/branches/1.0.x/patches/gdal1.4.5b.patch
This patch contains several changes for:

● Kakadu support: More Kakadu create options and error management supported. Makefile
modified

● Java bindings: improved data access (read/write Dataset at once instead of read/write
RasterBands at once; BandMap, PixelSpace, LineSpace and BandSpace parameters now
are allowed), improved palette management, added setMetadataItem capabilities

To apply the patch, supposing you are using Tortoise SVN, you need to select the GDAL folder on
your hard-disk, then, from the contextual menu, select TortoiseSVN ->Apply patch... At this point,
you need to specify the previously downloaded gdal1.4.5b.patch file and apply.

Alternatively, if you dont have TortoiseSVN, you may use the patch command distributed with
MSYS4. In such a case, to apply the patch, enter in the GDAL main folder and run:
patch -p0 -f -i PATH_TO_DOWNLOADED_PATCH/gdal1.4.5b.patch
(where PATH_TO_DOWNLOADED_PATCH represents the location where you have previously
downloaded the patch).

Finally, you need to modify your GDAL\NMAKE.opt as explained in the following sections.

2.7.2.1 Preliminar variables settings

As a first step, edit the GDAL_HOME variable by linking it to the folder where you just downloaded
GDAL.

For future JAVA bindings creation, make sure the SWIG variable is properly set. Check this by
finding the following lines:
Set the location of your SWIG installation
!IFNDEF SWIG
SWIG = C:\ProgramFiles\swigwin-1.3.31\swig.exe
!ENDIF
Make sure SWIG variable refers to the proper swig.exe path.

Finally, depending on the specific format you wish to support, follow the instructions contained in
the following sections.

2.7.2.2 Kakadu specific configuration option

Find the KAKADU Setting properties in GDAL\NMAKE.opt by looking for the following line:

4You can download MSYS from here: http://sourceforge.net/project/showfiles.php?
group_id=2435&package_id=24963
After the download, run the MSYS-1.0.10 executable which will install MSYS on your hard disk, as an
instance on C:\MSYS\1.0. Finally, edit the PATH environment variable (as explained in note 1) by adding the
bin subfolder of your MSYS installation (as an instance, C:\MSYS\1.0\bin)

Page 10 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=24963
http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=24963
https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x/patches/gdal1.4.5b.patch
https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x/patches/gdal1.4.5b.patch

Uncommment if you have Kakadu 4.0 or newer
Supposing your KAKADU library has been placed in C:\work\libs\kakadu, edit the next line,
like this: KAKDIR = C:\work\libs\kakadu\v5_2_6-90032L
Make sure the proper version subfolder is set. (In this case: v5_2_6-90032L).

To enable kakadu support we need to change only another property. Go ahead in the NMAKE.OPT
and look for the following line:
Any extra libraries needed on this platform?
Then, edit the ADD_LIBS variable by adding the kakadu lib, like this:

ADD_LIBS = C:\work\libs\kakadu\lib\kdu_v52R.lib

2.7.2.3 MrSID specific configuration option

Find the MrSID Setting properties in GDAL\NMAKE.opt by looking for the following line:

#Uncomment the following for MrSID support
Supposing your MrSID library has been placed in C:\work\libs\MrSid, edit the next lines, like
this:

In case you have a MrSID SDK 6.0.7:
MRSID_DIR = C:\work\libs\MrSid
MRSID_INCLUDE = -I$(MRSID_DIR)\include\base -I$(MRSID_DIR)\include\support \

-I$(MRSID_DIR)\include\metadata \
-I$(MRSID_DIR)\include\mrsid_readers \
-I$(MRSID_DIR)\include\j2k_readers

MRSID_LIB = $(MRSID_DIR)\lib\Release_md\lti_dsdk_dll.lib advapi32.lib user32.lib
Lastly, if you also need to enable JPEG2000 support by means of MrSID library, you need to add
the following line:
MRSID_FLAGS = -DMRSID_J2K

2.7.2.4 ECW specific configuration option

Find the ECW Setting properties in GDAL\NMAKE.opt by looking for the following line:

Uncomment the following and update to enable ECW support.

Supposing your ECW library has been placed in C:\work\libs\libecwj2-3.3, edit the next 2
lines, like this:
ECWDIR = C:\work\libs\libecwj2-3.3
ECWLIB = $(ECWDIR)\lib\NCScnet.lib $(ECWDIR)\lib\NCSEcw.lib $(ECWDIR)\lib\NCSUtil.lib

2.7.2.5 HDF4 specific configuration option

Find the HDF4 Setting properties in GDAL\NMAKE.opt by looking for the following line:

Uncomment the following and update to enable NCSA HDF Release 4 support.

Page 11 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

Supposing your HDF4 library has been placed in C:\work\libs\HDF4, edit the next 2 lines, like
this:
HDF4_DIR = c:\work\libs\HDF4\release
HDF4_LIB = /LIBPATH:$(HDF4_DIR)\libpath

2.7.3 Building GDAL
Now, you are ready to build GDAL. Open Visual Studio Command Prompt, and enter in your GDAL
home folder. At this point, you are ready to start the build process by running the following
command:

nmake /f makefile.vc
When the build is terminated, you need to generate JAVA bindings.

2.7.3.1 Generating JAVA Bindings

Variable settings
Then, check your GDAL\SWIG\JAVA\java.opt is properly configured. (Basically, you need to
check the JAVA_HOME and ANT_HOME variables are properly set)

Running SWIG
Now, you are ready to generate java bindings. From the command line, enter in your GDAL\SWIG
folder and run nmake /f makefile.vc java
This command will automatically generate wrappers and bindings.

2.7.3.2 Final Settings

At this point, you should have:
● some external DLLs (for Kakadu, ECW, MrSID, HDF4)
● a GDAL DLL (gdal14.dll)

● 4 JNI DLL (gdalconstjni.dll, gdaljni.dll, ogrjni.dll, osrjni.dll)

● a jar file (gdal.jar)

You need to place all the DLLs in the folder where your application will look for libraries. Your
JAVA_HOME\BIN folder could be a typical location where to place them.

Finally, make sure you properly set the GDAL_DATA environment variable. This needs to be set with
your GDAL\DATA location in order to properly evaluate EPSG codes.

2.8 ImageMagick & Jmagick
The Image I/O-Ext project provides an additional plugin to handle JPEG format, leveraging on
Jmagick. In order to build and use this plugin, you need to download and build the ImageMagick
library from this site:
ftp://ftp.imagemagick.org/pub/ImageMagick/windows/ImageMagick-windows.zip
Prior to build ImageMagick you need to configure it:
Run the Visual Studio IDE and from the “Open->Project” menu, select the configure workspace
available at the ImageMagick-6.X.X\VisualMagick\configure folder and press Open.

Page 12 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

ftp://ftp.imagemagick.org/pub/ImageMagick/windows/ImageMagick-windows.zip

Choose “Build->Build Solution” to compile the configuration tool and, when finished, you will find a
configure.exe tool on the configure folder. Now, you are ready to configure the build of your
ImageMagick libraries:
Run configure.exe and the wizard will be opened. Press Next and click on the multi-threaded
DLL. Now press, on Next twice and finally Finish. The configuration utility just created a workspace
required to build ImageMagick from source. Open the VisualDynamicMT.sln Visual Studio
Solution from the ImageMagick-6.X.X\VisualMagick folder. Change the solution properties
(right click on the solution -> Properties). Select “Configuration Properties” and switch the
Configuration value from “Debug” to “Release”.
Finally, choose Build->Build Solution to compile and build the ImageMagick distribution. (Advanced
Users may manually disable unrequired modules. Actually, the Image I/O-Ext plugin module
leveraging on Jmagick, only provides support for JPEG files.

When finished, you need to place all the DLLs from the ImageMagick-6.X.X\
VisualMagick\bin folder in the folder where your application will look for libraries. Your
JAVA_HOME/BIN folder could be a typical location where to place them.

Future versions of this document will provide better instructions about how to customize the
ImageMagick build.

2.9 Image I/O-EXT Project
You need to download the imageio-ext project from Java.net SVN. To do this, you need to create
an imageio-ext folder and use Tortoise SVN or another SVN client as explained in section 2.7.2

The URL of repository5 for the SVN Checkout command is:
https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x

2.9.1 DLL deployment instructions (Optional) - [deploylibs] property
In case you have skipped the manual building process introduced in the previous sections, you
should leverage on the DLL available via the deploy module although this approach is not
recommended. To deploy available DLLs and additional required elements, you need to set the
deploylibs properties as true with the -Ddeploylibs option when building the project (as
explained in 2.9.3).

IMPORTANT NOTES:

● you also need to setup a GDAL_DATA environment variable with the path of the location
where you want the deploy module will store required files for EPSG codes parsing.

● The following error may occur if you are running Windows Vista and your Java installation
is in the default program files folder (which has access restrictions): “Unable to deploy
required libs...”. To solve this issue, simply install JAVA to a different folder as explained in
section 2.1

2.9.2 JMagick libraries deployment instructions (Optional)- [jmagick] profile
In case you want to deploy and add Jmagick library support to the Image I/O-Ext project, specify
the jmagick profile as well as the deploylibs property (as explained in 2.9.1) when building the
project (as will be explained in 2.9.3). Multiple profiles may be specified; simply use the comma
sign to specify more profiles (as an instance, -Pbase,jmagick).

5When asked for authentication, specify user=guest , with no password
Page 13 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x

2.9.3 Image I/O-Ext Project building
Actually, depending on the set of available DLLs or the formats you need, it is possible to build the
project in 2 configuration.

1. base: only the plugins which don't depend on external libraries are built
2. full: All the available plugins are built (that is: Kakadu, MrSID, ECW, HDF4)

When executing tests, any configuration requires the proper set of DLLs. You could also leverage
on the DLLs available via the deploy module, as explained in chapter 2.9.1 using -Ddeploylibs6.
Anyway, note that the test cases will internally check if the requested libraries are available. When
executing tests, you will be notified through WARNING messages in case some driver or library is
missing (but tests will not be interrupted).
To build the Image I/O-Ext project, enter in imageio-ext\ and, select the configuration you need,
using the proper configProfile running the command:

 mvn install -PconfigProfile (where configProfile is one of base, full)

(Remind to add the -Ddeploylibs=true in case you need the DLLs from the deploy module. In
case you also need the jmagick build, add the jmagick profile as explained in 2.9.2).

This command will build and test all required modules and plugins and store the produced JARS in
the local maven repository.
In case you need to perform a fast build of the Image I/O-Ext project, without tests, just add the
-Dmaven.test.skip option to the previous mvn command.

2.9.3.1 Testing Image I/O-Ext modules with Maven.

In case you simply need testing some Image I/O-Ext modules, as an instance in order to check if
everything is working fine, you can enter in the module you are interested in and run the maven
test. As an instance:
C:\Projects\imageio-ext>cd plugin\gdalarcgrid
C:\Projects\imageio-ext\plugin\gdalarcgrid>mvn test
Lastly, if you want to perform interactive tests (which usually display data read on a windows), you
should use the interactive.tests profile like this:

C:\Projects\imageio-ext\plugin\gdalarcgrid>mvn test -Pinteractive.tests
Anyway, displaying the image is a not blocking/not waiting operation so you will barely see the
image, just for an instant (when displayed, it will be automatically closed. Future versions may
include a property to customize “waiting time” before close). Note that tests require you have all the
needed DLLs, otherwise they will be skipped.

2.9.3.2 Testing JPEG2000 Kakadu (GDAL) writer capabilities
The JPEG2000 Kakadu (GDAL based) plugin contains a wide suite for testing write operations with
different write parameters leveraging on the available create options / Kakadu customizations. As
default, the test performs only a simple write operation without testing any supported kakadu
create option to reduce build time. In case you need to test all these operations simply use the
extensive.tests profile like this:
6Depending on the selected configuration, the proper set of DLL will be deployed by the deploy module.
Note that, due to licensing issues, no Kakadu DLLs are available by means of this module and you
should have built them as explained in the previous chapters.

Page 14 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

C:\Projects\imageio-ext\plugin\gdalkakadujp2>mvn test -Pextensive.tests
Moreover, as default, when the test is terminated, all the written files are automatically deleted. In
case you would like to maintain the produced files, avoiding delete, you should add the profile
tests.holdwrittenfiles to the previous one, using the following command:

C:\Projects\imageio-ext\plugin\gdalkakadujp2>mvn test
-Pextensive.tests,tests.holdwrittenfiles

Page 15 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

3 Linux instructions
The following instructions have been tested on Linux Fedora Core 5 distribution and Ubuntu 8.04.

Note: On some Linux distributions (as an instance, Ubuntu), you can install Java, Swig and Ant
using the Package Manager (with the command sudo apt-get install “package name”).

3.1 JAVA
First of all, you need your machine has the last JAVA 1.5.0_XX installed. You may download it
from this site: http://java.sun.com/javase/downloads/index_jdk5.jsp.

As an instance, select the JDK 5.0 Update 17 and download the Linux Self-extracting file (A jdk-
1_5_0_17-linux-i586.bin file). After you have downloaded it (as an instance on
/usr/local/java), make sure that execute permissions are set on the downloaded file, by
running this command:
chmod +x jdk-1_5_0_17-linux-i586.bin
Then, go in /usr/local/java and run: ./jdk-1_5_0_17-linux-i586.bin

Usually, Fedora Core 5 distribution comes with a OLD java version (as an instance, 1.4.2). Now,
you could add symbolic links on your alternatives.
Just run the following commands:

alternatives --install /usr/bin/java java /usr/.../jdk1.5.0_17/bin/java 2

next you can configure alternatives for java by using the following command:
alternatives --config java
alternatives –-display java
Some Linux distributions come with Java 6 version. When building ImageIO-Ext with Java 6, an
error related to customstreams module appears.

3.2 ANT
Apache ANT is another needed tool. You can download the last version from:
http://ant.apache.org/
When you downloaded it (as an instance, on /usr/local/apache-ant-1.7.0), you may create
a symbolic link as follow: ln -s /usr/local/apache-ant-1.7.0/bin/ant /usr/bin/ant

3.3 MAVEN 2
Maven 2 is another important tool needed by the Image I/O-Ext project. You can download the last
version from http://maven.apache.org/download.html.

When you downloaded it, extract the archive to the directory where you wish to install it, as an
instance on /usr/local/maven-2.0.9

Create a folder which will contains the installed external libraries as well as the additional files:
cd /home/myuser

Page 16 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://maven.apache.org/download.html
http://ant.apache.org/
http://java.sun.com/javase/downloads/index_jdk5.jsp

mkdir mylibs
cd mylibs
mkdir lib
mkdir include

At this point, on your /etc folder, edit the "profile" file by adding the following lines:

PATH=$PATH:/usr/local/maven-2.0.9/bin
export JAVA_HOME=/usr/local/java/jdk1.5.0_17/
export JRE_HOME=/usr/local/java/jdk1.5.0_17/jre/
export MAVEN_HOME=/usr/local/maven-2.0.9/
export ANT_HOME=/usr/local/apache-ant-1.7.0/
export LD_LIBRARY_PATH=/usr/local/lib:/home/myuser/mylibs/lib

3.4 JAI
Go to https://jai.dev.java.net/binary-builds.html and select the daily builds link.
Then, download the proper Linux version. After you downloaded it, extract the content of the lib
folder on your JAVA_HOME/lib folder as well as on your JAVA_HOME/JRE/lib. (where
JAVA_HOME defines your JDK, as an instance, /usr/java/jdk1.5.0_17).

3.5 JAI-ImageIO Toolkit
Go to https://jai-imageio.dev.java.net/binary-builds.html and select the daily builds
link. Then, download the proper Linux version. After you downloaded it, extract the content of the
lib folder on your JAVA_HOME/lib folder and on your JAVA_HOME/JRE/lib. (where JAVA_HOME
defines your JDK, as an instance, /usr/java/jdk1.5.0_17).

3.6 SWIG
Make sure you have properly downloaded SWIG, the Simplified Wrapper and Interface Generator
which allow to produce JAVA bindings for C/C++ code. You can obtain it by simply running:

yum update swig or sudo apt-get install swig

3.6.1 Manual SWIG installation
In case yum is not supported by your distribution, just download swig from:
http://mesh.dl.sourceforge.net/sourceforge/swig/swig-1.3.32.tar.gz. (Or a more
recent version). Unzip this somewhere on your hard disk and then run:
./configure
make
sudo make install (As you may notice, this command requires superuser privileges)

3.7 GDAL
GDAL, which stands for Geospatial Data Abstraction Library, provides data access to several
raster data formats. Image I/O-Ext deeply leverages on this complex library which needs to be
properly configured.

Page 17 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://mesh.dl.sourceforge.net/sourceforge/swig/swig-1.3.32.tar.gz
https://jai-imageio.dev.java.net/binary-builds.html
https://jai.dev.java.net/binary-builds.html

3.7.1 GDAL requirements
Depending on the format you wish to support, you need to properly download and setup several
libraries prior to build GDAL. The following instructions describe how to achieve this for these
formats:

– Kakadu (v. 5.2.6)

– MrSID (v 6.0.7)

– ECW (v 3.3)

3.7.1.1 Kakadu

Supposing you have your own Kakadu licensed source code, browse to the main kakadu folder (as
an, instance on home/myuser/work/libs/kakadu/v5_2_6). Enter in coresys/make and
modify the Makefile-Linux-x86-gcc file as follows:

● Enable the static build by setting KDU_GLIBS = -static -static-libgcc
● Run make -f Makefile-Linux-x86-gcc

This will generate libs in kakadu/lib/Linux-x86-gcc.

From the kakadu folder, run: sudo cp lib/Linux-x86-gcc/* /home/myuser/mylibs/lib

After this, enter in apps/make and modify the Makefile-Linux-x86-gcc file as follows:

● Enable the static build by setting KDU_GLIBS = -static -static-libgcc
● Set LIB_SRC as follow: LIB_SRC=$(LIB_DIR)/libkdu.a
● Run make: make -f Makefile-Linux-x86-gcc

The following additional steps are not required by GDAL but it is needed by the Image I/O-Ext
plugin which directly leverages on the Kakadu Library.
Enter in managed/make and modify the Makefile-Linux-x86-gcc file. You will notice the
presence of a INCLUDES += -I../all_includes row. In top of this, add the following additional
setting:
INCLUDES += -I$(JAVA_HOME)/include -I$(JAVA_HOME)/include/linux
Run make: make -f Makefile-Linux-x86-gcc
Then, from the kakadu folder, run: sudo cp /lib/Linux-x86-gcc/libkdu_jni.so
/home/myuser/mylibs/lib
Finally, run sudo ldconfig

3.7.1.2 MrSID

As a first requirement, you need the LizardTech Decoding Software Development Kit (DSDK). You
can download it free of charge from this site: http://developer.lizardtech.com (You need to
be registered in order to download it). After logged in, select “Download” -> “Software
Development Kits” -> “Download SDK's”. Select the proper version of SDK to be downloaded
(select the GeoExpress SDK for Linux (x86) - gcc 3.4) 7

7Note that GDAL 1.4.5 doesn't support MrSID DSDK 7 which is the only one providing support for 64 bit
builds. Therefore, if you are setting up a 64 bit build, you shouldn't enable the MrSID format.

Page 18 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://developer.lizardtech.com/

3.7.1.3 ECW

Download the Image Compression SDK (source code) from ERDAS site at this address:

http://www.erdas.com (You need to be registered in order to download it).

From the main site, select the menu “products” -> “ECW JPEG2000 Codec SDK”. Download the
ECW JPEG2000 Codec SDK Source Code 3.3 file and extract this somewhere on your hard disk,
as an instance on /home/myuser/libs/libecwj2
From the command line, just enter this folder and simply run:

● ./configure --prefix=/home/myuser/mylibs
● make
● sudo make install

3.7.2 GDAL Configuration
Firstly, you need to download GDAL 1.4.5 from OSGeo SVN. Enter the folder where you want to
download GDAL and run:
svn co http://svn.osgeo.org/gdal/tags/1.4.5/gdal gdal1.4.5
Then, you need to apply the patch available at this location (User=guest , with no password):
https://imageio-ext.dev.java.net/svn/imageio-
ext/branches/1.0.x/patches/gdal1.4.5b.patch
This patch contains several changes for:

● Kakadu support: More Kakadu create options and error management supported. Makefile
modified

● Java bindings: improved data access (read/write Dataset at once instead of read/write
RasterBands at once; BandMap, PixelSpace, LineSpace and BandSpace parameters now
are allowed), added setMetadataItem capabilities

To apply the patch, enter in the GDAL main folder and run:
patch -p0 -f -i PATH_TO_DOWNLOADED_PATCH/gdal1.4.5b.patch
(where PATH_TO_DOWNLOADED_PATCH represents the location where you downloaded the patch,
as an instance, /home/myuser/Desktop/)
Make sure you properly set the GDAL_DATA environment variable. This need to be set with your
GDAL/DATA location in order to properly evaluate EPSG codes. As an instance, supposing you
installed GDAL on /home/myuser/gdal1.4.5, you can use the following command:

export GDAL_DATA=/home/myuser/gdal1.4.5/data/

Next step is configuring GDAL by means of the./configure --prefix=/home/myuser/mylibs
command. Such a command allows to specify several options to enable formats, change build
properties, customize libraries and much more. Depending on the required formats you wish to
enable on GDAL, you need to add some options to this command as explained in the following
sections.

Page 19 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x/patches/gdal1.4.5b.patch
https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x/patches/gdal1.4.5b.patch
http://www.erdas.com/

3.7.2.1 Kakadu configuration option

Add --with-kakadu=KAKADU_FOLDER option to the ./configure command, where
KAKADU_FOLDER represents the path where your Kakadu library is located.

3.7.2.2 MrSID configuration option

Add --with-mrsid=MRSID_FOLDER option to the ./configure command, where
MRSID_FOLDER represents the path where you previously downloaded GeoDSDK.

Note: During the future build process (3.7.3) a similar error could occur:

/......./include/base/lti_sceneBuffer.h:356:
error: extra qualification 'LizardTech::LTISceneBuffer::' on member
You need to fix the issue in the header MRSID_FOLDER/include/base/lti_sceneBuffer.h by
simply removing the class scope declaration from the inWindow method declaration. Line 356 should
look like this:

 bool inWindow(lt_uint32 x, lt_uint32 y) const;

Then repeat build process as suggested in 3.7.3.

3.7.2.3 ECW configuration option

Add --with-ecw=/home/myuser/mylibs option to the ./configure command, where
/home/myuser/mylibs represents the path where you previously installed ECW.

3.7.3 GDAL Building
Finally, you are ready to build GDAL. Supposing you have properly configured it as explained in
section 3.7.2, run the following commands:

● make clean8

● make
● sudo make install (As you may notice, this command requires superuser privileges)

When the build is terminated, run sudo ldconfig.

Next step is generating JAVA bindings.

3.7.3.1 Generating JAVA Bindings
SWIG will generate java bindings for you.
As a first step, check your GDAL/SWIG/JAVA/java.opt is properly configured.

Basically, you need to check the JAVA_HOME, JAVA_INCLUDE and ANT_HOME variables are
properly set. Make sure the following line exists: JAVA_INCLUDE=-I$(JAVA_HOME)/include
-I$(JAVA_HOME)/include/linux)9

8In case you get errors in compiling GDAL on a linux 64 machine about ilwis and idrisi datasets, you can
disable them since they aren't actually supported by imageio-ext by editing the GDALmake.opt file and
removing them from the GDAL_FORMATS entries list.
9Make sure to set the proper Linux path separator char “/” on the configured path by changing “\” to “/” if
needed

Page 20 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

A second step is required in order to customize the compiler options (This is needed to change
default optimizations settings, which may cause JVM crashes). Just redefine the CXX_OPTFLAGS
and C_OPTFLAGS in the GDALmake.opt file on your GDAL main folder. You need to set these 2
flags with the -O1 value (Note that the minus sign (“-”) is followed by the “O” letter instead of the
“zero” digit). Search the following line (#Flags to build optimized relese version) in
GDALmake.opt and change the flags like this:

#Flags to build optimized relese version
CXX_OPTFLAGS = -O1
C_OPTFLAGS = -O1

Then, enter in your main GDAL folder and run:
cd swig
cd java
make veryclean
make generate
make build
This command will automatically generate wrappers and bindings. Then, copy the generated libs in
/home/myuser/mylibs/lib using the command:

sudo cp *.so /home/myuser/mylibs/lib

Finally, run sudo ldconfig.

3.8 Image I/O-EXT Project
You need to download the imageio-ext project from Java.net SVN. Enter the folder where you
want to download Image I/O-EXT and run:
svn co https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x
imageio-ext --username MYUSERNAME
(Note: MYUSERNAME need to be replaced with your own username. In case you don't have an
imageio-ext user, you can use “guest” with no password to access without write permissions)

3.8.1 Libraries deployment instructions (Optional) - [deploylibs] property
In case you have skipped the GDAL manual building process introduced in the previous sections,
you should leverage on the libraries contained in the deploy module although this approach is not
recommended.

In that case, you need to deploy available libraries before building the Image I/O-Ext project. You
also need to setup a GDAL_DATA environment variable with the path of the location where you
want the deploy module will store required files for EPSG codes parsing, as explained in 3.7.2.

Moreover, depending on the set of required libraries, you need to specify a configuration profile
from the following set:

1. base: in case you need the libraries built to support only the plugins which don't depend on
external libraries

Page 21 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

2. full: in case you need the libraries built to support MrSID and ECW plugins (HDF4 and
Kakadu are not available as deployed libraries).

Note that, since adding additional libraries to your JRE requires admin privileges, you need to
execute this deployment phase as a separated preliminary step. You need to enter in imageio-
ext\ and run the following command:

sudo mvn generate-resources -PconfigProfile -Ddeploylibs (where configProfile is
one of base or full). You need superuser privileges since this command will deploy all the required
libraries (*.so) on the JRE/lib/i386 folder. This phase simply deploys libraries while the real
Image I/O-Ext project building will be performed in the next phase, as explained in

3.8.2 Image I/O-Ext Project building
Actually, it is possible to build the project in 2 configuration.

1. base: only the plugins which don't depend on external libraries are built
2. full: All the available plugins are built

When executing tests, any configuration requires the proper set of libraries. You could also
leverage on the libraries available via the deploy module, as explained in chapter 3.8.1. Anyway,
note that the test cases will internally check if the requested libraries are available. When executing
tests, you will be notified through WARNING messages in case some driver or library is missing
(but tests will not be interrupted).

To build the Image I/O-Ext project, enter in imageio-ext\ and, select the configuration you need,
using the proper configProfile running the command: mvn install -PconfigProfile (where
configProfile is one of base or full)

This command will build and test all required modules and plugins and store the produced JARS in
the local maven repository. (Note that actually HDF4 plugin is not tested on Linux).

In case you need to do a fast build of the Image I/O-Ext project, without tests, just add the
-Dmaven.test.skip option to the previous mvn command.

NOTE: Maven should automatically-recognize the running operative system in order to use the
proper deploy module. In case some errors occur due to an unrecognized OS name (which should
be “Linux”) you can explicitly specify it with the additional linux profile. As an instance, if you are
building the full configuration, you can use the -Pfull,linux profiles.

3.8.2.1 Testing Image I/O-Ext modules with Maven

In case you simply need testing some Image I/O-Ext modules, as an instance in order to check if
everything is working fine, you can enter in the module you are interested in and run the maven
test. As an instance:
imageio-ext/plugin>cd plugin/gdalarcgrid
imageio-ext/plugin/gdalarcgrid>mvn test
Lastly, if you want to perform interactive tests (which usually display data read on a windows), you
should use the interactive.tests profile like this:

imageio-ext/plugin/gdalarcgrid>mvn test -Pinteractive.tests
Anyway, displaying the image is a not blocking/not waiting operation so you will barely see the
image, just for an instant (when displayed, it will be automatically closed. Future versions may

Page 22 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

include a property to customize “waiting time” before close). Note that tests require you have all the
needed SO. libraries, otherwise they will be skipped.

3.8.2.2 Testing JPEG2000 Kakadu (GDAL) writer capabilities

The JPEG2000 Kakadu (GDAL based) plugin contains a wide suite for testing write operations with
different write parameters leveraging on the available create options / Kakadu customizations. As
default, the test performs only a simple write operation without testing any supported kakadu
create option to reduce build time. In case you need to test all these operations simply use the
extensive.tests profile like this:

imageio-ext/plugin/gdalkakadujp2>mvn test -Pextensive.tests
Moreover, as default, when the test is terminated, all the written files are automatically deleted. In
case you would like to maintain the produced files, avoiding delete, you should add the profile
tests.holdwrittenfiles to the previous one, using the following command:

imageio-ext/plugin/gdalkakadujp2>mvn test
-Pextensive.tests,tests.holdwrittenfiles

Page 23 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

4 Mac OS X Instructions
The following instructions have been tested on Mac OSX Leopard distribution.

4.1 JAVA & ANT
Java and ant in the needed versions are shipped in the developer tools shipped in the install cds of
leopard.

4.2 MAVEN 2
Maven 2 is another important tool needed by the Image I/O-Ext project. You can download the last
version from http://maven.apache.org/download.html.

As taken from the apache site, here come the install instructions for:

Unix-based Operating Systems (Linux, Solaris and Mac OS X)

1. Extract the distribution archive to the directory you wish to install Maven 2.0.9. These
instructions assume you chose /usr/local/apache-maven-2.0.9. The directory
apache-maven-2.0.9 will be created from the archive.

2. Add the bin directory to your path, eg. export PATH=/usr/local/apache-maven-
2.0.9/bin:$PATH

3. Make sure that JAVA_HOME is set to the location of your JDK, as an instance,

export JAVA_HOME= /System/Library/Frameworks/JavaVM.framework/Versions
/CurrentJDK/ Home/

4. Run mvn --version to verify that it is correctly installed.

4.3 JAI
JAI is already present in the java installation of leopard.

4.4 JAI-ImageIO Toolkit
Jai-imageio has not yet been compiled and inserted into the macosx java installation by Apple. For
now it is possible to download the jai-imageio from:
http://download.java.net/media/jai-imageio/webstart/early-access/1.1/linux-i586/
and install it to the macosx jvm using the cp command to /System/Library/Java/Extensions
This will mean no native acceleration for now. Anyway as soon as Apple builds it for mac, it should
work out of the box.

4.5 SWIG
Make sure you have properly downloaded SWIG, the Simplified Wrapper and Interface Generator
which allow to produce JAVA bindings for C/C++ code.

Since the macports project supports SWIG, the easiest way to install SWIG is to install macports
(www.macports.org) and simply run:

port install swig

Page 24 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://www.macports.org/
http://download.java.net/media/jai-imageio/webstart/early-access/1.1/linux-i586/
http://maven.apache.org/download.html

4.5.1 Manual SWIG installation
In case yum is not supported by your distribution, just download swig from:
http://mesh.dl.sourceforge.net/sourceforge/swig/swig-1.3.32.tar.gz. (Or a more
recent version). Unzip this somewhere on your hard disk and then run:
./configure
make
sudo make install (As you may notice, this command requires superuser privileges)

4.6 GDAL
GDAL, which stands for Geospatial Data Abstraction Library, provides data access to several
raster data formats. Image I/O-Ext deeply leverages on this complex library which needs to be
properly configured.

4.6.1 GDAL requirements
Depending on the format you wish to support, you need to properly download and setup several
libraries prior to build GDAL. The following instructions describe how to achieve this for these
formats:

– Kakadu (v. 5.2.6)

– MrSID (v 6.0.7)

– ECW (v 3.3) Requires some workaround to be found in order to build GDAL against it.

4.6.1.1 Kakadu

Supposing you have your own Kakadu licensed source code, go in the main kakadu folder (as an
instance on usr/local/kakadu).

Enter in coresys/make and run make: make -f Makefile-Mac-x86-gcc
Enter in apps/make and run make: make -f Makefile-Mac-x86-gcc
Finally, enter in managed/make and run make: make -f Makefile-Mac-x86-gcc

In case you encountered an “archive has no table of contents” error against libkdu.a you
should run the ranlib command against that lib.
Finally, copy all the generated libs in /usr/local/lib
If you plan to use the ImageIO-Ext module which leverages directly on the kakadu library without
using GDAL you have to rename the libkdu_jni.so file to libdku_jni.dylib.

4.6.1.2 MrSID

As a first requirement, you need the LizardTech Decoding Software Development Kit (DSDK). You
can download it free of charge from this site: http://developer.lizardtech.com (You need to
be registered in order to download it). After logged in, select “Download” -> “Software
Development Kits” -> “Download SDK's”. Select the proper version of SDK to be downloaded
(select the GeoExpress SDK for Mac OS X (universal) - gcc 4.0)

Page 25 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

http://developer.lizardtech.com/
http://mesh.dl.sourceforge.net/sourceforge/swig/swig-1.3.32.tar.gz

4.6.2 GDAL Configuration
Firstly, you need to download GDAL 1.4.5 from OSGeo SVN. Enter the folder where you want to
download GDAL and run:
svn co http://svn.osgeo.org/gdal/tags/1.4.5/gdal gdal1.4.5
Then, you need to apply the patch available at this location (User=guest , with no password):
https://imageio-ext.dev.java.net/svn/imageio-
ext/branches/1.0.x/patches/gdal1.4.5b.patch
This patch contains several changes for:

● Kakadu support: More Kakadu create options and error management supported. Makefile
modified

● Java bindings: improved data access (read/write Dataset at once instead of read/write
RasterBands at once; BandMap, PixelSpace, LineSpace and BandSpace parameters now
are allowed), added setMetadataItem capabilities

To apply the patch, enter in the GDAL main folder and run:
patch -p0 -f -i PATH_TO_DOWNLOADED_PATCH/gdal1.4.5b.patch
(where PATH_TO_DOWNLOADED_PATCH represents the location where you downloaded the patch,
as an instance, /home/youruser/Desktop/)
Make sure you properly set the GDAL_DATA environment variable. This need to be set with your
GDAL/DATA location in order to properly evaluate EPSG codes. As an instance, supposing you
installed GDAL on /home/youruser/gdal1.4.5, you can use the following command:

export GDAL_DATA=/home/youruser/gdal1.4.5/data/

Next step is configuring GDAL by means of the./configure command. Such a command allows
to specify several options to enable formats, change build properties, customize libraries and much
more. Depending on the required formats you wish to enable on GDAL, you need to add some
options to this command as explained in the following sections.

4.6.2.1 Kakadu configuration option

Add --with-kakadu=KAKADU_FOLDER option to the ./configure command, where
KAKADU_FOLDER represents the path where your Kakadu library is located.

4.6.2.2 MrSID configuration option

Add --with-mrsid=MRSID_FOLDER option to the ./configure command, where
MRSID_FOLDER represents the path where you previously downloaded GeoDSDK.

Note: During the future build process (4.6.3) a similar error could occur:

/......./include/base/lti_sceneBuffer.h:356:
error: extra qualification 'LizardTech::LTISceneBuffer::' on member
You need to fix the issue in the header MRSID_FOLDER/include/base/lti_sceneBuffer.h by
simply removing the extra qualification from the inWindow declaration. Line 356 should look
like this: bool inWindow(lt_uint32 x, lt_uint32 y) const;
Then repeat build process as suggested in 4.6.3.

Page 26 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x/patches/gdal1.4.5b.patch
https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x/patches/gdal1.4.5b.patch

4.6.3 GDAL Building
Finally, you are ready to build GDAL. Supposing you properly configured it as explained in section
4.6.2, run the following commands:
make clean
make
sudo make install (As you may notice, this command requires superuser privileges)

Next step is generating JAVA bindings.

4.6.3.1 Generating JAVA Bindings
SWIG will generate java bindings for you.
As a first step, check your GDAL/SWIG/JAVA/java.opt is properly configured.

Basically, you need to check the JAVA_HOME, JAVA_INCLUDE and ANT_HOME variables are properly
set. Make sure the following line exists: JAVA_INCLUDE=-I$(JAVA_HOME)/include
Edit the GNUMakefile file and do the following changes:

1. in the JAVA_MODULES variable, change any “.so” extension to “.dylib”

2. edit the “build:” target:

cp ./.libs/*.so ./ needs to become cp ./.libs/*.dylib ./
3. edit the $(JAVA_MODULES) section:

lib%jni.so: %_wrap.o needs to become lib%jni.dylib: %_wrap.o
$(LD) -shared $(LDFLAGS) $(CONFIG_LIBS) $< -o $@

needs to become

$(LD) -dynamiclib $(LDFLAGS) $(CONFIG_LIBS) $< -o $@
Then, enter in your main GDAL folder and run:

cd swig
cd java
make veryclean
make build
This command will automatically generate wrappers and bindings. Then, copy the generated libs in
/usr/local/lib using the command:

sudo cp *.so /usr/local/lib (As you may notice, this command requires superuser
privileges)

4.7 Image I/O-EXT Project
You need to download the imageio-ext project from Java.net SVN. Enter the folder where you
want to download Image I/O-EXT and run:
svn co https://imageio-ext.dev.java.net/svn/imageio-ext/branches/1.0.x
imageio-ext --username MYUSERNAME
(Note: MYUSERNAME need to be replaced with your own username. In case you don't have an
imageio-ext user, you can use “guest” with no password to access without write permissions)

Page 27 of 27

 GeoSolutions S.A.S. --- Via Carignoni 51, 55041 Camaiore (LU) Italy

	1 Introduction
	2 Windows instructions
	2.1 JAVA
	2.2 ANT
	2.3 MAVEN 2
	2.4 JAI
	2.5 JAI-ImageIO Toolkit
	2.6 SWIG
	2.7 GDAL
	2.7.1 GDAL requirements
	2.7.1.1 Kakadu
	2.7.1.2 MrSID
	2.7.1.3 ECW
	2.7.1.4 HDF4

	2.7.2 GDAL Configuration
	2.7.2.1 Preliminar variables settings
	2.7.2.2 Kakadu specific configuration option
	2.7.2.3 MrSID specific configuration option
	2.7.2.4 ECW specific configuration option
	2.7.2.5 HDF4 specific configuration option

	2.7.3 Building GDAL
	2.7.3.1 Generating JAVA Bindings
	Variable settings
	Running SWIG

	2.7.3.2 Final Settings

	2.8 ImageMagick & Jmagick
	2.9 Image I/O-EXT Project
	2.9.1 DLL deployment instructions (Optional) - [deploylibs] property
	2.9.2 JMagick libraries deployment instructions (Optional)- [jmagick] profile
	2.9.3 Image I/O-Ext Project building
	2.9.3.1 Testing Image I/O-Ext modules with Maven.
	2.9.3.2 Testing JPEG2000 Kakadu (GDAL) writer capabilities

	3 Linux instructions
	3.1 JAVA
	3.2 ANT
	3.3 MAVEN 2
	3.4 JAI
	3.5 JAI-ImageIO Toolkit
	3.6 SWIG
	3.6.1 Manual SWIG installation

	3.7 GDAL
	3.7.1 GDAL requirements
	3.7.1.1 Kakadu
	3.7.1.2 MrSID
	3.7.1.3 ECW

	3.7.2 GDAL Configuration
	3.7.2.1 Kakadu configuration option
	3.7.2.2 MrSID configuration option
	3.7.2.3 ECW configuration option

	3.7.3 GDAL Building
	3.7.3.1 Generating JAVA Bindings

	3.8 Image I/O-EXT Project
	3.8.1 Libraries deployment instructions (Optional) - [deploylibs] property
	3.8.2 Image I/O-Ext Project building
	3.8.2.1 Testing Image I/O-Ext modules with Maven
	3.8.2.2 Testing JPEG2000 Kakadu (GDAL) writer capabilities

	4 Mac OS X Instructions
	4.1 JAVA & ANT
	4.2 MAVEN 2
	4.3 JAI
	4.4 JAI-ImageIO Toolkit
	4.5 SWIG
	4.5.1 Manual SWIG installation

	4.6 GDAL
	4.6.1 GDAL requirements
	4.6.1.1 Kakadu
	4.6.1.2 MrSID

	4.6.2 GDAL Configuration
	4.6.2.1 Kakadu configuration option
	4.6.2.2 MrSID configuration option

	4.6.3 GDAL Building
	4.6.3.1 Generating JAVA Bindings

	4.7 Image I/O-EXT Project

