JPaxos — User Guide
Release 1.0

Jan Konczak, Tomasz Zurkowski,
Nuno Santos, Pawet T. Wojciechowski
www.it-soa.pl/jpaxos

January 2011

Contents

1 Overview
1.1 Twoexecutionmodes
1.2 Simple APL
1.3 Distributed implementation
2 Deployment and configuration
2.1 Deployment requirements
2.2 Configurationfile
2.3 Configurationclasses
3 Application programming interface
3.1 Introduction
32 Service
33 Replica,
34 Client
4 Example: replicated hash map
4.1 Service
42 Replica
43 Client e
5 Bibliography
Index

..................... 8

..................... 10
..................... 12
..................... 13

15

..................... 15
..................... 16
..................... 17

19

21

JPaxos — User Guide, Release 1.0

Contents:

Contents 1

JPaxos — User Guide, Release 1.0

2 Contents

CHAPTER 1

Overview

JPaxos is a Java library and runtime system for efficient state machine replication. With JPaxos it is
very easy to make a user-provided service tolerant to machine crashes. Our system supports the crash-
recovery model of failure and tolerates message loss and communication delays.

State machine replication is a general method for implementing a fault-tolerant service by replicat-
ing it on separate machines and coordinating client interactions with these replicas (or copies).
The physical isolation of machines in a distributed system ensures that failures of server replicas
are independent, as required. As long as there are enough of non-faulty replicas, the service is
guaranteed to be provided.

JPaxos makes the following assumptions about the replicated service:

* deterministic behaviour, i.e. multiple copies of the service begun in the start state, receiving the
same inputs in the same order will arrive at the same state having generated the same outputs

* non-Byzantine failures, i.e. a service machine can only crash

* crash-recovery supported, i.e. after crash, the service can be restarted with the same IP address.

1.1 Two execution modes

JPaxos can be run in one of the following two modes of operation (the mode is set up from the configu-
ration file at system start up and cannot be changed at runtime):

Basic mode

* to be able to tolerate f faulty replicas, the system must consists of at least 2f + 1 replicas (i.e.
n>2f+1)

* after replica crash, it recovers its state from other replicas
Extended mode

* no limit on the number of faulty processes (i.e. f = n)

* after replica crash, it recovers its state from non-volatile memory

e around 200 times slower than the basic mode

http://en.wikipedia.org/wiki/State_machine_replication

JPaxos — User Guide, Release 1.0

1.2 Simple API

For the end user JPaxos provides:

1. Service interface — it specifies a few methods for interfacing the user-defined service code with
JPaxos; our library provides abstract classes implemneting Service interface, making it easier to
to create a new service (state machine); see Service interface for details

2. Replica class — that should be instantiated and started (see Replica for details)
3. Client class — the part that may send request to be executed (see Client for details)
The Service and Replica are bound to each other, while Client can be located anywhere.
JPaxos guarantees that in crash-recovery model, with static groups, lossy network with any delays:
« if the client sends a request, it’ll eventually get the answer
* every replica will execute the request exactly once

* any two replicas will execute the requests in the same order

1.3 Distributed implementation

JPaxos is a fully distributed implementation, which means that there is no predefined central coordinator
that might be a bottle-neck or a single point of failure in the system.

For this, JPaxos implements the Paxos distributed algorithm with various optimizations, in order to
efficiently deliver client requests to all service replicas despite any failures. Replicas receive all requests
globally ordered, thanks to the total-order (or atomic) broadcast protocol implemented on top of Paxos.

Figure below shows processing of a single request message submitted by the Client to the replicated
state machine:

Client

Reque&_{\' /Response
sl (leader)

s2 (backup) N_A

atomic bcask&consensus

s3 (backup)

where Client is an instance of the Client class, while s/, s2, and s3 are instances of the Replica class.

If a request is delayed or lost due to the network or replica failure, after a timeout, it will be reissued by
the Client, as illustrated in Figure below:

timeout

Client

sl (leader) — Nf<Sve\ ____ __________/ ___

s2 (backup) s2 becomes leader {

atomic bcast Xconsensus

s3 (backup)

4 Chapter 1. Overview

http://en.wikipedia.org/wiki/Paxos_algorithm

CHAPTER 2

Deployment and configuration

This section presents quick overview on what is necessary to compile the library and how to configure
the system and start the example which is included in the distribution.

2.1 Deployment requirements

JPaxos requires the following components to be installed on the target system:
e Java JRE 1.5 or later
Additionally, the following are optional but helpful tools in compilation and packaging:

* Apache Ant — used to run all build scripts (distributed under the Apache License 2.0)

2.2 Configuration file

The format of configuration file used by Configuration class is the same as default Java Properties file.
As mentioned earlier, this file contains nodes configuration and replica related options.

2.2.1 Node configuration

A node is configured with a single line containing hostname, replica port and client port, sepa-
rated with commas:

process.<id> = <hostname>:<replica_port>:<client_port>

process.0 = localhost:2000:3000
process.l = localhost:2001:3001
process.2 = localhost:2002:3002

Above configuration creates three replicas with ids: 0, 1, 2. Replica with id 0, is running on localhost
and is using port 2000 to communicate with other replicas and is using port 3000 to accept connections
from clients.

http://www.java.com/
http://ant.apache.org/

JPaxos — User Guide, Release 1.0

2.2.2 Crash model selection

One should select the crash model of the system. If the crash model uses the non-volatile memory (i.e.
hard drive), the location of the logs may be specified as well.

Currently supported crash models include:

Type Name Needs stable storage | Fault tolerance
CrashStop CrashStop No minority
CrashRecovery | FullStableStorage | Yes, heavy usage catastrophic
CrashRecovery | ViewSS Yes, periodically minority
CrashRecovery | EpochSS Yes, one write by start | minority

Crash model types:

* CrashStop - once the replica crashed, it cannot recover
* CrashRecovery - the replica may crash and subsequently recover
Fault tolerance ranks:
* minority - the minority of replicas may crash; f = |(n —1)/2]
* catastrophic - all replicas may crash; f =n

To select a crash model, one must add to the configuration file a line CrashModel = [crash model
name]. If no crash model is provided, the FullStableStorage is assumed.

For choosing a log path one needs to add another line with syntax LogPath = [path]. The logs will
be actually stored in subdirectory named after replica id in the given location. The default value for log
path is jpaxosLogs.

An example configuration:

CrashModel = ViewSS
LogPath = /mnt/shared/jpaxos/logs

2.2.3 Replica options

Configuration file also allows to set additional options for replicas. Understanding how each option
described below can affect JPaxos is important to achieve high performance.

2.2.4 Window size

The window size determines the maximum number of concurrently proposed instances. The meaning of
this option is very similar to window size in TCP protocol.

To illustrate it, assume that window size is set to 10. It allows to run instances with id’s from 1 to 10
concurrently and to decide instances 2 - 10 before instance 1. JPaxos cannot execute any instance until
all previous instances are executed so because instance 1 is not decided / executed, no instance can be
executed on state machine. When instances 1 will be decided and executed all consecutive instances will
also be executed.

The example above shows that by increasing the value of window size we can decrease the response
time - a lot of instances will be decided, but none can be executed. Because of that it is recommended
to set this option to lower value and BatchSize to higher value so that decided instances can be executed
faster.

6 Chapter 2. Deployment and configuration

JPaxos — User Guide, Release 1.0

The default value of this option is 2 and can be set using:: WindowSize =4

2.2.5 Batch size
JPaxos will try to batch requests into a single proposal to improve the performance. This option controls
the maximum size (in bytes) of requests grouped into one consensus instance.

For example, if maximum batch size is set to 1000 and JPaxos received requests of size 100, 300, 400,
300 bytes, then first three requests will be batched into one consensus instance of size 100 + 300 + 400
= 800 (the size of all four requests is 1100 what is greater than maximum allowed batch size).

The default value of this options is 65507 bytes and can be changed by adding:: BatchSize =
65507

2.2.6 Maximum batch delay

This option determines how long JPaxos will wait for new requests to be packed into single instance.

The default value of this option is 10 ms and can be change using:: MaxBatchDelay = 20

2.2.7 Network protocol

It is also possible to choose protocol used to communicate between replicas. One may choose:
e TCP (default)
» UDP
* Generic - Uses UDP for small messages and TCP for larger messages

It is important to note that UDP protocol has message size restriction - messages must be smaller than
the maximum allowed size of UDP packet (64KB or less, depending on the network). User must be
careful with the size of client requests and of BatchSize so that this limit is not violated. Because of this
limitations, user should choose TCP or Generic option.

If one chooses Generic, it is also recommended to set what is a ‘small” and what is a ‘big” message, by
setting maximum allowed UDP packet size:

Network = Generic
MaxUDPPacketSize = 1000

In example above, all messages smaller than 1000 bytes will be sent using UDP and all others using
TCP protocol.

2.2.8 Example file

Below is an example configuration file:

Nodes configuration

process.0 = 192.168.1.5:2000:3000
process.l = 192.168.1.6:2001:3001
process.2 = 192.168.1.7:2002:3002

Crash model configuration

2.2. Configuration file 7

JPaxos — User Guide, Release 1.0

CrashModel = EpochSS
LogPath = jpaxos/stableStorage

Batching configuration
WindowSize = 2

BatchSize = 65507
MaxBatchDelay = 10

Network configuration
Network = TCP

2.3 Configuration classes

The user of JPaxos has to configure the system by creating instance of Configuration class. Instance of
this class is required to create the Replica and Client (see Application programming interface chapter).
The Configuration class either loads the setting from certain file, or the settings may be provided by
instantiating.

Configuration contains nodes configuration (information about replicas - ids, hostnames and ports),
and replica related options (batching size, window size, etc.). Client is using only nodes configuration
(hostnames and ports) and ignores replica related options, while Replica is using all options from
Configuration.

The user is responsible for providing correct configuration to replicas and clients. The configuration
must be the same in every replica and client or else the system may fail.

2.3.1 Configuration class

The Configuration has three constructors available:

* Configuration () Default constructor, loads configuration from paxos.properties file located
in current working directory. The structure of configuration file is described in “Configuration file
format” section.

* Configuration (String fileName) Loads configuration from file specified as constructor ar-
gument. The format of the file is described in “Configuration file format” section.

* Configuration (List<PID> processess) Loads configuration using only nodes configuration.
The PID structure is described below. Replica related options are set to default.

2.3.2 PID class

Stores node configuration data (information about one replica):
* id The id of replica. Ids start from O.

* hostname The replica ip address (e.g. “127.0.0.1”°) or host name (e.g. “localhost”). The replicas
(and clients) will use this address to establish connection with this replica.

* replicaPort The port used by replicas to establish connection with this replica.

e clientPort The port used by clients to establish connection with this replica.

8 Chapter 2. Deployment and configuration

CHAPTER 3

Application programming interface

3.1 Introduction

A non-replicated service looks like this:

) - < Response -
Service clientf::------- <network>:-:--:--- Service
Request —»
Our library replaces the <network> part. It looks like:
Service client . | Service :
API Request - « Response, mplementing |
JPaxos client }-------- <network>:-::--- «-| Replica !

(gets replicated)

In order to make the replication and recovery possible, we require a few additional methods from the
Service.

JPaxos provides implementation of it’s Client and the Replica. The programmer must implement the
Service and make use of the Client class.

Client sends requests to replicas and waits for reply. It provides only method for connecting and
executing requests.

Replica uses Paxos algorithm to order client requests in all replicas; after deciding requests, executes
them on service in proper order. All methods from Service class are called from one Replica thread,
that means no two will be called concurrently on the service.

Service executes all requests from clients deterministically. The service must also implement a few
additional methods to save and restore its state, which will explained in detail below.

JPaxos — User Guide, Release 1.0

Data exchanged by client and service are in form of byte arrays — byte[]. This gives biggest flexibility
to the programmer - any data can be put there. One may use byte arrays in the service, as well as
serialise/deserialise the byte[] to certain objects.

3.2 Service

JPaxos provides several base classes and one interface to create a new Service.

The Service interface, base for all services, describes methods that JPaxos requires from the service to
be implemented. Replica calls all the API methods on the Service object. To launch the service, one
needs to start the governing Replica.

The inheritance hierarchy is as follows:

interface Service
abstract class AbstractService
abstract class SimpleService
abstract class SerializableService

Using the Service interface is discouraged in favour of AbstractService, as the latter implements
methods common to all services.

AbstractService provides widest range of functionality. SimpleService is the AbstractService
narrowed to the absolute minimum for the system to work. SerializableService differs from
SimpleService only with data type - all client requests and service responses are serialised using Java
serialisation.

3.2.1 SerializableService class

This is the simplest class of all available.

This class has minimal number of methods. One requires from the SerializableService to be able to
execute client requests, be able to create a snapshot and roll back to state from a snapshot.

SerializableService uses Java serialization for creating byte arrays from Object, therefore snapshot,
request and reply classes must be serialisable.

Method summary:
* abstract Object execute (Object value)

Executes a command from client on this state machine. The return value is sent back
to the client.

* abstract Object makeSnapshot ()

Makes snapshot of current Service state. The same data created in this method, will be
used to update state from snapshot using updateToSnapshot (Object) method.

* abstract void updateToSnapshot (Object snapshot)

Updates the current state of Service to state from snapshot. This method will be called
after recovery to restore previous state, or if we received newer snapshot from other
replica (using catch-up).

10 Chapter 3. Application programming interface

JPaxos — User Guide, Release 1.0

3.2.2 simplifiedService class

This class also has minimal number of methods.

Only difference between SimplifiedService and SerializableService is the type of passing the data
- the SimplifiedService uses byte arrays for that.

Method summary:
* abstract byte[] execute (byte[] value)
* abstract byte[] makeSnapshot ()

* abstract void updateToSnapshot (byte[] snapshot)

3.2.3 AbstractService class
This class supports three additional functionalities in comparison to SimplifiedService and
SerializableService:

* service may choose when the snapshot has to be done

* service may know if the recovery has finished

* snapshots can be passed for state after specific request, not only after the last request

These features let the service be more flexible and make using threads inside the service code easier.
This comes at cost of placing partial responsibility on the service programmer - he must provide valid
arguments for the functions.

In order to preserve the functionality, some additional data needs to be remembered by the service. A
sequential number of request identifies each request and request order in JPaxos - these numbers must
be taken under consideration in the service as well. This sequential number is global among the replicas.

To make the snapshot creation easier, JPaxos checks the size of logs and previous snapshots. If the ratio
between these sizes reaches certain levels (see Configuration chapter) methods askForSnapshot and
forceSnapshot are called. Programmer should use these methods as hints, although one may just make
the snapshot then, or ignore these methods at all.

Method summary:
* abstract byte[] execute (byte[] value, int executeSeqgNo)

Executes the request (value) and returns the reply for client. The return value must not
be null. The executeSegNo is the sequential number of this request.

e abstract void askForSnapshot (int lastSnapshotNextRequestSegNo)
Notifies the service that it would be good to create a snapshot now.

* abstract void forceSnapshot (int lastSnapshotNextRequestSeqgNo)
Notifies the service that log is very large and a snapshot should be made.

e final protected void fireSnapshotMade(int nextRequestSeqNo, byte[] snapshot,
byte[] response)

Informs the replica that new snapshot has been made and passes it as the byte array
snapshot. nextRequestSeqgNo is the sequential number of first request that will be
executed after the snapshot.

3.2. Service 11

JPaxos — User Guide, Release 1.0

If this method is called from within execute method, after the just executed request, the
response must be also provided (otherwise may be null).

* abstract void updateToSnapshot (int requestSegNo, byte[] snapshot)
Updates the current state of Service to the state from the snapshot.
* void recoveryFinished()

Informs the service that the replica is fully functional - i.e. recovery process has been
finished (if any).

This implementation is an empty method. One may not override it, if the knowledge
that recovery has finished is not needed.

3.2.4 Service interface

The service interface describes methods that JPaxos requires from the service to be implemented.

Some methods in this interface use SnapshotListener interface. This interface is very simple, it
contains one method only: void onSnapshotMade(int requestSeqNo, byte[] snapshot, byte[]
response). This method must be called by Service when a new snapshot has been made on all pre-
viously registered listeners. The parameters match exactly the ones from fireSnapshotMade method
from AbstractService class.

Method summary:
* byte[] execute (byte[] value, int executeSeqNo)
* void askForSnapshot (int lastSnapshotNextRequestSeqNo)
* void forceSnapshot (int lastSnapshotNextRequestSeqNo)
* void updateToSnapshot (int requestSegNo, byte[] snapshot)
* void addSnapshotListener (SnapshotListener listener)

Registers a new listener. Each listener has to be informed every time a snapshot has
been created by Service.

* void removeSnapshotListener (SnapshotListener listener)
Unregisters the listener.

* void recoveryFinished()

3.3 Replica

In order to achieve replication above the Paxos protocol another layer must be implemented - a layer that
passes the Paxos decisions to the service and accepts client requests. This part is called Replica. Each
Replica has one copy of underlying Service. A replica must have it’s unique number - called local Id,
or just Id. The Id’s are sequential numbers starting from 0.

To create the Replica object you need:
* configuration (shared by replicas and clients)

¢ local Id - identification number

12 Chapter 3. Application programming interface

JPaxos — User Guide, Release 1.0

* the Service that has to be replicated
The constructor and methods from Replica class are described below:
* Replica(Configuration config, int localld, Service service) throws IOException
Creates the replica with given Service and specified Id.
The Configuration class is described in the Configuration class chapter
* void setLogPath(String path)

Sets path for the logs used by certain crash models. The location of logs must be
different for each replica. The path for the logs may also be set in configuration file.
However, this method overrides the configuration file setting.

If the log path is set neither in configuration file nor using this method, default
jpaxosLogs/<id> location is used.

e void start() throws IOException

Starts the replica — i.e. starts the recovery process and subsequently launches the
Service.

3.4 Client

Creating a client is very simple — each client needs only replica configuration. Then you can easily
connect to replicas, and execute commands on them. Client class takes care of all details related with
reconnecting if replica crashes and sending command to other ones.

The Client class has the following methods:
e Client() throws IOException Client(Configuration config) throws IOException

Creates the client. The Configuration should be the same as for Replica. The first version
reads default paxos.properties file, while the latter lets the user choose file location.

e void connect()

Connects to the replicates service. This method blocks until the connection will be
established.

* synchronized byte[] execute(byte[] request)
Executes the request and waits for the response.
SerializableClient

If one chose using SerializableService as base class for the service implementation, one should use
class SerializableClient rather than Client. The only difference is that this class deserialises the
responses back to objects.

3.4. Client 13

JPaxos — User Guide, Release 1.0

14 Chapter 3. Application programming interface

CHAPTER 4

Example: replicated hash map

This example presents simple service implementation. The service is a replicated hash map. Each client
command reads requested entry and modifies it. Service responds with old map entry value.

4.1 Service

First, we present an example Service imlementation.

import lsr.service.SimplifiedService;
public class SimplifiedMapService extends SimplifiedService {

// Map to be replicated
private HashMap<Long, Long> map = new HashMap<Long, Long>();

/*x Processes client request and returns the reply for client xx/
@Override
protected byte[] execute(byte[] value) throws IOException {

// Deserialise the client command
MapServiceCommand command;
command = new MapServiceCommand(value); // this class is not included
if(!command.isValid()) // 1in the example
return new byte[0];

// We do the work
Long oldValue = map.get(command.getKey());
if (oldValue == null)
oldvValue = new Long(0);
map.put (command.getKey (), command.getNewValue());

// We serialise the message back

ByteArrayOutputStream byteArrayOutput = new ByteArrayOutputStream();
DataOutputStream dataOutput = new DataOutputStream(byteArrayOutput);
dataOutput.writelLong(oldValue);

// And return the reply to the client
return byteArrayOutput.toByteArray();

15

JPaxos — User Guide, Release 1.0

/*xx Makes snapshot used for recovery and replicas that have very old state *x/
@Override
protected byte[] makeSnapshot() {
// In order to make the snapshot, we just serialise the map
ByteArrayOutputStream stream = new ByteArrayOutputStream();
try {
ObjectOutputStream objectOutputStream = new ObjectOutputStream(stream);
objectOutputStream.writeObject(map);
} catch (IOException e) {
throw new RuntimeException("Snapshot creation error")
}

return stream.toByteArray();

/*x Brings the system up-to-date from a snapshot xx/
@Override
protected void updateToSnapshot(byte[] snapshot) {
// For map service the "recovery" is just recreation of underlaying map
ByteArrayInputStream stream = new ByteArrayInputStream(snapshot);
ObjectInputStream objectInputStream;
try {
objectInputStream = new ObjectInputStream(stream);
map = (HashMap<Long, Long>) objectInputStream.readObject();
} catch (Exception e) {
throw new RuntimeException("Snapshot read error");

4.2 Replica

In order to run the service, one needs also to write an application starting the service.

public static void main(String[] args) throws IOException {

/xx First, we acquire the ReplicalID xx/
if (args.length > 2) {
System.exit(1);
}
int localld = Integer.parselnt(args[0]);

/*x Then we create the replica, passing to it the service x*x/
Replica replica = new Replica(new Configuration(), localld, new SimplifiedMapService());

/** Then we start the replica *x*/
replica.start();

/*x And the service runs until the enter key is triggered *x/
System.in.read();
System.exit(0);

16 Chapter 4. Example: replicated hash map

JPaxos — User Guide, Release 1.0

4.3 Client

The code below presents the client side.

import lsr.paxos.client.Client;

/** Creating the Client object xx/
Client client = new Client();
client.connect();

/*x Prepairing request xx/
MapServiceCommand command = new MapServiceCommand(key, newValue);
byte[] request = command.toByteArray();

/*xx Executing the request x*x/
byte[] response = client.execute(request);

/xx Deserialising answer xx/
DatalnputStream in = new DatalnputStream(new ByteArrayInputStream(response));

System.out.println(in.readlLong());

4.3. Client 17

JPaxos — User Guide, Release 1.0

18 Chapter 4. Example: replicated hash map

CHAPTER 5

Bibliography

* The part-time parliament. L. Lamport. ACM Transactions on Computer Systems 16, 2 (May
1998), 133-169

* Paxos for System Builders: an overview. Kirsch, Jonathan and Amir, Yair. LADIS ‘08: Proceed-
ings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware

* Paxos mad live: an engineering perspective. Chandra, Tushar D. and Griesemer, Robert and Red-
stone, Joshua. PODC ‘07: Proceedings of the twenty-sixth annual ACM symposium on Principles
of distributed computing

19

JPaxos — User Guide, Release 1.0

20 Chapter 5. Bibliography

Index

S

State machine replication, 3

21

	Overview
	Two execution modes
	Simple API
	Distributed implementation

	Deployment and configuration
	Deployment requirements
	Configuration file
	Configuration classes

	Application programming interface
	Introduction
	Service
	Replica
	Client

	Example: replicated hash map
	Service
	Replica
	Client

	Bibliography
	Index

