
1

﻿	�﻿﻿

Getting Started with
Java for FRC

Worcester Polytechnic Institute Robotics Resource Center

Brad Miller, Ken Streeter, Beth Finn, Jerry Morrison, Dan Jones, Ryan
O’Meara, Derek White, Stephanie Hoag, Eric Arseneau

Rev 0.83

2

﻿	�﻿﻿

Contents
Welcome to Robot Programming with Java.. 3
Installing Java and Tools... 3

Required Software... 3

Installing on Windows - DVD... 4

Installing JDK and NetBeans on Windows - Internet.. 4

Installing JDK and NetBeans on Linux... 5

Installing JDK and NetBeans on Mac OS X... 5

Installing Sun SPOT Java SDK for FRC & WPILib- NetBeans.. 5

Installing 2010 cRIO Imaging Tool... 6

Installing 2010 cRIO Image for Java.. 8

Restoring 2009 cRIO Image.. 9

Creating a Robot Project.. 9
Building the project... 11

Downloading the robot program.. 11

Debugging the robot program... 12

Creating a Robot Program..13
Using objects... 16

WPI Robotics Library Conventions.. 17

Constructors with Slots and Channels... 18

Built-in Robot classes... 18

SimpleRobot class.. 19

IterativeRobot class... 20

RobotBase class.. 21

Watchdog timerclass.. 22

Advanced Programming Topics..23
Concurrency.. 23

Using Subversion with NetBeans.. 23

Getting the WPILib Source Code.. 23

Replacing WPI Robotics Library parts.. 23

Interrupts... 23

Differences between C++ and Java.. 23

Language differences... 24

WPILib differences.. 24

Our version of Java... 25

3

Welcome to Robot Programming with Java	 Required Software

Welcome to Robot Programming with Java
Starting with the 2010 competition season teams will have the option to write Java programs for
their robots, including a full suite of tools to make program development and debugging simple.

Since Java is a new option, it was felt that releasing Java prior to the 2010 Kickoff would give
teams a chance to get familiar with the tools. The installation instructions for this pre-release are
not quite what they will be for the final release. The reason being that teams do not have access
to the full FRC software kit for 2010. The full FRC software kit for 2010 will only be available at
Kickoff.

The instructions that follow will allow you to install the Java tools alongside your 2009 FRC
software. The installation of this pre-release should not affect your 2009 software. However, there
is a new image required for the cRIO. This will mean that you will need to re-image your cRIO
whenever you want to switch between your 2009 LabVIEW/C++ environment, and this Java pre-
release.

The tools that will be included in the final release, will include:

•	 The NetBeans Integrated Development Environment (IDE) available for download from
http://www.netbeans.org. Install the necessary components for robot development by simply
adding an update site to NetBeans and installing a plugin. (Eclipse integration is coming, for
another IDE choice.)

•	 Sun SPOT Java SDK for FRC includes the Java virtual machine and tools necessary to
compile, deploy and run Java code on the cRIO.

•	 The WPILib Application Programming Interface (API) for Java provides a a programming
interface to the cRIO. It is almost identical to the C++ interface. Converting existing C++
code to Java is simple and straightforward, and will let you reuse code developed in 2009.

The development tools run on most common platforms: Windows, MacOSX 10, and Linux.

The complete source code for everything including the NetBeans IDE, Sun SPOT Java
SDK for FRC, and the WPILib API is available to teams wishing to look at any aspect of the
implementation.

Installing Java and Tools
Required Software
In order to setup your machine to program in Java, the following software components are
required:

•	 Install Java SE Development Kit (JDK) version 6

•	 Install NetBeans version 6.7 or later
You can use other IDEs if desired but the focus for this document will be NetBeans.

•	 Install SunSPOT Java SDK for FRC which includes WPILib

Each of the above software components can be installed on your platform of choice. Each
platform will require slightly different installation procedures.

The following components are only required when you need to format/initialize your cRIO for

http://www.netbeans.org

4

Installing Java and Tools	 Installing on Windows - DVD

Java programming:

•	 FRC cRIO Imaging Tool

This component is currently only released and supported for Windows.

To install the tools follow these basic steps:

1.	 Install the Java Development Kit (JDK) version 6.

2.	 Install NetBeans version 6.7 or later.

3.	 Add the FRC plugins to NetBeans. The plugins can either be installed from the installation
media received with your kit or from the FRC update site on the Internet.

Note:	The details of each step vary by operating system.

Installing on Windows - DVD
The Kit of Parts to be released at the 2010 Kickoff will include a set of DVDs containing the
FIRST Competition Software. These DVDs can be used to install all software.

Dont forget, that if you do install by DVD, that you must also get the latest updates, in order to
ensure you have the most recent bug fixes and errata.

Since the Competition Software DVD is not yet available, the only option available as of this
writing is to install from the Internet.

Installing JDK and NetBeans on Windows - Internet
To install the lastest versions of NetBeans and Java from the Internet:

1.	 Open your browser and go to: http://java.sun.com/javase/downloads.

2.	 Select the “JDK 6 Update 17 with NetBeans 6.7.1” (or later version) by clicking the
“Download” button as shown below. (The specific version may change since both NetBeans
and Java are often updated, but the steps should be similar even with later builds.)
If a JDK is already installed, you can download NetBeans itself from http://netbeans.org/
downloads/, choosing the “Java SE” bundle will be fine for this.

3.	 Select the “Continue” button on the left, under the “Platform” drop down.

4.	 On the “Log In for Download” pop-up, click on “Skip this step” or close the pop-up.

5.	 If Internet Explorer beeps and presents a “To help protect your security, Internet Explorer
blocked this site from downloading files to your computer. Click here for options...”, then click
and select “Download File”

6.	 You will be presented with a “File Download - Security Warning” dialog, with “Run”, “Save”
and “Cancel” for options.

7.	 Choose “Save” if you wish to take this file and bring it to another machine, and then proceed

http://java.sun.com/javase/downloads/?intcmp=1281

5

Installing Java and Tools	 Installing JDK and NetBeans on Linux

to the rest of these instructions to install the downloaded bundle.

8.	 Choose “Run”, or launch the downloaded executable.

9.	 Accept all the default settings and let the installer install the JDK and NetBeans on your
system.

10.	When presented with the “Setup Complete” panel from the “Java SE Development Kit
and NetBeans IDE Installer, press “Finish”. You can choose to accept the two check boxes
presented, or not.

11.	You should find a new shortcut on your desktop labelled “NetBeans IDE 6.7.1”.

Installing JDK and NetBeans on Linux
NetBeans and Java work equally well on Linux although we have focused our testing on Windows
and Mac OS X. You may try developing on Linux platforms by following these steps:

1.	 Install the Java JDK if it is not already present on the computer.

2.	 Download and install the latest version of the NetBeans IDE.

3.	 Installing the plugins from the update site as shown in the instructions provided in
“Installing the FRC Plugins”, later on in this document.

This should provide a working development system. As we get more volunteers to help out with
documentation, we can extend these instructions.

Installing JDK and NetBeans on Mac OS X
Java is already part of Mac OS X, and a version of NetBeans is available. Follow these steps:

1.	 Download and install the latest version of the NetBeans IDE.

2.	 Installing the plugins from the update site as shown in the instructions provided in
“Installing the FRC Plugins”, later on in this document.

This should provide a working development system. As we get more volunteers to help out with
documentation, we can extend these instructions.

Installing Sun SPOT Java SDK for FRC & WPILib- NetBeans
The Sun SPOT Java SDK for FRC comes pre-packaged as a NetBeans plug-in and is loaded
from an update site. This NetBeans update site contains all that is necessary to extend your Java
development environment into one that allows you to create and program your cRIO.

The FRC plugins extend NetBeans to directly download and debug code on the NI cRIO
controller. The plugins also provide default project types and sample programs to help you get
started developing robot programs.
Note:	Please install the FRC Robot programming plugins from the update site as described in this section even if

they have been previously installed from the FIRST DVD set. This will enable update notifications from the
update site to ensure you always have the most recent version. Whenever new versions are published and
your computer is connected to the internet, NetBeans will offer to install the updates.

6

Installing Java and Tools	 Installing 2010 cRIO Imaging Tool

To install the plugins from the Internet follow the following procedure:

1.	 Run NetBeans from the Start menu, or the desktop shortcut.

2.	 Select “Tools” then “Plugins” from the main menu in NetBeans.

3.	 Select the “Settings” tab, then press the “Add” button to add a new Update Center.

4.	 For the name, enter “FRC Java” and for the URL enter:
	 http://first.wpi.edu/FRC/java/netbeans/update/fpga1.1.0a/updates.xml
and press the OK button.

5.	 Select the “Available Plugins” tab and select all the plugins in the “FRC Java” category and
click the “Install” button.

6.	 Advance by clicking the “Next” button and accept the agreements and install the plugins.
Ignore the “Validation Warning” dialog where it informs you that “The following plugins are
not signed:” and press the “Continue” button.

7.	 On the “Restart NetBeans IDE to complete the installation” window, use the “Restart IDE
Now” option and press the “Finish” button.

8.	 After restarting NetBeans you should notice the FIRST logo button in the toolbar. This
confirms that the module has been installed properly.

9.	 The plugins are installed, now we need to configure the Sun SPOT Java SDK for FRC that
was just installed.

10.	Select “Tools” menu, and choose the “Options” menu options, from the NetBeans menu bar.

11.	Select the “Miscellaneous” tab. Then select the “FRC Configuration” tab and enter your team
number into the text field. Then press OK.

At this point Java, NetBeans, and the FRC plugins are fully installed and ready for you to write
your first program.

Installing 2010 cRIO Imaging Tool
The cRIO Imaging Tool is used to update the system image on the cRIO. The Imaging Tool
requires Microsoft Wiindows but the image on the cRIO only needs to be updated once to run Java
programs. Actual development of your Java programs will not require this tool and can be done
using any of the supported platforms.

Note that you do not have to have a physical Windows machine, you can always use a Windows

http://first.wpi.edu/FRC/java/netbeans/update/updates.xml

7

Installing Java and Tools	 Installing 2010 cRIO Imaging Tool

virtual machine/appliance. VirtualBox, http://www.virtualbox.org, is a free open source tool that
has been used to run a Windows instance to image cRIOs. Vmware, http://www.vmware.com,
is confirmed to work as well. Parallels Desktop, http://www.parallels.com/, should also work but
have no confirmation.

Follow these steps to install the Imaging Tool:

1.	 Choose a Windows installation that has the 2009 FRC Software already installed on it. If you
do not have one, then follow the instructions from last year’s set of DVDs to create one.

2.	 If you have an “FRC cRIO Imaging Tool” shortcut on your desktop, then use the “Create
Shortcut” right click menu item on it. This will create a duplicate. Rename either one to have
8.5 in its name. Such as “FRC cRIO Imaging Tool 8.6”

3.	 Download the “LabVIEW and All Platforms Beta Update 5”, or later, from
http://first.wpi.edu/FRC/frcjava.html

4.	 Unzip the file. You should be able to right click on the file and use the “Extract All...” menu
item. The Windows built in zip file expander works fine for this zip file.

5.	 Find the “NIBetaUpdate5.0\2009_12_02_1723\FRCUPDATE” directory and double click on
“setup.exe”

6.	 You will be presented with a new window labelled “FRC 2010 Update Suite”. Press “Next >>”

7.	 On the “Product List” panel, mark all listed packages for “Do not install”, except for

•	 “LabVIEW Package”, and

•	 “FRC License”
This will put a red x icon for each package.to not install, and show a green down arrow for all
the ones that should be installed. In our case, there should only be two green down arrow.
Press “Next >>”

8.	 On the “Product Information” panel, press “Next >>”. You may want to uncheck the
“Request the installer to contact...” checkbox if you do not have a network connection.

9.	 If you are presented with the “Product Notifications” panel, then press “Next >>”.

10.	Enter your name and organization on the “User Information” panel and press “Next >>”.
Note there is no need to enter a Serial Number, as all that will be used is the Imaging Tool,
which does not requie a serial number.

11.	When presented with the “License Agreements” panel, press the “I accept the above 2 License
Agreement” radio button, if you agree with the licenses of course.
Then press “Next >>”

12.	You should be presented with a “Start Installation” panel with two entries listed

•	 “FRC Additional Files for LabVIEW”

•	 “FRC License”
Press “Next >>”

13.	Installation progress will be visible for some time. Once installation is complete, you will be

8

Installing Java and Tools	 Installing 2010 cRIO Image for Java

presented with an “Installation Summary” panel.
Press “Finish”.

14.	You will be presented with a “You must restart your computer...”, press “Yes”.

15.	Once Windows has restarted, login.

16.	If you have an “FRC cRIO Imaging Tool” shortcut on your desktop, rename it to have 8.6 in
its name. Such as “FRC cRIO Imaging Tool 8.6”.
These shortcuts will come in handy if you wish to switch your cRIO back to its original 2009
LabView/C++ image.
Note, the only difference between the 2 shortucts is the LabView version number indicated
in the “Target” part of the shortcut. So LabVIEW 8.5 part is changed to LabView 8.6 by the
installer. LabVIEW 8.5 is the version provided for the 2009 season.

Installing 2010 cRIO Image for Java
In order to be able to deploy and run code on your cRIO, you will need to format the cRIO
controller with a new Image. If you wish to return your cRIO to its 2009 state, then follow the
instructions found in the following section called “2010 cRIO Imaging Tool”.

Follow these steps

1.	 Turn on your cRIO and connect it to the Windows machine as you would to program the
cRIO for 2009.

1.	 Locate the “FRC cRIO Imaging Tool - 8.6” shortcut you created when you installed the “2010
cRIO Imaging Tool”
If you do not have such a shortcut, then go to the folder “C:\Program Files\National
Instruments\LabVIEW 8.6\project\CRIO Tool” and run the “FRC CRIO Imaging Tool.
exe”.
Pay special attention to invoke the 8.6 version and not the 8.5 version of the imaging tool, since
the image format has changed since 8.5.

2.	 A “CompactRIO Imaging Tool” window will appear.

3.	 If you are presented with a dialog with the following text “No CompactRIO devices were
found. Verify the network connection.”, then make sure the cRIO is on.
If the problem persists then please follow the instructions from the 2009 Software setup on how
to image your cRIO.

4.	 Select the “Java Technology” radio button from the Development Environment group.

5.	 Check off “Format Controller”

6.	 Select the latest image listed, which should be a zip file labelled something like “FRC_2010_
v14.zip”.

7.	 Specify your team number.

8.	 Press “Apply”.

9.	 You will be presented with a “Reconfiguring Device” dialog for the entire duration of the
imaging process.

9

Creating a Robot Project	 Restoring 2009 cRIO Image

10.	Success will be indicated by “The CompactRIO image was successfully updated. The IP
address of the CompactRIO device is 10.x.x.2. You must deploy code to use the robot.”. Press
the “Close” button. This process should take 4-10 minutes.
If any failure occurs, then please refer to the documentation from 2009 on how to troubleshoot.

11.	Reboot the cRIO to ensure that all the services that need to be running are started.

Restoring 2009 cRIO Image
If you need your cRIO to return to its 2009 state, then follow the instructions found in the previous
section, “Installing 2010 cRIO Image for Java”. Change the following however,

1.	 Locate the “FRC cRIO Imaging Tool - 8.5” you created when you installed the “2010 cRIO
Imaging Tool”
As in the previous section, pay special attention that you are using the correct imaging tool.

2.	 Select “LabVIEW” or “Wind River Workbench” for the “Choose Development Environment”.

3.	 The image should be name something like “FRC_2009_v1.zip”. If you see 2010 in the name,
then you are using the wrong version of the tool.

Creating a Robot Project
To create your first Java project do the following steps:

1.	 Right click in the projects pane on the left side of NetBeans, then select “New Project.”

2.	 For the purpose of getting to know the interface, select “FRC Java” and “SimpleRobot
Template Project,” then click “Next.”

3.	 Type a project name and a class name. In this example, we choose SampleProject for the
project name and Team190Robot as the class name. Then click “Finish.”

10

Creating a Robot Project	 Restoring 2009 cRIO Image

4.	 Close the automatically generated output.xml window. If you look at the project tab, you’ll see
the following set of generated files:

The source file, in this case Team190Robot.java, has the same name as the class we requested
(Team190Robot). This is a requirement of Java: the class name in a file must match the file name.
The generated file looks like this:

11

Creating a Robot Project	 Building the project

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.SimpleRobot;

public class Team190Robot extends SimpleRobot {
	 /**
	 * This function is called each time autonomous mode is entered.
	 */
	 public void autonomous() {
	 }

 /**
 * This function is called each time teleop mode is entered.
 */
 public void operatorControl() {
 }
}

Java

Notice that there is an autonomous method and an operatorControl method generated. You
should fill these in with the code that should run when the robot is switched to autonomous or tele-
op modes. The SimpleRobot base class will automatically call your code in those methods at the
appropriate times.

Building the project
Build the project simply by selecting the “Build main project” option under the Run menu in
NetBeans. Be sure that the project you want to build is designated as the main project by right
clicking on the project in the tree and selecting “Set main project”. You can also use the F11
shortcut. You’ll see any syntax errors appear in the lower window under the source code.

Downloading the robot program
You can download the program to the robot by using the “Run main project” arrow in the toolbar
or using the “Run main project” item from the run menu.

The Run command will do a number of steps automatically:

1.	 Connect to the cRIO and verify that the correct version of the FRC Java environment is
loaded. If not, it will be updated.

12

Creating a Robot Project	 Debugging the robot program

2.	 Copy your robot program to the cRIO and set it up to run

3.	 Reboot the cRIO

4.	 Wait for the cRIO to finish rebooting, and then connect to it so that console messages can
be passed back to the console window in NetBeans.

Be sure to enable the robot in either Autonomous or Tele-op mode to see the program run.

Debugging the robot program
Debugging the robot program is slightly more complex. The program has to start, and then you
must attach the NetBeans debugger to the running program. The procedure is:

1.	 Make sure the project you want to debug is the main project (it will be bold in the project pane)

2.	 Place a breakpoint that you expect to hit by clicking in the gray area to the left of the program
listing adjacent to the line where the breakpoint should be set.

3.	 Click on the debug button in the toolbar.

4.	 Wait until the output window displays “Waiting for connection from debugger on
serversocket://:2900. This is when the program will be waiting for the debugger to attach to it.

5.	 Click on the down-arrow button adjacent to the debug toolbar icon and select “Attach
debugger”.

6.	 Make sure the debugger settings are as shown then hit the OK button:

13

Creating a Robot Program	 Debugging the robot program

The program will start and stop at the first selected breakpoint. You can then examine variables
and set additional breakpoints from there.

Creating a Robot Program
Now consider a very simple robot program that has these characteristics:

Autonomous
period

Drives in a square pattern by driving half speed for 2
seconds to make a side then turns 90 degrees. This is
repeated 4 times.

Operator
Control period

Uses two joysticks to provide tank steering for the robot.

The robot specifications are:

Left drive
motor

 PWM port 1

Right drive
motor

PWM port 2

Joystick Driver station joystick port 1
Starting with the simple template for a robot program we have:

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.SimpleRobot;

public class RobotDemo extends SimpleRobot {
	 public RobotDemo()
	 {
			 // put initialization code here
	 }

	 public void autonomous()
	 {
		 // put autonomous code here
	 }

	 public void operatorControl()
	 {
			 // put operator control code here
	 }
}
Java Example 2: Starting point for a robot program

Java

Now add objects to represent the motors and joystick. The robot drive object with motors in ports
1 and 2, and two joystick objects are declared using the following code:

14

Creating a Robot Program	 Debugging the robot program

RobotDrive drive;
Joystick leftStick;
Joystick rightStick;
drive = new RobotDrive(1, 2);
leftStick = new Joystick(1);
rightStick = new Joystick(2);
Java Example 3: Adding Joystick and robot drive objects to the program

Java

To make the program easier to understand, we’ll disable the watchdog timer. This is a feature in
the WPI Robotics Library that helps ensure that your robot doesn’t run off out of control if the
program malfunctions.

public RobotDemo()
{
	 getWatchdog().setEnabled(false);
}

Java Example 4: Disabling the watchdog timer

Java

Now the autonomous part of the program can be constructed that drives in a square pattern:

public void autonomous()
{
	 for (int i = 0; i < 4; i++)
	 {
		 drivetrain.drive(0.5, 0.0);	 // drive 50% fwd 0% turn
		 Timer.delay(2.0);			 // wait 2 seconds
		 drivetrain.drive(0.0, 0.75);	 // drive 0% fwd, 75% turn
	 }
	 drivetrain.drive(0.0, 0.0);		 // drive 0% forward, 0% turn
}

Java Example 5: Autonomous program that drives in a square pattern

Java

Now look at the operator control part of the program:

15

Creating a Robot Program	 Debugging the robot program

public void OperatorControl()
{
	 while (true && isOperatorControl() && isEnabled())	// loop until change
	 {
		 drivetrain.tankDrive(leftStick, rightStick);	 // drive with joysticks
		 Timer.delay(0.005);
	 }
}

Java Example 6: Simple tank drive with two joysticks

Java

Putting it all together we get this pretty short program that accomplishes some autonomous task
and provides operator control tank steering:

16

Creating a Robot Program	 Using objects

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.RobotDrive;
import edu.wpi.first.wpilibj.SimpleRobot;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.Joystick;

public class RobotDemo extends SimpleRobot
{

	 private RobotDrive drivetrain;
	 private Joystick leftStick;
	 private Joystick rightStick;

	 public RobotDemo()
	 {
		 drivetrain = new RobotDrive(1, 2); // create RobotDrive
		 leftStick = new Joystick(1);			 // and joysticks
		 rightStick = new Joystick(2);
	 }

	 public void autonomous() {

		 for (int i = 0; i < 4; i++) {
			 drivetrain.drive(0.5, 0.0);	 // drive 50% forward with 0% turn
			 Timer.delay(2.0);		 // wait 2 seconds
			 drivetrain.drive(0.0, 0.75);	 // drive 0% forward and 75% turn
		 }
		 drivetrain.drive(0.0, 0.0);	 // drive 0% forward, 0% turn (stop)
	 }

	 public void OperatorControl()
	 {
		 while (true && isOperatorControl() && isEnabled())
		 {
			 drivetrain.tankDrive(leftStick, rightStick);// drive w/joysticks
			 Timer.delay(0.005);
		 }
	 }
}

Java Example 7: Completed example program

Java

Although this program will work perfectly with the robot as described, there were some details that
were skipped:

•	 In the example drivetrain,leftStick and rightStick are member objects of the Robot-
Demo class. In the next section pointers will be introduced as an alternate technique.

•	 The drivetrain.Drive() method takes two parameters, a speed and a turn direction. See the
documentation about the RobotDrive object for details on how that speed and direction really
work.

Using objects
In the WPI Robotics Library all sensors, motors, driver station elements, and more are all objects.

17

Creating a Robot Program	 WPI Robotics Library Conventions

For the most part, objects correspond to the physical things on your robot. Objects include the
code and the data that makes the thing operate. Let’s look at a Gyro. There are a bunch of
operations, or methods, you can perform on a gyro:

•	 Create the gyro object – this sets up the gyro and causes it to initialize itself

•	 Get the current heading, or angle, from the gyro

•	 Set the type of the gyro, i.e. its Sensitivity

•	 Reset the current heading to zero

•	 Delete the gyro object when you’re done using it

Creating a gyro object is done like this:

	 Gyro robotHeadingGyro(1);

Java

robotHeadingGyro is a variable that holds the reference to the Gyro object that handles a gyro
module connected to analog port 1. That’s all you have to do to make an instance of a Gyro
object.
Note:	by the way, an instance of an object is the chunk of memory that holds the data unique to that object.

To get the current heading from the gyro, you simply call the getAngle method on the gyro object.
Calling the method is really just calling a function that works on the data specific to that gyro
instance.

float heading = robotHeadingGyro.getAngle();

Java

This sets the variable heading to the current heading of the gyro connected to analog channel 1.

WPI Robotics Library Conventions
This section documents some conventions that were used throughout the library to standardize on
its use and make things more understandable. Knowing these should make your programming job
much easier.

Class, Method, and Variable Naming

Names of things follow the following conventions:

18

Creating a Robot Program	 Constructors with Slots and Channels

Type of name Naming rules Examples

Class name Initial upper case letter then
camel case (mixed upper/lower
case) except acronyms which are
all upper case

Victor, SimpleRobot, PWM

Method name Initial lower case letter then
camel case

isAutonomous(), getAngle()

Member variable “m_” followed by the member
variable name starting with a
lower case letter then camel case

m_deleteSpeedControllers, m_
sensitivity

Local variable Initial lower case targetAngle

Constructors with Slots and Channels
Most constructors for physical objects that connect to the cRIO take the port number in the
constructor. The following conventions are used:

•	 Specification of an I/O port consists of the slot number followed by the channel number.
The slot number is the physical slot on the cRIO chassis that the module is plugged into. For
example, for Analog modules it would be either 1 or 2. The channel number is a number from
1 to n, where n is the number of channels of that type per I/O module.

•	 Since many robots can be built with only a single analog or digital module, there is a shorthand
method of specifying port. If the port is on the first (lowest numbered) module, the slot
parameter can be left out.

Examples are:

Jaguar(int channel);			 // channel with default slot (4)
Jaguar(int slot, int channel);		 // channel and slot
Gyro(int slot, int channel);		 // channel with explicit slot
Gyro(int channel);			 // channel with default slot (1)

Java

Sharing Inputs Between Objects

WPILib constructors for objects generally use port numbers to select input and output channels
on cRIO modules. When you use a channel number in an object like an encoder, a digital input is
created inside the encoder object reserving the digital input channel number.

Built-in Robot classes
There are several built-in robot classes that will help you quickly create a robot program. These
are:

Table 1: Built-in robot base classes to create your own robot program. Subclass one of these depending on your
requirements and preferences.

19

Creating a Robot Program	 SimpleRobot class

Class name Description

SimpleRobot This template is the easiest to use and is designed for writing a
straight-line autonomous routine without complex state machines.

Pros:

•	 Only three places to put your code: the constructor for initializa-
tion, the Autonomous method for autonomous code and the Op-
eratorControl method for teleop code.

•	 Sequential robot programs are trivial to write, just code each step
one after another.

No state machines required for multi-step operations, the program can
simply do each step sequentially.

Cons:

•	 Automatic switching between Autonomous and Teleop code
segments is not easy and may require rebooting the controller.

•	 The Autonomous method will not quit running until it exits, so it
will continue to run through the TeleOp period unless it finishes
by the end of the Autonomous period (so be sure to make your
loops check that it’s still the autonomous period).

IterativeRobot This template gives additional flexibility in the code for responding to
various field state changes (autononmous, teleoperated, disabled) in
exchange for additional complexity in the program design. It is based
on a set of methods that are repeatedly called based on the current
state of the field. The intent is that each method is called; it does some
processing, and then returns. That way, when the field state changes, a
different method can be called as soon as the change happens.

Pros:

•	 Can have very fine-grain control of field state changes, especially
if practicing and retesting the same state over and over.

Cons:

•	 More difficult to write action sequences that unfold over time. It
requires state variables to remember what the robot is doing from
one call the next.

RobotBase The base class for the above classes. This provides all the basic
functions for field control, the user watchdog timer, and robot status.
This class should be extended to have the required specific behavior.

SimpleRobot class
The SimpleRobot class is designed to be the base class for a robot program with straightforward

20

Creating a Robot Program	 IterativeRobot class

transitions from Autonomous to Operator Control periods. There are three methods that are
usually filled in to complete a SimpleRobot program.
Table 2: SimpleRobot class methods that are called as the match moves through each phase.

Method Description

the Constructor
(method with the
same name as the
robot class)

Put all the code in the constructor to initialize sensors and any
program variables that you have. This code runs as soon as the
robot is turned on, but before it is enabled. When the constructor
exits, the program waits until the robot is enabled.

autonomous() All the code that should run during the autonomous period of the
game goes in the Autonomous method. The method is allowed
to run to completion and will not be interrupted at the end of the
autonomous period. If the method has an infinite loop, it will never
stop running until the entire match ends. When the method exits,
the program will wait until the start of the operator control period.

operatorControl() Put code in the operatorControl() method that should run during the
operator control part of the match. This method will be called after
the Autonomous() method has exited and the field has switched to
the operator control part of the match. If your program exits from
the operatorControl() method, it will not resume until the robot is
reset.

IterativeRobot class
The IterativeRobot class divides your program up into methods that are repeatedly called at
various times as the robot program executes. For example, the AutonomousContinuous() method is
called continually during the autonomous period. When the playing field (or the switch on the DS)
changes to operator control, then the TeleopInit() first, then the TeleopContinuous() methods are
called continuously.

WindRiver Workbench has a built in sample robot program based on the Iterative Robot base
class. If you would like to use it, follow the instructions from the previous section, except select
“Iterative Robot Main Program”. The project will be created in your workspace.

The methods that the user fills in when creating a robot based on the IterativeRobot base class are:
Table 3: IterativeRobot class methods that are called as the match proceeds through each phase.

Method name Description

robotInit Called when the robot is first turned on. This is a
substitute for using the constructor in the class for
consistency. This method is only called once.

disabledInit Called when the robot is first disabled

autonomousInit Called when the robot enters the autonomous
period for the first time. This is called on a
transition from any other state.

21

Creating a Robot Program	 RobotBase class

Method name Description

teleopInit Called when the robot enters the teleop period for
the first time. This is called on a transition from
any other state.

disabledPeriodic Called periodically during the disabled time based
on a periodic timer for the class.

autonomousPeriodic Called periodically during the autonomous part of
the match based on a periodic timer for the class.

teleopPeriodic Called periodically during the teleoperation part of
the match based on a periodic timer for the class.

disabledContinuous Called continuously while the robot is disabled.
Each time the program returns from this function,
it is immediately called again provided that the
state hasn’t changed.

autonomousContinuous Called continuously while the in the autonomous
part of the match. Each time the program returns
from this function, it is immediately called again
provided that the state hasn’t changed.

teleopContinuous Called continuously while in the teleop part of the
match. Each time the program returns from this
function, it is immediately called again provided
that the state hasn’t changed.

The three Init methods are called only once each time state is entered. The Continuous methods
are called repeatedly while in that state, after calling the appropriate Init method. The Periodic
methods are called periodically while in a given state where the period can be set using the
setPeriod method in the IterativeRobot class. The periodic methods are intended for timebased
algorithms like PID control. Any of the provided methods will be called at the appropriate time
so if there is a teleopPeriodic and teleopContinous, they will both be called (although at different
rates).

RobotBase class
The RobotBase class is the subclass for the SimpleRobot and IterativeRobot classes. It is intended
that if you decide to create your own type or robot class it will be based on RobotBase. RobotBase
has all the methods to determine the field state, set up the watchdog timer, communications, and
other housekeeping functions.

To create your own base class, create a subclass of RobotBase and implement (at least) the
StartCompetition() method.

For example, the SimpleRobot class definition looks (approximately) like this:

22

Creating a Robot Program	 Watchdog timerclass

public class SimpleRobot extends RobotBase
{
public:
	 SimpleRobot();
	 virtual void Autonomous();
	 virtual void OperatorControl();
	 virtual void RobotMain();
	 virtual void StartCompetition();

private:
	 bool m_robotMainOverridden;
};

Java

It overrides the startCompetition() method that controls the running of the other methods
and it adds the autonomous(), operatorControl(), and robotMain() methods. The
startCompetition method looks (approximately) like this:

public void startCompetition() {
	 robotMain();
	 if (!m_robotMainOverridden) {
		 while (true) {
			 while (isDisabled()) {
				 Timer.delay(.01);
			 }
			 if (isAutonomous()) {
				 autonomous();
				 while (isAutonomous() && !isDisabled()) {
					 Timer.delay(.01);
				 }
			 } else {
				 operatorControl()		 // do operator control method
				 while (isOperatorControl() && !isDisabled()) {
					 Timer.delay(.01);
				 }
			 }
		 }
	 }
}

Java

It uses the isDisabled() and isAutonomous() methods in RobotBase to determine the field state
and calls the correct methods as the match is sequenced.

Similarly the IterativeRobot class calls a different set of methods as the match progresses.

Watchdog timerclass
The Watchdog timer class helps to ensure that the robot will stop operating if the program does
something unexpected or crashes. A watchdog object is created inside the RobotBase class (the
base class for all the robot program templates). Once created, the robot program is responsible for
“feeding” the watchdog periodically by calling the feed() method on the Watchdog. Failure to
feed the Watchdog results in all the motors and pneumatics stopping on the robot.

23

Advanced Programming Topics	 Concurrency

The default expiration time for the Watchdog is 500ms (0.5 second). Programs can override the
default expiration time by calling the setExpiration(expiration-time-in-seconds) method
on the Watchdog.

Use of the Watchdog timer is recommended for safety, but it can be disabled.For example, during
the autonomous period of a match the robot needs to drive for drive for 2 seconds then make
a turn. The easiest way to do this is to start the robot driving, and then use the Wait function
for 2 seconds. During the 2-second period when the robot is in the Wait function, there is no
opportunity to feed the Watchdog. In this case you could disable the Watchdog at the start of the
autonomous() method and re-enable it at the end. Alternatively a longer watchdog timeout period
would still provide much of the protection from the watchdog timer.

void Autonomous()
{
	 getWatchdog().setEnabled(false);	 // disable the watchdog timer
	 Drivetrain.drive(0.75, 0.0);		 // drive straight at 75% power
	 Timer.delay(2.00;			 // wait for 2 seconds
		 .
		 .
		 .
	 getWatchdog().setEnabled(true);	 // reenable the watchdog timer
}

Java

You can call getWatchdog() from any of the methods inside one of the robot program template
objects.

Advanced Programming Topics
Concurrency

Using Subversion with NetBeans
Subversion is a free source code management tool that is designed to track changes to a project
as it is developed. You can save each revision of your code in a repository, go back to a previous
revision, and compare revisions to see what changed. You should install a Subversion client if:

•	 You need access to the WPI Robotics Library source code installed on a Subversion server

•	 You have your own Subversion server for working with your team projects

Getting the WPILib Source Code
The WPI Robotics Library source code is installed on a Subversion server. To get it requires
having a subversion client installed in your copy of Workbench.

Replacing WPI Robotics Library parts

Interrupts

Differences between C++ and Java
C++ and Java are very similar languages; in fact Java has its roots in C++ when it was designed. If

24

Advanced Programming Topics	 Language differences

you looked at a C++ or Java program from a distance, it would be hard to tell them apart. You’ll
find that if you can write a WPILib C++ program for your robot, then you can probably also write
a Java program.

Language differences
There is a good detailed list of the differences between the two languages on Wikipedia available
here: http://en.wikipedia.org/wiki/Comparison_of_Java_and_C++. The following is a summary
of those differences as they will most likely effect robot programs created with WPILib.

•	 C++ memory is allocated and freed manually, that is the programmer is required to allocate
objects and delete them. In Java objects are allocated the same way (through the use of the new
operator), but it is freed automatically when there are no more references to them. This greatly
simplifies memory management for the programmer.

•	 Java does not have pointers, only references to objects. All objects must be allocated with the
new operator and are always referenced using the dot (.) operator, for example gyro.getAngle().
In C++ there are pointers, references, and local instances of objects.

•	 C++ uses header files and a preprocessor for including declarations in parts of the program
where they are needed. In Java this happens automatically when the program is built by looking
at the modules containing the references.

•	 C++ implements multiple inheritance where a class can be derived from several other classes
combining the behavior of all of the base classes. In Java only single inheritance is supported,
but interfaces are added to Java to get most of the benefits that multiple inheritance would
provide without the complications.

•	 Java programs will check for array subscripts out of bounds, uninitialized references to objects
and a number of other runtime errors that might occur a program under development.

•	 C++ programs will have the highest performance on the platform since it compiles to machine
code for the power pc processor in the cRIO. Java on the other hand compiles to byte code for
a virtual machine and is interpreted.

WPILib differences
We made every attempt to make the transition between C++ and Java as easy as possible in either
direction. All the classes and methods have the same names. There are some differences that are
brought on by the differences in the languages or the language conventions.

Item C++ Java

Method naming
convention

Methods are named
with an upper case first
letter and then camel
case after that, for
example, GetDistance().

Methods are named
with a lower case first
letter then camel case
thereafter, for example
getDistance().

http://en.wikipedia.org/wiki/Comparison_of_Java_and_C

25

Advanced Programming Topics	 Our version of Java

Utility functions Simply call functions for
each of these functions,
for example Wait(1.0)
will wait for one second.

Java has no functions
outside of classes so
all library functions
are implemented as
methods, for example
Timer.delay(1.0) will
wait for one second.

Our version of Java
The Java virtual machine and implementation we are using is the Squawk platform based on the
Java ME (micro edition) platform. Java ME is simplified version of Java designed for the limitations
of embedded devices (like the cRIO). As a result there are no user interface classes or other classes
that aren’t meaningful in this environment. If you’ve done any Java programming in the past it was
probably with the Java Standard Edition (SE). Some of the differences between SE and ME are:

•	 Dynamic class loading is not support class loading or unloading. Reflection, a way of
manipulating classes while the program is running is also not supported.

•	 The Java compiler generates a series of byte codes for the virtual machine. When you create
a program for the cRIO a step is automatically run after the program compiles called pre-
verification. This pre-verification pass simplifies the program loading process and reduces the
size of the Java virtual machine (JVM).

•	 Finalization is not implemented which means the system will not automatically call the finalize()
method of an unreferenced object. If you need to be sure code runs when a class if no longer
referenced, you must explicitly call a method that cleans up.

•	 Java Native Interface (JNI) is not supported. This is a method of calling C programs from Java
using a standard technique. The JVM does support a similar way of calling to C code called
JNA. There is more information about JNA in a later section of this document.

•	 Serialization and Remote Method Invocation (RMI) are not supported.

•	 The user interface APIs (Swing and AWT) are not implemented.

•	 Threads are supported by thread groups are not.

•	 Furthermore, since Java ME is based on an earlier version of Java SE (1.3), it doesn’t include
newer features such as Gernerics, Annotations and Autoboxing.

