
jDTO Binder 1.4 User’s Guide

Juan Alberto López Cavallotti

January 6, 2013

http://www.jdto.org
jdto@jdto.org

1

Contents

1 About jDTO Binder 3
1.1 What’s new in 1.4 . 3
1.2 Getting the Source . 4

2 Quick Start 5
2.1 Getting The Framework . 5

2.1.1 Downloading the JARs . 5
2.1.2 Maven Dependencies . 5

2.2 Bootstrapping the Binder . 6
2.3 Basic DTO Binding . 6

3 Integration 8
3.1 Integration with the Spring Framework . 8

3.1.1 Property Value Mergers Lookup 8
3.2 Integration with CDI . 8
3.3 Scripting Language Integration . 9

4 Simple Field Binding 11
4.1 List of Built-in field Mergers . 11
4.2 Using the Mergers from outside the Framework 13
4.3 Transient Values . 13

5 Binding Collections of Business Objects 14

6 Cascade Binding 15
6.1 Cascade Basics . 15
6.2 Circular References and Recursion . 16

7 Compound Source Binding 17
7.1 List of Built-in Multi Property Value Mergers 17

8 Multiple Business Objects Sources 18

9 Immutable DTOs 19

10 Reverse Binding: DTO To Business Object 20
10.1 Reverse Binding Basics . 20
10.2 Value Restauration . 20

11 DTO Binding Lifecycle 22

12 Value Compatibilization 23

2

13 XML Configuration 24
13.1 Basic XML Setup . 24
13.2 Simple XML Binding . 24
13.3 Navigating Associations . 25
13.4 Cascaded Mapping . 25
13.5 Property Mergers . 25
13.6 Multiple Source Beans . 26
13.7 Immutable DTOs . 26

14 Extending the Framework 28
14.1 Implementing Custom Property Value Mergers 28
14.2 Single Property Value Mergers . 28

14.2.1 Utility Merger Templates . 29
14.3 Multiple Property Value Mergers . 29
14.4 Accessing the Bean Modifier . 29
14.5 Math Expressions API . 30

3

1 About jDTO Binder

Welcome to jDTO Binder framework, the main goal of jDTO Binder is to leverage the
repetitive work it takes to use the DTO pattern for robust software architectures.

jDTO Binder transforms manual shallow and deep copy processes into a declarative
process. By default, the framework takes the shallow copy approach, but with mecha-
nisms such as cascading and cloning the user may achieve deep copying.

DTOs (Data Transfer Objects) are part of the API of a service oriented architecture.
When this API is loosely coupled, the services can be exposed in various ways including
RMI, SOAP and RESTful; and still be used directly. This loose coupling is needed when
the application needs to scale up and work over the cloud.

The main reason why developers have to not used DTOs at the initial phases of the
development of an application is that the use of DTOs takes valuable time, specially
adds extra lines of code to make the copy process from and to domain objects. jDTO
Binder takes care of this concern by letting small applications be scalable from the very
beginning.

This approach also enables developers to use another declarative tools like JSR-303
(bean declarative validation), and hooks perfectly into model 2 web frameworks.

jDTO Binder has illustrated these concepts in very simple sample projects which
are available as open source at https://github.com/jDTOBinder/jdto-sample-projects.
These sample projects serve both as a starting point and as proof of concept so they’re
definitely worth looking at.

1.1 What’s new in 1.4

This release includes a great number of new features and improvements.
jDTO Binder 1.4 introduces new features:

• Added support for DTO binding lifecycle with two specific lifecycle hooks, beforePropertiesSet
and afterPropertiesSet. Issue #27.

• Property value mergers are looked into the spring context and then the internal
instance pool as a fallback mechanism.

• Added convenience API to DTOBinderFactory to load XML configuration from
the classpath.

• Added null to 0 conversion when dealing with primitives for compatibility logic.

Issues solved:

• Fixed NullPointerException when loading empty XML configuration. Issue #25

• Fixed NullPointerException on cascade when the source value is null. Issue #26.

4

1.2 Getting the Source

Currently, jDTO Binder is hosted as an open source GitHub project and licensed with
the Apache 2 open source license. You can find the source code deployed on jDTO
Binder maven repository or in GitHub. The GitHub project url is:

https://github.com/jDTOBinder/jDTO-Binder
You may contribute by submitting a bug or extending the framework in different

ways, if you want to contribute please take a look at http://www.jdto.org/home/view/contribute.

5

2 Quick Start

2.1 Getting The Framework

You may download the framework’s JAR files and add them to your project’s classpath
by using our download page. Also jDTO Binder is deployed on the central maven
repository.

2.1.1 Downloading the JARs

JAR files with the binaries, source and javadoc are available for download at the jDTO
Binder home page http://www.jdto.org/home/view/download you may also want to
download separately the jars for the commons-lang and slf4j projects:

• Commons Lang (min version 2.4): http://commons.apache.org/lang/

• Simple Logging Facade for Java (min version 1.6): http://www.slf4j.org/

2.1.2 Maven Dependencies

To start using jDTO Binder you’ll have to add it to your maven dependencies, this can
be done by adding it to your pom.xml under the dependencies section, you also want to
add commons-lang and slf4j:

<dependenc i e s>
. . .

<dependency>
<g roup Id>org . j d t o</ g roup Id>
<a r t i f a c t I d> j d t o</ a r t i f a c t I d>
<vers ion>1 .4</ vers ion>

</ dependency>
<dependency>

<g roup Id>org . s l f 4 j</ g roup Id>
<a r t i f a c t I d> s l f 4 j −l o g 4 j 1 2</ a r t i f a c t I d>
<vers ion>1 . 6 . 2</ vers ion>

</ dependency>
<dependency>

<g roup Id>commons−l a ng</ g roup Id>
<a r t i f a c t I d>commons−l a ng</ a r t i f a c t I d>
<vers ion>2 .4</ vers ion>

</ dependency>
. . .
<dependenc i e s>

Beginning from jDTO Binder 1.1, maven artifacts are deployed on the central maven
repository so you don’t need to add any extra repositories as before.

6

2.2 Bootstrapping the Binder

In order to bind DTOs, a binder instance must be bootstrapped. jDTO Binder can be
used as a standalone library but also it is integrated with the Spring Framework1 and
CDI2 (JSR-330 Contexts and Dependency Injection).

The following snippet shows how to bootstrap the core binder, the core binder is
kept as a singleton instance, so it’s safe to call the getBinder() method at any time,
and the same instance will be returned.

1 // i n i t the b i n d e r as a s i n g l e t o n .
2 DTOBinder b i n d e r = DTOBinderFactory . g e tB i nde r () ;

You may also bootstrap the DTO binder based on an XML configuration file, for
this matter you’ll have to provide an InputStream instance pointing to the XML con-
figuration file, the following is an example of how you can bootstrap the binder this
way:

1 DTOBinder b i n d e r = DTOBinderFactory . b u i l dB i n d e r (
2 DTOBinder . c l a s s . ge tResourceAsSt ream (”/ xmlmapp ingtes t . xml”)) ;

By default, the framework looks for a file named /jdto-mappings.xml on the class-
path, if this file is present and no other XML file has been specified, then it will use
XML configuration instead of annotations using the configurations specified in /jdto-
mappings.xml file.

The bean analysis over XML file is kind of expensive (not much but kind of) so to
get the best performance you should keep that bean as a singleton.

2.3 Basic DTO Binding

Once we have our binder instance bootstrapped, we can start binding objects. jDTO
Binder uses the ”convention over configuration” methodology, therefore if you don’t add
any kind of mapping it will assume default values as a convention.

In the following example there’s one property bound by convention and the other
one bound by configuration.

1 // b ind e n t i t i e s
2 MixedEnt i t y e n t i t y = new MixedEnt i t y () ;
3 e n t i t y . s e tSomeSt r i ng (” h e l l o wor ld ! ”) ;
4 e n t i t y . s e tSome In t (15) ;
5

6 BasicDTO dto = b i n d e r . b indFromBus ine s sOb jec t (BasicDTO . c lass , e n t i t y) ;
7

8 l o g g e r . i n f o (dto . t o S t r i n g ()) ;

1In order to use the spring framework binder, you should add the spring framework dependency.
2In order to use the CDI integration, you should add the jdto-cdi artifact to your dependencies.

7

The relevant entity and DTO declarations are:

1 pub l i c c l a s s MixedEnt i t y {
2 pr i va te S t r i n g someSt r ing ;
3 pr i va te i n t someInt ;
4 pr i va te double someDouble ;
5 pr i va te Date someDate ;
6

7 . . . // g e t t e r s and s e t t e r s
8 }
9

10 pub l i c c l a s s BasicDTO {
11 pr i va te S t r i n g someSt r ing ;
12

13 @Source (” someInt ”)
14 pr i va te i n t personAge ;
15

16 . . . // g e t t e r s and s e t t e r s
17 }

You may want to keep track of the MixedEntity structure for it will be used on the
future to demonstrate features of jDTO Binder.

The first attribute someString is bound by convention, and the second one is bound
by configuration using the @Source annotation.

If the object passed as entity is an implementation of java.util.Map, then the values
will be read as keys of the map instead of calling the object’s getters, this means you
can populate an object from a map, this also applies if a cascaded property is a map.

8

3 Integration

3.1 Integration with the Spring Framework

jDTO Binder provides out-of-the-box integration with the spring framework. By de-
fault jDTO Binder uses annotation-based configuration for the binder, here is how to
bootstrap it to be used within the spring framework xml configuration file:

<!−− THE DTO BINDER BEAN −−>
<bean i d=” d t ob i n d e r ”

c l a s s=” org . j d t o . s p r i n g . SpringDTOBinder ” />

You may want to use an XML configuration file instead of regular annotations. The
spring framework integration provides a way to configure the DTO Binder instance to
read the xml configuration file. By default, it will try to look for the /jdto-mappings.xml
file on the class path, this can be changed by implicitly specifying a configuration file:

<!−− THE DTO BINDER BEAN −−>
<bean c l a s s=” org . j d t o . s p r i n g . SpringDTOBinder ”>

<p r op e r t y name=” xmlConf ig ” v a l u e=” c l a s s p a t h : / d to s . xml” />
</bean>

Note: The binder instance is of the kind of instances you want to keep as singleton.
This is because even though it can analyze a bean on the fly, it caches it’s metadata to
have a quicker access on the future.

Once configured, you can inject the binder bean as usual, for example:

1 @Autowired
2 pr i va te DTOBinder b i n d e r ;

3.1.1 Property Value Mergers Lookup

Starting from version 1.4, jDTO Binder looks up on the spring registry for property
value mergers before looking for them on the internal instance pool, this allows the user
to access the Spring Context and features within these mergers and so, making easy to
implement functionality otherwise difficult to achieve.

3.2 Integration with CDI

jDTO Binder library provides a CDI jar and also a way to inject the DTO binder instance
into your own beans. Due to some restrictions on the design of CDI, it was a decision to
make this integration as a separate library, so you must change your pom dependencies
to:

<dependency>

9

<g roup Id>org . j d t o</ g roup Id>
<a r t i f a c t I d>j d to−c d i</ a r t i f a c t I d>
<vers ion>1 .3</ vers ion>

</ dependency>

In the following example is shown the typical case of injection via CDI:

1 @ I n j e c t
2 pr i va te DTOBinder b i n d e r ;

The jdto-cdi dependency has as implicit dependency the jdto framework so you
should not have to add it explicitly, nevertheless you may add it if that is your taste.

3.3 Scripting Language Integration

jDTO Binder ships with a scripting module. You may use scripting languages such as
Groovy to create simple but powerful field bindings, the binding logic can be configured
directly as a merger param, and many things can be achieved with just one line of code.

In order to use the scripting module, you need to add the following dependency to
your pom.xml file:

<dependency>
<g roup Id>org . j d t o</ g roup Id>
<a r t i f a c t I d>j d to−s c r i p t i n g</ a r t i f a c t I d>
<vers ion>1 .3</ vers ion>

</ dependency>

In the following example is shown how to use the groovy mergers to perform complex
bindings:

1

2 @SourceNames ({ ”bean1” , ”bean2” })
3 pub l i c c l a s s GroovyDTO implements S e r i a l i z a b l e {
4 pr i va te s t a t i c f i n a l long s e r i a l V e r s i o nU ID = 1L ;
5

6 @Source (v a l u e=”myStr ing ” , merger=GroovyMerger . c lass ,
7 mergerParam=” sou r c eVa l u e == n u l l ? ’ i s n u l l ’ : ’ i s not

n u l l ’ ”)
8 pr i va te S t r i n g s i n g l e S o u r c e ;
9

10 @Sources (v a l u e = {@Source (”myStr ing ”) , @Source (v a l u e = ”myStr ing ”
, sourceBean=”bean2”) } ,

11 merger = Mult iGroovyMerger . c lass ,
12 mergerParam = ” sou r c eVa l u e s [0] + ’ and ’ + sou r c eVa l u e s

[1] ”)
13 pr i va te S t r i n g mu l t i p l e S ou r c e ;

10

14

15 . . . // g e t t e r s and s e t t e r s
16

17 }

Some special features have been enabled on the Groovy runtime for convenience:

• A variable called logger has been introduced, this variable may be used for logging
values.

• The packages java.math.*, java.util.* and org.apache.commons.lang.* have been
automatically imported.

For more information and examples, please read the corresponding Javadoc API.

11

4 Simple Field Binding

To bind simple fields you want to use the @Source annotation type. This annotation
type can take four parameters but only three are commented in this section:

• value: Indicates the source field to read from, can be a property path.

• merger: An implementation of SinglePropertyValueMerger which will take care
of the transformation of this item as a single thing.

• mergerParam: An array of strings which may help the merger to decide how to
convert the value.

Users are encouraged to create their own implementations. Important Note: The
user should see the value mergers as singleton, therefore the use of instance variables is
discouraged unless you know what you’re doing.

As part of jDTO Binder 1.3, a special keyword has been introduced to reference the
root object instead of one of its properties, +rootObject, this keyword is also represented
as an API constant, the following example demonstrates the usage:

1

2 pub l i c c l a s s WrapperDTO<T> implements S e r i a l i z a b l e {
3

4 pr i va te s t a t i c f i n a l long s e r i a l V e r s i o nU ID = 1L ;
5

6 /∗∗
7 ∗ Get the r oo t o b j e c t .
8 ∗/
9 @Source (Source .ROOT OBJECT)
10 pr i va te T wrapped ;
11

12 . . . // Ge t t e r s and s e t t e r s
13

14 }

4.1 List of Built-in field Mergers

The following is a complete list of the built-in single field mergers and a brief explanation:

• AgeMerger: Evaluates the age in days, weeks or years of a date or calendar instance.

• CloneMerger: Call clone in cloneable objects.

• DateFormatMerger: Formats a Date or Calendar instance by applying a format
String. This merger can be used to restore the values it converts.

12

• DecimalFormatMerger: Format any number by applying a format String. This
merger can be used to restore the values it converts.

• EnumMerger: Convert an enum literal to it’s String representation.

• GroovyMerger: Merge the objects by evaluating a Groovy expression. (Requires
jdto-scripting module).

• IdentityPropertyValueMerger: Default merger, returns the same instance of the
value. This merger can be used to restore the values it converts.

• StringFormatMerger: Format the value by using a format string (String.format).

• ExpressionMerger: Evaluate a math expression out out literal values and prop-
erties of the input bean (or the actual value if the input does not represent a
bean).

• MethodCallMerger: Call a no-arg non-void method and use the result as the
merged value. This merger can be used to restore the values it converts in two
ways, refer to javadoc for more information.

• PropertyCollectionMerger: Converts a collection of objects into a collection of
one property of those objects.

• SumMerger: Add all of the items of a collection (or some property of it) into a
single double.

• SumExpressionMerger: Add all the results of an expression evaluation for each
value of a bean collection or array.

• SumProductMerger: Add all the results of a multiplication between properties for
each value of a bean collection or array, for example an SQL equivalent would
be: SELECT sum(itemPrice * amount * taxRate) FROM billItems . This is a
convenience implementation which should be picked instead of SumExpressionMerger
because is more efficient.

• ToStringMerger: Convert any object into it’s string representation by calling
toString.

Note about expression evaluation: Currently the expression evaluation API supports only
five operators: addition (+), subtraction (-), multiplication (*), division(/), and pow (ˆ).
Also it supports negative numbers and any amount of balanced parenthesis. If the expres-
sion is not well formed, the framework will throw an IllegalArgumentException.

Here is an example usage of the DateFormatMerger, it will output something like
”2011/10/11”.

1 @Source (v a l u e = ”someDate” ,
2 merger=DateFormatMerger . c lass , mergerParam=” yyyy /MM/dd”)
3 pr i va te S t r i n g fo rmattedDate ;

13

4.2 Using the Mergers from outside the Framework

There are some cases in which the developer may need some functionality that is provided
by some merger. Building merger instances have some steps and it is likely to become
quite complex on the future. For this matter, jDTO Binder provides one method on the
DTOBinder instance:

1

2 DTOBinder b i n d e r = DTOBinderFactory . b u i l dB i n d e r () ;
3 I d e n t i t yP r op e r t yVa l u eMe r g e r merger = b i n d e r . g e tP rope r t yVa lueMerge r (

I d e n t i t yP r op e r t yVa l u eMe r g e r . c l a s s) ;

The user may customize also how the mergers are located, cached and dependency-
injected by implementing the interface PropertyValueMergerInstanceManager and
configuring the DTOBinder object to use it.

4.3 Transient Values

There are cases when we want to ignore some of the fields of a DTO. In these cases the
user may add the @DTOTransient annotation to the field and it will be ignored by the
binder.

14

5 Binding Collections of Business Objects

jDTO Binder is capable of binding whole collections of business objects to collections of
DTOs. To do this, the binder has two utility methods to bind business objects:

• bindFromBusinessObjectCollection: This method returns a collection of the
same type as the one of the argument but filled with the DTOs. If the source
collection cannot be instantiated (for example is immutable), then depending on
the case ArrayList or HashSet will be returned.

• bindFromBusinessObjectList: This method is intended now for multi-source
DTO Bindings, it has a var-args argument for lists of objects that need to be
related by index to build the new DTO.

The first method will not modify the order of the objects if the used collection used
doesn’t. The second method will always preserve the order because of the nature of the
list but does not ensure the returned list is of the same type of the source. In both cases
the original collection is not altered.

The following example shows how a list of business objects is converted into a List
of DTOs.

1 L i n k edL i s t<S imp l eEn t i t y> s i m p l e E n t i t i e s =
2 new L i n k edL i s t<S imp l eEn t i t y >() ;
3 s i m p l e E n t i t i e s . add (new S imp l eEn t i t y (” s imp l e 1” , 12 , 45 .56 , true)) ;
4 s i m p l e E n t i t i e s . add (new S imp l eEn t i t y (” s imp l e 2” , 34 , 56 .67 , f a l s e)) ;
5

6 L i s t<FormatDTO> dtos = b i nd e r . b i ndF r omBus i n e s sOb j e c tL i s t (FormatDTO .
c lass , s i m p l e E n t i t i e s) ;

15

6 Cascade Binding

6.1 Cascade Basics

jDTO Binder by default copies values, it does not clone instances so is up to the value
merger object to decide wether to clone, format, duplicate, or anything else. There are
situations where you build a DTO (for example a Bill DTO) which is related to a single
or a list of other DTOs. In this case the deep copy process will fail producing unexpected
results. For this cases the framework provides an annotation type DTOCascade to instruct
the binder it should build a DTO related instance.

The DTO Cascading feature supports different kinds of source fields:

• Single Value: A single association can be used as a source.

• Collection: Any type of collection can be used as source.

• Array: Any array can be used as a source.

The target DTO type is inferred by convention or configuration. By convention the
following rules apply:

• If the target field is not a collection or array, then its type is used as the resulting
DTO type.

• If the target field is a collection, then the generic type parameter is used as the
resulting DTO type. If the generic type parameter is not present, the user will
have to provide it as a configuration option.

• If the target field is an array, then the type of the components is used to create a
DTO.

• For both collection and array targets, the source must be a collection or the Val-
ueMerger must produce a collection.

The target DTO type can be configured as a parameter of the DTOCascade annotation
type. The following example illustrates some usage of DTO Cascading.

1 pub l i c c l a s s ComplexArrayDTO {
2

3 @DTOCascade
4 @Source (” s o u r c e L i s t ”)
5 pr i va te FormatDTO [] formatDtos ;
6 . . . // GETTERS AND SETTERS
7 }

16

6.2 Circular References and Recursion

Cascade configuration is in some sense a recursive process but there may be situations
where it is convenient to have cycles in your DTO objects graph (to represent bidirec-
tional relationships is one example).

You need to keep in mind that you may configure mutable and immutable DTOs
with cascading.

The Way jDTO Binder stops the recursion is by caching the DTO objects it instanti-
ates before resolving the values that they will carry, in this sense memory gets optimized
because one DTO instance will be generated per domain object and also creates a barrier
for cascade recursion.

Since is not the aim jDTO Binder to use dynamic proxy objects (or cglib enhancers or
similar), immutable DTOs cannot be cached in advance and therefore infinite recursion
may happen when combining these two features.

17

7 Compound Source Binding

jDTO Binder supports composing the value of a target field out of multiple sources. For
this purpose it provides the @Sources annotation type and the MultiPropertyValueMerger
interface to merge the sources. The user can safely rely on the parameters sent to the
value merger are in the same order as defined on the @Sources annotation type.

The default value merger for the @Sources annotation type does not merge values,
it just returns the first not-null element received or null if none.

7.1 List of Built-in Multi Property Value Mergers

• FirstObjectPropertyValueMerger: This is the default merger, it returns the first
non-null value.

• MultiGroovyMerger: Merge the objects by evaluating a Groovy expression. (Re-
quires jdto-scripting module).

• StringFormatMerger as described before, this merger uses the String.format method
to merge all the provided values into a single formatted string.

• TimeBetweenDatesMerger: This merger merges two dates or calendars by calcu-
lating the time between them, by default the time unit is hours but you may specify
seconds, minutes, hours, days or weeks.

The following example illustrates how Multi Property Value Mergers can be used for
both, single and multiple source configurations:

1 pub l i c c l a s s FormatDTO {
2

3 @Source (v a l u e=”aDouble ” , merger=Str ingFormatMerger . c lass ,
4 mergerParam=”$ %.2 f ”)
5 pr i va te S t r i n g p r i c e ;
6

7 @Sources (v a l u e={@Source (” aDouble ”) , @Source (” an I n t ”) } ,
8 merger=Str ingFormatMerge r . c lass , mergerParam=”%.2 f %08d”)
9 pr i va te S t r i n g compound ;
10

11 . . . // GETTERS AND SETTERS
12 }

18

8 Multiple Business Objects Sources

jDTO Binder supports merging values for multiple source beans. In order to use this fea-
ture the framework provides the @SourceNames annotation type. The following example
illustrates the basic usage of this feature:

1 @SourceNames ({ ”bean1” , ”bean2” , ”bean3” })
2 pub l i c c l a s s MultiSourceDTO {
3

4 @Source (v a l u e=” aS t r i n g ”) // d e f a u l t bean1
5 pr i va te S t r i n g sou r c e1 ;
6 @Source (v a l u e=” aS t r i n g ” , sourceBean=”bean2”)
7 pr i va te S t r i n g sou r c e2 ;
8 @Source (v a l u e=” aS t r i n g ” , sourceBean=”bean3”)
9 pr i va te S t r i n g sou r c e3 ;
10

11 . . . // GETTERS AND SETTERS
12 }

The @SourceNames annotation can be used either on class level or in property level.
When used at the class level acts as the default setting for all source fields. When used
at the property level it overrides the settings for the class.

All of the methods on the binder instance are varargs and the parameters order must
match the bean names order for the framework to read the source properties the right
way.

Multi source properties also support multi bean sources and all the features it implies,
the following example illustrates the power of multi source, multi bean DTO binding:

1 @SourceNames ({ ”bean1” , ”bean2” })
2 pub l i c c l a s s MultiSourceDTO2 {
3 @Source (” aS t r i n g ”) // u s i n g bean1 as d e f a u l t
4 pr i va te S t r i n g s t r i n g 1 ;
5

6 @Sources (v a l u e={@Source (” an I n t ”) ,
7 @Source (v a l u e = ” theDate ” ,
8 sourceBean=”bean2” ,
9 merger=DateFormatMerger . c lass ,
10 mergerParam=”dd/MM/yyyy ”) } ,
11 merger=Str ingFormatMerge r . c lass , mergerParam=”%02d %s ”)
12 pr i va te S t r i n g s t r i n g 2 ;
13

14 @Source (v a l u e = ” theCa l enda r ” , sourceBean=”bean2” ,
15 merger=DateFormatMerger . c lass , mergerParam=”dd/MM/yyyy ”)
16 pr i va te S t r i n g s t r i n g 3 ;
17

18 . . . //GETTERS AND SETTERS
19 }

19

9 Immutable DTOs

jDTO Binder is capable of building instances of the DTOs using non default constructors,
this brings you the possibility of creating immutable instances which are objects whose
state doesn’t change.

In order to use this feature, your class must not have a default constructor and may
have more than one constructors. In order to choose which constructor you want the
framework to use, you must annotate it with the @DTOConstructor annotation3 or define
it into the XML settings.

The following is an example of a typical immutable DTO:

1 pub l i c f i n a l c l a s s SimpleImmutableDTO {
2 pr i va te f i n a l S t r i n g f i r s t S t r i n g ;
3 pr i va te f i n a l S t r i n g s e c ondS t r i n g ;
4

5 //make t h i s the DTO con s t r u c t o r .
6 @DTOConstructor
7 pub l i c SimpleImmutableDTO (@Source (”myStr ing ”) S t r i n g f i r s t S t r i n g ,

@Source (” r e l a t e d . a S t r i n g ”) S t r i n g s e c ondS t r i n g) {
8 t h i s . f i r s t S t r i n g = f i r s t S t r i n g ;
9 t h i s . s e c ondS t r i n g = s e c ondS t r i n g ;
10 }
11

12 pub l i c SimpleImmutableDTO (S t r i n g f i r s t S t r i n g , S t r i n g s e condS t r i ng
, S t r i n g t h i r d S t r i n g) {

13 t h i s . f i r s t S t r i n g = f i r s t S t r i n g ;
14 t h i s . s e c ondS t r i n g = s e c ondS t r i n g ;
15 }
16

17 pub l i c S t r i n g g e t F i r s t S t r i n g () {
18 return f i r s t S t r i n g ;
19 }
20

21 pub l i c S t r i n g ge tSe condS t r i n g () {
22 return s e c ondS t r i n g ;
23 }
24 }

Since there is no reliable way of getting the parameter names using the Java Reflec-
tion API (and therefore no safe way of creating a default configuration), the user must
specify settings for each constructor argument. Failing to provide configuration for these
arguments will cause a RuntimeException to be thrown.

You can’t configure a constructor argument to be transient since the class is im-
mutable there won’t be a chance to change it later.

Some of these behaviors may change on the future.

3Not required when there’s just one constructor.

20

10 Reverse Binding: DTO To Business Object

10.1 Reverse Binding Basics

jDTO Binder is capable of reading DTO data and extract a business object of a given
type by using the source fields (in the mapping) as target fields for the business object.
Even though no extra configuration is required, this process is not as powerful as the
original conversion. There are some hidden tricks here, for example, suppose your origi-
nal business object had four integer fields that where added by some custom field merger.
On the reverse process, how would the merger know how to restore these values?.

By design, jDTO Binder sacrificed this capability of going back and forth 100% for
the flexibility of populating DTOs in a complex way. If you would like a more robust
reverse conversion, you could add binding annotations to the business object and treat
is as if it was a DTO helping the merge process by writing your own custom reverse-
mergers.

The following snippet demonstrates how to apply reverse binding to extract a busi-
ness object out of a DTO.

1 // c r e a t e a b a s i c e n t i t y
2 Annota t edEnt i t y e n t i t y = new Annota t edEnt i t y (” Jones ” , ”Tom” , ”NO”) ;
3

4 // t r y and b u i l d a DTO out o f the same e n t i t y .
5 Annota t edEnt i t y dto = b i n d e r . b indFromBus ine s sOb jec t (Anno ta t edEnt i t y .

c lass , e n t i t y) ;
6

7 // change t h i n g s on the dto
8 dto . s e t F i r s t S t r i n g (”Myers”) ;
9 dto . s e t S e c ondS t r i n g (”Mike”) ;
10

11 e n t i t y = b i n d e r . ext ractFromDto (Anno ta t edEnt i t y . c lass , dto) ;

10.2 Value Restauration

In some cases, a merger may be able to restore a converted value to its original state,
sometimes this can be achieved in a generic way and other times is domain-specific.

SinglePropertyValueMerger have two methods that the framework uses to check
if value restoration is possible or not:

• boolean isRestoreSupported(String[] params) checks if with the given infor-
mation the value can be restored.

• public S restoreObject(R object, String[] params) restores the value if the
previous check returns true.

Some mergers have already built-in support for restoring the values, for more infor-
mation refer to the javadoc of each merger.

21

If you want to perform domain-specific value restoration, you are encouraged to
subclass the merger and override the previously mentioned methods.

1 // c r e a t e a b a s i c e n t i t y
2 S imp l eEn t i t y e n t i t y = new S imp l eEn t i t y (” t e s t ” , 123 , 345 .35 , true) ;
3

4 // t r y and b u i l d a DTO out o f the same e n t i t y .
5 S imp l eEn t i t y dto =
6 b i n d e r . b indFromBus ine s sOb jec t (S imp l eEn t i t y . c lass , e n t i t y) ;
7

8 // change t h i n g s on the dto
9 dto . s e tAn I n t (10) ;
10 dto . s e t aBoo l ean (f a l s e) ;
11 dto . s e taDoub l e (2 0 . 2 0) ;
12 dto . s e t a S t r i n g (”Changed ! ”) ;
13

14 e n t i t y = b i n d e r . ext ractFromDto (S imp l eEn t i t y . c lass , dto) ;
15

16

17 a s s e r t E q u a l s (10 , e n t i t y . ge tAn In t ()) ;
18 a s s e r t E q u a l s (f a l s e , e n t i t y . i s aBoo l e an ()) ;
19 a s s e r t E q u a l s (20 . 20 , e n t i t y . getaDoub le () , 0 . 0001) ;
20 a s s e r t E q u a l s (”Changed ! ” , e n t i t y . g e t a S t r i n g ()) ;

If the entity class argument is an implementation of java.util.Map, then the value
returned will be a map, and the keys of the map will match the DTO mapping for the
object passed as an argument. This means you can populate a map out of an object.

22

11 DTO Binding Lifecycle

Starting from version 1.4, jDTO Binder has incorporated the concept of ”Binding Life-
cycle” and it provides a set of notifications which might be used by the developer to
customize the way that DTO’s are populated or to trigger custom code on the process.
The current lifecycle has the following stages:

• Before Properties Set: This phase is activated after the DTO instance is created
and the framework will call by convention a method with name beforePropertiesSet
which takes as argument a org.jdto.DTOBindingContext instance, this method,
if present, is not called on immutable DTOs.

• After Properties Set: This phase is activated after the DTO instance has been pop-
ulated and the framework will call by convention a method with name afterPropertiesSet
which takes as argument a org.jdto.DTOBindingContext instance, this method,
if present, is called regardless the type of DTO.

These conventional methods must be public or otherwise the framework will ignore
them.

Through the DTOBindingContext instance, the developer has access to the DTOBinder
involved on the process as well as the resulting metadata from the initial bean inspection
process and the source values used to populate the DTO.

This kind of lifecycle handlers are only applied when populating DTOs from business
objects and not the inverse, this is mainly because we want to keep domain objects as
clean as possible.

The following is an example of how the developer might take advantage of this
lifecycle:

1 import j a v a . i o . S e r i a l i z a b l e ;
2 import org . j d t o . DTOBindingContext ;
3

4 pub l i c c l a s s MyDTO implements S e r i a l i z a b l e {
5

6 // . . . normal DTO imp l ementa t i on
7

8 pub l i c void a f t e r P r o p e r t i e s S e t (DTOBindingContext con t e x t) {
9 //TODO − Add your own l o g i c .
10 }
11 }

It is a design decision not to add conventions without parameters which might affect
code readability and also could be confused with lifecycle calls of other frameworks such
as the Spring Framework.

23

12 Value Compatibilization

When try to set a value on a target DTO, jDTO Binder will try to make that value
compatible so there is no need for extra configuration.

The following list describes the changes jDTO Binder does to the values so they’re
compatible:

• If the target type is a String, then call toString on the source object before
attempting to set it.

• If the target type is Date or Calendar, then try to convert between one another
(normally by calling the method getTime() and setTime() on a calendar in-
stance).

• If the target type is Enum and the source type is String, then try to resolve the
enum constant from the given string.

• If the target type is primitive and the source value is null, then it is converted to
false or 0 depending on the type.

More rules may be added in the future for developer convenience.

24

13 XML Configuration

jDTO Binder by default binds the DTOs using annotations but this is not the only
option, there are some cases in which annotations are not convenient or even not avail-
able. For this cases, jDTO Binder provides a way to configure the DTO binding on a
convenient XML file.

As this framework is built with the convention over configuration philosophy, you
can start working with practically no configuration and customize just some things. By
default, if there is a file on the default package called /jdto-mappings.xml, then the
framework will use it and disable the annotations config (which is actually the default
when the file is not present). All the properties of a DTO are taken in account unless
you explicitly declare them as transient. All DTOs declared on the XML file are loaded
and analyzed eagerly, and non-configured DTOs are analyzed lazily the first time they’re
used.

Finally, the XML configuration file currently supports all the features the Annotation
configuration support. There may be some additions on the future to make simpler the
configuration.

Rather than explaining again the whole feature set, some examples will be shown
and with the hope they’re clear enough. Nevertheless a XML schema is available and
most popular IDEs allow auto completion out of the schema.

13.1 Basic XML Setup

It is recommended to create an xml file on the default package called /jdto-mappings.xml,
and in its empty form should look like this:

<?xml ver s ion=” 1 .0 ” encod ing=”UTF−8”?>
<dto−mapping

xmlns=” h t t p : // j d t o . org / j d t o /1 .0 ”
xm l n s : x s i=” h t t p : //www.w3 . org /2001/XMLSchema−i n s t a n c e ”
x s i : s c h emaLo c a t i o n=” h t t p : // j d t o . org / j d t o /1 .0

h t t p : // j d t o . org / jd to −1.0 . xsd ”>

</dto−mapping>

13.2 Simple XML Binding

The following snippet demonstrates a DTO mapped in a really simple fashion:

<!−− to t e s t s imp l e b i n d i n g −−>
<dto type=” org . j d t o . d to s . XMLTesterDTO”>

< f i e l d name=” aS t r i n g ” t r a n s i e n t=” t r u e ” />

<!−− A f i e l d bound to ano the r f i e l d . −−>

25

< f i e l d name=”dtoName”>
<s ou r c e name=” aS t r i n g ” />

</ f i e l d>
</ dto>

13.3 Navigating Associations

The following snippet demonstrates a mapping which goes through property paths:

<!−− t e s t the a s s o c i a t i o n f e a t u r e −−>
<dto type=” org . j d t o . d to s . S impleAssoc iat ionDTO”>

< f i e l d name=” f i r s t S t r i n g ”>
<s ou r c e name=”myStr ing ” />

</ f i e l d>
< f i e l d name=” s e c ondS t r i n g ”>

<s ou r c e name=” r e l a t e d . a S t r i n g ” />
</ f i e l d>

</ dto>

13.4 Cascaded Mapping

The following snippet demonstrates how the cascade logic can be mapped:

<!−− to t e s t ca scade l o g i c −−>
<dto type=” org . j d t o . d to s . ComplexDTO”>

< f i e l d name=” c a s c a d e dF i e l d ” cascade=” t r u e ”>
<s ou r c e name=” a s s o c i a t i o n ” />

</ f i e l d>
< f i e l d name=” s t r i n g F i e l d ”>

<s ou r c e name=”name” />
</ f i e l d>

</ dto>

13.5 Property Mergers

The following snippet demonstrates how various property mergers can be configured:

<!−− t e s t the compound merger f e a t u r e −−>
<dto type=” org . j d t o . d to s . FormatDTO”>

<!−− s i n g l e f i e l d merger t e s t −−>
< f i e l d name=” p r i c e ”>

<s ou r c e name=”aDouble ”
merger=” org . j d t o . merger s . S t r ingFormatMerge r ”
mergerParam=”$ %.2 f ” />

26

</ f i e l d>
<!−− mu l t i p l e f i e l d merger t e s t −−>
< f i e l d name=”compound” mergerParam=”%.2 f %08d”
merger=” org . j d t o . merger s . S t r ingFormatMerge r ”>

<s ou r c e name=”aDouble ” />
<s ou r c e name=” an I n t ” />

</ f i e l d>
</ dto>

In order to support multiple merger parameters without adding an excessive load of
XML configuration, it’s a design decision to separate those parameters in the same XML
”mergerParam” attribute with semicolons ”;”, so for example if the value merger takes
two parameters ”first” and ”second”, the XML snippet would look like:

mergerParam="first;second".

13.6 Multiple Source Beans

The following snippet demonstrates how you can configure mappings with multiple bean
sources:

<!−− t e s t the mu l t i s ou r c e f e a t u r e −−>
<dto type=” org . j d t o . d to s . MultiSourceDTO”>

<sourceNames>
<beanName>bean1</beanName>
<beanName>bean2</beanName>
<beanName>bean3</beanName>

</ sourceNames>
< f i e l d name=” sou r c e1 ”>

<s ou r c e name=” aS t r i n g ” bean=”bean1” />
</ f i e l d>
< f i e l d name=” sou r c e2 ”>

<s ou r c e name=” aS t r i n g ” bean=”bean2” />
</ f i e l d>
< f i e l d name=” sou r c e3 ”>

<s ou r c e name=” aS t r i n g ” bean=”bean3” />
</ f i e l d>

</ dto>

13.7 Immutable DTOs

The following snippet demonstrates how you can configure a constructor to be used by
the jDTO Binder framework:

<dto type=” org . j d t o . d to s . SimpleImmutableDTO”>
<immutab l eCons t ruc to r>

<arg o r d e r=”0” type=” j a v a . l ang . S t r i n g ”>

27

<s ou r c e name=” t e s t ” bean=”bean1” />
</ arg>
<arg o r d e r=”1” type=” j a v a . l ang . Number”>

<s ou r c e name=”pepe” />
</ arg>

</ immutab l eCons t ruc to r>
</ dto>

The order attribute is optional, if not present, the declaration order will be taken into
account. The ”arg” XML element is very similar to the ”field” element, but is different
in the way that it doesn’t have a name but defined by an order and a type and it can’t
be transient.

All of the constructor arguments must be declared and also they must have at least
one source property configured. This is mainly because there’s no reliable way to read
the argument names of one method in the java reflection API so it is impossible to
assume a default configuration.

28

14 Extending the Framework

There are some ways to extend or customize the framework, the main way is to write
custom property value mergers which will let you customize how the values are copied
from the original object to the DTO. Another way of customizing the framework is by
implementing a custom bean modifier (which will not be covered).

14.1 Implementing Custom Property Value Mergers

jDTO Binder has two main types of property value mergers: Those who merge values
from a single source and those who merge values from multiple sources. Both kinds
of mergers are applied on the binding process but in different stages, for those fields
annotated with @Source (or its XML equivalent), just the single property value merger
is applied; for those fields annotated with @Sources (or its XML equivalent), one single
property value merger is applied for each source, and then a multiple property value
merger is applied to the results of the previous.

14.2 Single Property Value Mergers

In order to implement a single property value merger, you need to create a class that
implements the interface SinglePropertyValueMerger.

The interface SinglePropertyValueMerger looks like the following, the generic type
variables are added for developer convenience:

1

2 /∗∗
3 ∗ Merge a p r op e r t y i n t o ano the r type / form by app l y i n g a

t r a n s f o rma t i o n .

4 ∗ Tran s f o rma t i on s can be h i n t e d by the e x t r a param a t t r i b u t e .
5 ∗ @param R the type o f the r e s u l t i n g p r op e r t y .
6 ∗ @param S the type o f the s ou r c e p rope r t y , f o r d e v e l o p e r

conven i en c e .
7 ∗ @author Juan A l b e r t o Lopez C a v a l l o t t i
8 ∗/
9 pub l i c i n t e r f a ce S ing l eP rope r t yVa lu eMerge r<R, S> {
10

11 /∗∗
12 ∗ Merge the v a l u e o f type S i n t o ano the r o b j e c t o f type R .
13 ∗ @param v a l u e s the v a l u e to be merged .
14 ∗ @param extraParam metadata tha t may he l p the merger to b u i l d

the r e s u l t .
15 ∗ @re tu rn the merged o b j e c t .
16 ∗/
17 pub l i c R mergeObjects (S va lue , S t r i n g [] extraParam) ;
18 }

29

Each implementation of a property merger is kept as a singleton, therefore is not safe
to use instance variables for user functionally.

14.2.1 Utility Merger Templates

The framework provides some utility template classes to implement property value merg-
ers, some of these are:

• AbstractCalulationCollectionMerger: provides functionality to perform calcu-
lations on a given property of a collection or array.

14.3 Multiple Property Value Mergers

In order to implement a multiple property value merger, you need to create a class that
implements the interface MultiPropertyValueMerger.

The interface MultiPropertyValueMerger looks like the following, the generic type
variables are added for developer convenience:

1 /∗∗
2 ∗ Imp l emen ta t i on s shou l d know how to merge a l i s t o f o b j e c t s i n t o a

s i n g l e o b j e c t .

3 ∗ This i n t e r f a c e i s meant to be used to c r e a t e a s i n g l e v a l u e out o f

a mu l t i−s ou r c e
4 ∗ p r op e r t y c o n f i g u r a t i o n , s e e {@ l i n k org . j d t o . anno t a t i on . Source s } .
5 ∗ @param <R> The r e s u l t t ype o f the merged pa ramete r s .
6 ∗ @author Juan A l b e r t o Lopez C a v a l l o t t i
7 ∗/
8 pub l i c i n t e r f a ce Mul t iP rope r tyVa lueMerge r<R> {
9

10 /∗∗
11 ∗ Merge the l i s t o f o b j e c t s i n t o a s i n g l e o b j e c t .
12 ∗ @param v a l u e s the v a l u e s to be merged .
13 ∗ @param extraParam metadata tha t may he l p the merger to b u i l d

the r e s u l t .
14 ∗ @re tu rn the merge r e s u l t i n g o b j e c t .
15 ∗/
16 pub l i c R mergeObjects (L i s t<Object> va l u e s , S t r i n g [] extraParam) ;
17 }

Same considerations for single property value mergers should be taken.

14.4 Accessing the Bean Modifier

In some cases, the developer must read safely properties from the source objects (the
same as the framework does to create the DTOs), for this purpose, you need to instruct
the framework that you wish to work with a BeanModifier instance, to do this just

30

implement the BeanModifierAware interface so the framework injects (by setter injec-
tion) the bean modifier to your property value merger before it calls the mergeObjects

method, the interface looks like the following:

1 /∗∗
2 ∗ Makes t h i s o b j e c t aware o f the c u r r e n t bean mod i f i e r used by the

DTO b i nd e r
3 ∗ i n s t a n c e . I n j e c t i o n i s pe r fo rmed by s e t t e r dependency i n j e c t i o n .
4 ∗ @author Juan A l b e r t o Lopez C a v a l l o t t i
5 ∗/
6 pub l i c i n t e r f a ce BeanModi f i e rAware {
7

8 /∗∗
9 ∗ Expose the BeanModi fer to the imp lement ing c l a s s .
10 ∗ @param mod i f i e r the bean mod i f i e r i n s t a n c e .
11 ∗/
12 void s e tBeanMod i f i e r (BeanMod i f i e r mod i f i e r) ;
13 }

In this case it is safe to save the modifier instance in an instance variable of the
property value merger.

14.5 Math Expressions API

jDTO Binder ships with a simple-to-use mathematic expression API you can take ad-
vantage, the variable resolution process can be either event-driven (lazy loaded) or the
developer can provide a map matching each variable with its value. Please see javadoc
for more information.

31

	About jDTO Binder
	What's new in 1.4
	Getting the Source

	Quick Start
	Getting The Framework
	Downloading the JARs
	Maven Dependencies

	Bootstrapping the Binder
	Basic DTO Binding

	Integration
	Integration with the Spring Framework
	Property Value Mergers Lookup

	Integration with CDI
	Scripting Language Integration

	Simple Field Binding
	List of Built-in field Mergers
	Using the Mergers from outside the Framework
	Transient Values

	Binding Collections of Business Objects
	Cascade Binding
	Cascade Basics
	Circular References and Recursion

	Compound Source Binding
	List of Built-in Multi Property Value Mergers

	Multiple Business Objects Sources
	Immutable DTOs
	Reverse Binding: DTO To Business Object
	Reverse Binding Basics
	Value Restauration

	DTO Binding Lifecycle
	Value Compatibilization
	XML Configuration
	Basic XML Setup
	Simple XML Binding
	Navigating Associations
	Cascaded Mapping
	Property Mergers
	Multiple Source Beans
	Immutable DTOs

	Extending the Framework
	Implementing Custom Property Value Mergers
	Single Property Value Mergers
	Utility Merger Templates

	Multiple Property Value Mergers
	Accessing the Bean Modifier
	Math Expressions API

