

java/j2ee Web Application Framework

Reference Documentation

Version 3.0

© Copyright 2005 – jWic Group

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 2 / 18

Table of Content

Table of Content ..2
Preface...3
1 jWic Fundamentals ...4

1.1 What is a jWic Application? ...4
1.2 What is a Control? ...4

1.2.1 Control Lifecycle ..4
1.2.2 Control Container...5
1.2.3 Control Name and Id ..6

1.3 Events and Listeners..6
1.4 The SessionContext ...7

1.4.1 Control Stack ..7
1.5 The Application ...8
1.6 The Page ...8

2 The Web Interface ..8
2.1 Abstracting jWic from the Web ..8

2.1.1 Field Mapping..9
2.1.2 Action URLs .. 10

2.2 Using File Upload .. 10
2.3 Double Post Protection ... 11

3 Renderers ... 11
3.1 Renderer Principles.. 11
3.2 Default Velocity Renderer ... 12

3.2.1 Templates .. 12
3.2.2 OuterContainerRenderer ... 13

4 Configuration ... 14
4.1 Server Configuration.. 14

4.1.1 Dispatcher Servlet ... 14
4.1.2 ClasspathResourceServlet ... 15
4.1.3 Runtime Configuration .. 16

4.2 Application Configuration.. 16
5 Integration .. 17

5.1 Integrate into the Springframework.. 17
6 Testing ... 17
Document History .. 18

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 3 / 18

Preface

For a long time, we have developed medium to large scale web applications
using common patterns in the java web world. Compared to the development of
a rich client, it was a fall back to older ages. Therefore, we developed jWic, which
has enabled us to develop web applications as easy as we develop a Java rich
client. As we believe that this style represents an attractive alternative to the
classic style, we have released it as an open source project.

jWic is a small framework that does not aim to be “the-one-and-only”. It’s design
aim is to either run stand-alone or integrate into other frameworks without
wiring into them, creating unnecessary dependencies. The core functionality of
jWic is to manage the UI of your application so that the programmer can
concentrate upon their business case.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 4 / 18

1 jWic Fundamentals

1.1 What is a jWic Application?

A jWic application is a collection of controls that provide a (web-)interface for a
user. An application is started when a user requests a resource from the web-
server that is linked to the application they wish to start. The application is then
loaded into the server’s memory until the user exits the application or their
session times out.

Each user session has it’s own instance of the application and a user may have
multiple instances of an application on the server within the same session. This
could be the case when you are using generic applications, like an object editor
app. A user may reference (link) from one editor instance to another which
works with a different object. They are then able to return to their previous
instance, which is still in the same state as when they left it.

1.2 What is a Control?

A Control is a JavaBean that represents one or more elements on a web-page. It
maintains its own state, which can be changed by the user or the application
code. These changes are reflected to the user the next time the application (or
parts of it) is rendered into a HTML page.

Controls are rendered to HTML using a ControlRenderer. While the control
specifies the type of renderer required, the framework chooses the
implementation. Read more about renderers in Chapter 3 (Renderers).

Controls must extend the abstract de.jwic.base.Control class.

1.2.1 Control Lifecycle

Controls are created using their constructor, just like any other java object.
Earlier versions of jWic have used the factory pattern to create controls, but this
has been removed for simplicity.

A control lives in a hierarchy of controls and containers. Therefore, the control
must be added to a container, which results in the initialisation of the control.
Since version 3.0 of jWic, the container must be provided in the constructor of
the control. This way it is impossible to create control instances that are not fully
initialised.

Sample:
1: ButtonControl button = new ButtonControl(container, "abortButton");
2: button.setTitle("Abort");

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 5 / 18

A control must implement a constructor with the arguments for the container the
control should be added to and the name of the control. After the super(..)
constructor has been invoked, the control may then initialise itself.

Sample:
1: public MyControl(IControlContainer container, String name) {
2: super(container, name);
3: // setup the control
4: }

Controls are destroyed when they are removed from their container. This
happens if the control is removed by the application code or when the application
is destroyed (i.e. because the user exited the application).

Each control implements the Serializable interface and should adhere to the
rules for serialization. This enables the JWicRuntime to serialize a running
application to disk to avoid excessive memory usage. It is also a must for
clustering.

Convenience Constructors – Just Say No

“Some programmers demand convenience constructors using arguments such
as, "Every time a button is created, I always set the text so there should be a
button constructor that takes a string". Although it is tempting to add
convenience constructors, there is just no end to them. Buttons can have
images. They can be checked, disabled and hidden. It is tempting to provide
convenience constructors for these properties as well. When a new API is
defined, even more convenience constructors are needed.”
Quote: SWT: The Standard Widget Toolkit chapter 1.1

This design principle used is to minimize the size of the control library and to
provide consistency, and therefore jWic does not normally provide convenience
constructors.

1.2.2 Control Container

Containment (sometimes called nesting) is a valuable technique that allows one
control to be placed inside another. ControlContainer support nesting of controls,
allowing you to build complex containment hierarchies.

ControlContainer in jWic are controls themselves, except the SessionContext
which acts as the root element in the application hierarchy. You can navigate
from a control to it’s parent using the getContainer() method, which returns
either a ControlContainer or the SessionContext. Both of these classes
implement the IControlContainer interface.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 6 / 18

1.2.3 Control Name and Id

Each control must have a name to be identified within its container. The name
must be unique within the container the control lives in. If the name is null or
omitted1, the container will generate a unique name for the control.

To identify a control within your application, a unique control id is composed
when a control is added to a container. The control id represents the path to the
control, using the name of each control in the hierarchy separated with a dot.

The name and id of a control cannot be changed once it is set.

Sample Hierachy
Control Parent Name Id
MyApp SessionContext app app
+ TextBoxControl MyApp txt1 app.txt1
+ ButtonControl MyApp btOk app.btOk
+ ActionBar MyApp abar app.abar
 + ButtonControl ActionBar save app.abar.save

1.3 Events and Listeners

An event is simply an indication that something interesting has happened.
Events, such as "element selected" are issued when the user interacts with
controls. Event classes, used to represent the event, contain detailed information
about what has happened. For example, when the user selects an item in a
dropdown list, an event is created, capturing the fact that a "selection" occurred.
The event is delivered to the application via a listener.

A listener is an instance of a class that implements one or more agreed-upon
methods whose signatures are captured by an interface. Listener methods
always take an instance of an event class as an argument. When something
interesting occurs in a control, the listener method is invoked with an appropriate
event.

The event model in jWic follows the JavaBeans listener pattern. Common events
and their corresponding listeners are found in the de.jwic.events package.
Events in jWic are usually defined by controls. The controls are notified by the
framework that the user has triggered an action that is related to the control.
The control examines the user action and fires an event, when appropriate, that
an application programmer can register for and react to.

The following code fragment demonstrates how a to add a listener to a listbox to
get notified when the selection has changed:
listbox.addElementSelectedListener(new ElementSelectedListener() {
 public void elementSelected(ElementSelectedEvent event) {
 // element selected
 }
});

1 Some controls offer an alternative constructor without the name parameter.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 7 / 18

1.4 The SessionContext

The SessionContext represents one instance of your application. It acts as the
container for your root control(s) and provides methods to control your
application, such as exit().

A SessionContext object is created by the JWicRuntime when a user starts a new
application. As the session context is not present in the UI, a control must be
added to the SessionContext which is the root-control. According to the
IControlContainer interface, the SessionContext may have more than one
child-control, but the framework will render only one root control and its childs at
a time.

1.4.1 Control Stack

The SessionContext maintains a stack of controls that are rendered as top-
control. A top-control is the only object being rendered, including its child. Any
control may be pushed on top of this stack, hiding all other controls in the stack.
When the control is done, it may pop the control, returning to the previous one.

This mechanism is used to bring up dialog or wizard pages that should hide the
previous controls. Imagine a mail-client application with a textfield to input the
receiver mail address. When the user hits the "Lookup" button, you want to
display an address lookup page and hide the mail form. This is done using the
control stack.

The following code opens a dialog:
public void lookupNamesAction() {
 dialog = new AddrDialog(parent, "addr");
 dialog.addElementSelectedListener(this);
 getSessionContext().pushTopControl(dialog);
}

And this closes the dialog:
public void elementSelected(ElementSelectedEvent event) {
 fieldTo.setText(dialog.getSelectedAdress().getMail());
 getSessionContext().popTopControl();
 dialog.destroy(); // remove the control
 dialog = null;
}

Control Stack vs. Control Visibility

Another way of handling this issue is to place all possible controls into one page
(container) and "hiding" all controls using the visible property, except the one
on top. We discourage using this pattern as the complexity rises with the number
of top-controls to handle. In this case, the controller must know all possible
controls on top and manage them.
One more advantage of the control stack is that any control can push a control
on top, without their parent control knowing it.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 8 / 18

1.5 The Application

An Application object is used to manage the lifecycle of your application. The
application class is responsible to create the root controls. It receives events
from the framework when the application gets initialised and when it is
destroyed.

Every jWic application you create should start with a subclass of Application. If
you extend the abstract Application class, you will only have to implement the
createRootControl(..) method where you create your application controls.

Sample:
public class MyApplication extends Application {
 public Control createRootControl(IControlContainer container) {
 // create a page
 Page page = new Page(container);
 page.setTitle("My-Application");

 Calculator calc = new Calculator(page);
 //You must return the control that is the root of the application!
 return page;
 }
}

1.6 The Page

The abstract class Page is extending the ControlContainer, adding a few special
properties relevant for top-controls. Controls that act as a top- (or sometimes
called root-) control are supposed to extend Page instead of the standard
ControlContainer.

The Page control can specify the title of the html-page and receives client specific
information about the visible width and height of the frame the application runs
in as well as the top and left scrolling position of the page. The width and height
of the frame enables controls to adjust their layout. The scrolling position is used
to reposition the html page to the place it was before the submit.

If the top control is not the Page class or a subclass of it, this information is lost
and after each submit, the html page is positioned at the top left position.
Therefore, it is highly recommend that your top-controls inherit from the Page
class. Imagine how annoying it is for the user when digging down a big tree,
scrolling down over and over again.

2 The Web Interface

2.1 Abstracting jWic from the Web

One of the goals for jWic is to abstract the application from the surrounding
environment. To reach this goal, jWic packs an application into kind of a nutshell,
that has a clear interface to the outer world. But in the end, jWic applications still
run in a browser, so how is this abstraction made?

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 9 / 18

The most important difference to a common web application is that the
application instance is kept alive in the server’s memory during it’s lifetime
(unless it is serialized out to disk in the meantime). When the user does some
action in your application, eg. clicks a link, the page is submitted to the
DispatcherServlet. The content of the page is actually contained within a form
tag with the session ID stored in the form, so that the dispatcher can retrieve the
matching SessionContext to update the state of the controls.

Each field that was submitted within the form is examined and the value is
stored in the corresponding Field element of the control that has created it. The
action that has lead to the submit is examined by the control and events fired to
the application that contains the control to allow the application to react to the
event eg. start a wizard when a link is clicked.

2.1.1 Field Mapping

A HTML form often contain elements that allow the user to enter or select data.
They are defined by an input, select or textarea tag. The data that is inside
those fields is send to the server when the page is submitted.
When a control uses fields, it must create a Field object that acts as a container
for the data. A Field contains an String or an array of String objects.
Field-objects are very similar to Controls, except that they do not get rendered
themselves. When a Field is created, it must get bound to a control and get a
unique name. If no name is given, a unique ID is calculated for that field. Based
upon the name and the control-id of the parent control, a unique id is generated
for that field. This allows the framework to map submitted field values to the
right Field object.

Fields are created like controls:
public class TextField extends Control {
 private Field field;

public TextField(IControlContainer container, String name) {
 super(container, name);
 field = new Field(this, "name");
 field.setValue("Default Value");

}
}

The velocity template that renders the HTML code must use the Field objects
properties. For the above sample, it looks like this:
#set($field = $control.getField("name"))
<input

name="$field.id"
value="$jwic.formatInp($field.value)">

The resulting HTML code could look like this:
<input name="fld_controlid.name" value="Default Value">

The control could access the field using this piece of code:
public String getText() {
 return field.getValue();
}
public void setText(String text) {

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 10 / 18

 field.setValue(text);
}

This makes a control independent from other controls on the form. It is very
important not to create static field names which would create conflicting fields if
you have more then one instance of the same control on your page.

A Field object provides a ValueChangedEvent, that is fired when the value has
changed.

Note that there is a standard jWic control for every standard HTML field like
input, select and textarea. As long as those standard controls fulfil your
requirements, you wont have to deal with the Field object.

2.1.2 Action URLs

A page usually contains one or more elements that define some kind of action.
Such an element might be a button or a link that can be clicked by the user.
Whenever a user (or script) performs an action, the page must be submitted to
the server, including the information which control is responsible and what kind
of action has happened.

The submit is performed by a JavaScript function defined by the framework. The
syntax looks like this:

 jWic().fireAction(controlId, action, parameter);

Action URLs are created using the createActionURL(..) function. A velocity
template for a simple anchor link looks like this:
$control.title

The resulting HTML code would look like this:
lnk

The JavaScript function saves these parameters in hidden fields and submits the
form. The dispatcher will then get the specified control and call the controls
actionPerformed(String action, String acpara) method.

The control can then act upon this action, i.e. fire an event to notify listeners that
it has been clicked.

Sample:
 public void actionPerformed(String actionId, String parameter) {
 notifySelectionListeners();
 }

2.2 Using File Upload

jWic offers the possibility to upload files to the server. Unlike normal text fields,
file-fields only function if the data in the form is send by the client using a special
MIME encoding, which is multipart/form-data. As this encoding type is more
expensive to handle then the basic type, it is not used as default encoding type.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 11 / 18

If you place a file-field on a form, the file is not submitted until you tell jWic to
use multipart encoding. This is managed by the top-control, which should extend
the Page class. The property multipart must be set to true, to be recognized
when the page is rendered.

When a file is submitted, jWic will lookup the control that has created the field
using the field mapping mechanism and call the controls handleFile(..) method.
The control must implement the IFileReciever interface which defines this
method.

Take a look at the FileUploadControl in the de.jwic.controls package. This
will help you in most of the cases.

Note that if your application is using AJAX based rendering/updates, you don't
have to take care about the multipart-property in the top control. When the
client script library detects that a file-upload field contains data, the submit type
is automatically changed to multipart and the data is submitted.

2.3 Double Post Protection

Communication between the server and the client (browser) is an asynchronous
process, which has always been a problem in web application development.
When the server's answer is delayed because of a slow connection or because he
is busy, most end-users simply "do it again", submitting a request twice (or even
more often). This can lead to wired results, like a message posted twice on a
discussion board.

In a jWic application, it can be even more critical when the state of the
application has changed during two submits. A good sample is an exit button.
The first submit will exit the application, removing the button itself. The second
request will then result in an error, cause there is no button who could receive
the "clicked" event.

To avoid these problems, jWic uses a ticket system called double post protection
(DPP). The DPP system is based upon a number identifying each request. The
number is stored in the SessionContext and is increased by one every time a
request has been processed. The new number is returned to the client, send
back by the client with the next request. Each ticket number is processed only
once. If the ticket number does not equal the expected one, the request is
ignored.

3 Renderers

3.1 Renderer Principles

Each visible control is rendered to HTML-code to become a part of the page. To
decuple the controls from the rendering, jWic uses renderers that create HTML

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 12 / 18

code based on the controls properties. A control defines the type of renderer that
should be used by the rendererId property. The runtime will then map this
rendererId to a configured renderer implementation.

The default rendererId is jwic.renderer.default, which is mapped by default
to the basic velocity renderer. See 4.1 Server Configuration for details.

As a renderer is quit generic, each control comes with a templateName property
so that the renderer can choose a template and merge it with the control. If the
templateName property is not explicitly set, the classname is returned. In the
end, it is up to the renderer implementation how to use the template name. Each
renderer may have its own strategy how to load the right template.

3.2 Default Velocity Renderer

The default renderer implementation uses the Velocity engine to merge controls
with templates. Velocity is an open source template engine from the Apache
Software Foundation (See http://jakarta.apache.org/velocity/). It is used to
reference java objects within a template and access properties or call methods. If
you are new to velocity, we highly recommend reading the Velocity user-guide2
to learn how templates are written.

3.2.1 Templates

Each template used by a velocity renderer is accessed using a set of
ResourceLoaders, which can load a template from various sources. These loaders
are configured within a VelocityEngine. The default jWic setup configures two
ResourceLoaders to load templates from the file system or the classpath. When a
template is not found in the file-system, the classpath is searched for the
template.

The templateName property is therefore mapped to a template file by adding a
.vtl extension to the name. If no template was found using that name, all dot
(.) characters are replaced by a slash (/).

This mechanism makes it easy to assign a template to a control. Just create a
.vtl file inside the same package, named like the class name of your control.

Storing templates in the same package as the class is the recommended way. It
simplifies deploying your controls as they are bundled with your classes. When a
user wants to override a template, they can extract the template from the jar-file
and put it into the file system, using a filename like this:

de.jwic.tutorial.sample1.HelloWorld.vtl

2 Velocity User-Guide: http://jakarta.apache.org/velocity/user-guide.html

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 13 / 18

The default place for these files is the WEB-INF/jwic/ctrl_vtls directory.

3.2.1.1 Velocity Context Objects

The Velocity context is a kind of map that holds the java objects that may be
referenced from within the templates. The Velocity renderers offer the following
objects to be used:

Id Description
jwic An instance of the JWicTools class, which provides general

features like formatting.
control The control being rendered.
insert If the control being rendered is a ControlContainer, this

object is used to insert a child at the specified position.

3.2.1.2 Samples

Read the property userName from the control being rendered:
Hello $control.userName, how are you?

Insert two child controls:
<table width="100%">
 <tr>
 <td valign="top">$insert.control("tree")</td>
 <td valign="top">$insert.control("table")</td>
 </tr>
</table>

Format the property description to be placed in an input field:
<textarea>$jwic.formatInp($control.description)</textarea>

3.2.2 OuterContainerRenderer

Most container controls use templates to arrange their child controls. To do this,
containers are usually overridden and a new template is provided or the
templateName property is changed. To give controls the possibility to provide a
kind of border around the custom template, the OuterContainerRenderer can be
used.

Controls using this renderer must implement the IOuterLayout interface, which
defines a getOuterTemplateName() method. This method must return a valid
template name to be used by the OuterContainerRenderer.

The velocity context for the outer template contains an object named content,
that provides the method render() to render the inner content.

Sample:
<table border="1">
 <tr>
 <th>$control.title</th>
 </tr>
 <tr>
 <td>$content.render()</td>
 </tr>

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 14 / 18

</table>

To tell the runtime to use the OuterContainerRenderer instead of the default
renderer, the property rendererId must be set to "jwic.renderer.OuterContainer".
This value is also available as constant defined in the Control class.

Sample:
 public MyControl() {
 setRendererId(DEFAULT_OUTER_RENDERER);
 }

4 Configuration

jWic comes in a stand-alone distribution, requiring a minimal set of external
libraries. This chapter describes how to configure this stand-alone version. In
most real life projects, jWic would be integrated with other frameworks like
Hibernate or the Springframework. Details on the integration into other
frameworks are described in chapter 5: Integration.

4.1 Server Configuration

4.1.1 Dispatcher Servlet

jWic uses a servlet to dispatch incoming requests to the appropriate control(s)
and force the rendering. This servlet is configured in the web.xml file of your web
application, located in the WEB-INF directory. The servlet must be mapped to
files with the extension .xwic.

Minimal configuration:
<servlet>
 <servlet-name>jwic</servlet-name>
 <servlet-class>de.jwic.web.DispatcherServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>jwic</servlet-name>
 <url-pattern>*.xwic</url-pattern>
</servlet-mapping>

The DispatcherServlet may be configured by certain init parameters as described
below.

4.1.1.1 Log4j initialisation

The DispatcherServlet is able to initialize the Log4j system, which is used by jWic
through the commons-logging API. To let the DispatcherServlet do so, you must
specify the path to a property file that configures Log4j. The location is relative
to your web application root directory. It is specified with the init-parameter
log4j-init-file.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 15 / 18

Sample:
<servlet>
 ..
 <init-param>
 <param-name>log4j-init-file</param-name>
 <param-value>WEB-INF/log4j.properties</param-value>
 </init-param>
</servlet>

As the Log4j system does not know the root path of your web application, a
relative path to the log-file might end up in a location you didn’t wanted. Due to
this problem, Log4j offers variables within the configuration file that are replaced
with a system property. The DispatcherServlet can store the root path of your
web application in a system property for you, if you specify the name of the
system property using the setRootDir init-parameter.

Sample (web.xml):
 <init-param>
 <param-name>setRootDir</param-name>
 <param-value>jwicweb.root</param-value>
 </init-param>
Sample (log4j.properties):
Log4j.appender.logfile.File=${jwicweb.root}/WEB-INF/jwic.log

Warning: System properties can be global over all your webapps. If you deploy
multiple webapps on a server, each webapp must use its own property name.

4.1.1.2 Upload Limit

You can specify a limit in bytes for files uploaded to the server with the init-
parameter uploadlimit. Files that exceed this limit are refused.

4.1.1.3 Interceptors

You can add interceptors to the DispatcherServlet which are invoked before and
after an HttpServletRequest was handled. Interceptors must implement the
ServletInterceptor interface. They are registered with the init-parameter
servlet.interceptors, with the classnames of your interceptors separated by
semicolon.

Sample:
 <init-param>
 <param-name>servlet.interceptors</param-name>
 <param-value>de.demo.Interceptor1;...</param-value>
 </init-param>

4.1.2 ClasspathResourceServlet

The ClasspathResourceServlet is used to reference resource files like images
from the classpath. This is useful when you want to distribute a component as a
single jar file that contains both templates and resources.

The servlet must be mapped to the path /cp/* to work.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 16 / 18

4.1.3 Runtime Configuration

The jWic runtime and the available renderer are configured in the file jwic-
setup.xml placed in the WEB-INF directory.

4.2 Application Configuration

Applications are configured in XML files with an .xwic extension.

Sample:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application SYSTEM "http://www.jwic.de/dtd/xwic-3.0.dtd">
<application>

 <name>Demo Application</name>
 <class>de.jwic.testapp.TestApplication</class>

</application>

For backward compatibility reasons, you can also specify the name of a control
instead of an IApplication class:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application SYSTEM "http://www.jwic.de/dtd/xwic-3.0.dtd">
<application>

 <name>Demo Application</name>
 <rootcontrol
 name="root"
 classname="de.jwic.myapp.MyRootControl"
 />
</application>

There are additional configuration options available:

<serializable> values: true|false default: true

Specifies if the JWicRuntime is allowed to serialize the application to disk. If an
application is mored to be not serializeable, the session remains loaded until the
application is terminated or the session times out.

<singlesession> values: true|false default: false

Specifies if the application should be loaded only once per clientsession. If set to
true, each try to launch another instance of the application will only reactivate an
existing session if exists.

<useAjaxRendering> values: true|false default: true

Specifies if the application should be rendered using AJAX (Asynchronous
JavaScript and XML) and DHTML. Usually jWic automatically tries to use ajax if it
is supported by the browser. But it is possible to prevent it from being used at
all, i.e. for testing purpose.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 17 / 18

<requireauth> values: true|false default: false

Specifies if the user must be authenticated to launch the application. To use this
feature, an IAuthenticator must be specified for the DispatcherServlet.

<property name="name">

Specifies a property. Properties are stored within the IApplicationSetup object
and can be accessed like this:
String s = sessionContext.getApplicationSetup().getProperty("name");

5 Integration

5.1 Integrate into the Springframework

Users of the Springframework can integrate

6 Testing

A great thing about jWic is that you can write tests easily for your components
and applications. You can even run JUnit tests without a requiring a framework
that simulates a web server. All you need is to use the TestJWicRuntimeProvider
to get your JWicRuntime instance and create a SessionContext based on your
application setup.

jWic Framework Reference Documentation Version 3.0

http://www.jwic.de Page 18 / 18

Document History

Date Author Changes
16-Apr-2005 Florian Lippisch Document created
25-Apr-2005 Florian Lippisch History added, File Upload, Renderer
26-Apr-2005 Florian Lippisch Renderer Principles, Configuration
27-Apr-2005 Florian Lippisch Testing
27-Apr-2005 Mark Frewin Proof-read
27-May-2005 Florian Lippisch Added Double Post Protection
29-Sep-2005 Florian Lippisch Modified to reflect 3.0 changes
17-Nov-2005 Florian Lippisch Updated Field Mapping to reflect 3.0 changes, Application

Setup
14-Mar-2006 Florian Lippisch Notes about FileUpload & AJAX update mechanism

