
Test-Driven Development
Course Authors:

Scott Davis and Stuart Halloway

1

About the Authors

Scott: Editor of AboutGroovy.com, Davisworld Consulting LLC
Stu: CEO of Relevance, Inc.

2

Why Test?

3

Reasons Devs Don’t Test

• tests take too much time to write

• tests take too much time to run

• it’s not my job to test code

• aren’t acceptance tests enough?

• but it compiles...

4

Untested code is
legacy code.

5

Testing Tools

• XUnit

• mock objects

• code coverage

• low-ceremony languages

6

The Agile Manifesto
We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more..

Source: http://www.agilemanifesto.org/

7

http://www.agilemanifesto.org
http://www.agilemanifesto.org

Course Materials
http://github.com/relevance/java-tdd

readings

examples

labs

additional resources

8

http://github.com/relevance/java-tdd
http://github.com/relevance/java-tdd

Section Reviews

9

XUnit

• test classes extend a base test class

• test methods marked by annotation or
convention

• setup and teardown for shared test config

• run suites in graphical or console runners

• test FIRST:
http://blog.objectmentor.com/articles/2007/08/02/which-came-first

10

BDD

• behavior-driven development

• common domain vocabulary

• closer to human language

• executable documentation

• helps enforce “first”

11

Coverage

• more than one kind of coverage

• low coverage is bad

• high coverage proves nothing

• interpret coverage in context!

12

Refactoring

• keep code DRY

• make code intentional and cohesive

• remove code smells

• red, green, refactor

• consult the catalog

13

Mocking

• stubs isolate code

• mocks test behavior

• mock-friendly code is good code

(except when it isn’t)

• know when to quit mocking

14

Refactotum

• start with a clean checkout and build

• use tests and metrics to find code smells

• red, green, refactor

• contribute in small increments

15

