
Java Behaviour Trees, User Guide

Ricardo Juan Palma Durán

August 23, 2010

Contents

1 Introduction 2

2 JBT, an Overview 3
2.1 Model Driven by Ticks . 3
2.2 Model Independent from Execution 3
2.3 Architecture . 4
2.4 BT Model . 4

2.4.1 Execution Context . 5
2.4.2 Native Tasks . 7

3 Step 1: Defining Low Level Actions and Conditions 9

4 Step 2: Implementing Low Level Actions and Conditions 13

5 Step 3: Creating BTs with the JBT Editor 21

6 Step 4: Creating a Java Declaration of the BTs 26

7 Step 5: Running the Behaviour Trees 29

1

1 Introduction

Java Behaviour Trees (JBT) is a Java framework for building and running be-
haviour trees (BTs). In the past few years, BTs have been widely accepted as
a tool for defining the behaviour of video games characters. However, to the
best of our knowledge, there is no free-software Java implementation of such
technology. With JBT we intend to provide a solid framework to build and run
BTs in Java.

JBT has two main parts. On the one hand, there is the JBT Core (it is the
Eclipse SDK project under the ”./JBTCore” directory of the repository), which
implements all the classes needed to create and run BTs. JBT Core basically
lets the user create BTs in pure Java and then run them. In order to ease
the task of creating BTs, JBT Core includes several tools that automatize the
process of creating BTs. In particular, it can create the Java source code of
a BT from its description in an XML format. By doing so, the user of this
framework basically has to worry only about defining BTs in XML files and
implementing the low level actions and conditions that his trees will use, which
are domain-dependant (that is, they depend on the game being played). We
provide a .jar file with all the JBT Core classes. Of course, in order to get the
last version of the JBT Core the repository can be accessed.

On the other hand, there is the JBT Editor (which is composed of two Eclipse
SDK projects under the ”./JBTEditor” directory of the repository). The JBT
Editor is a GUI application that can be used for defining BTs, and then export-
ing them into XML files in the format that the JBT Core understands. The
JBT Editor offers a set of standard nodes1 for building BTs. It includes nodes
such as sequences, parallels, decorators, etc. For low level actions and condi-
tions, the user can provide their conceptual definition through Make Me Play
Me (MMPM) domain files (for more information on MMPM, see the Source-
forge page of the project ”Darmok 2”). The JBT Editor is an Eclipse RCP
application, so you must use Eclipse SDK in order to run it. An alternative to
run it is to use the executable files provided for each platform. Of course, if
order to get the last version of the JBT Editor the repository can be accessed.

JBT implements a BT model which is mainly based on that of the book
”Artificial Intelligence for Games”, second edition, by Ian Millington and John
Funge. JBT also includes the concept of ”guard” and static and dynamic prior-
ity lists, which make use of guards. JBT BTs are driven by ticks, which means
that, in order for them to have CPU time, they need to be externally ticked.
By following this pattern, the user can control how much CPU time the BT
consumes.

In this document we explain how JBT can be used to build and run BTs.
This process has the following steps:

• Defining low level actions and conditions to be used in the trees. These
actions and conditions are defined in the MMPM format.

• Implementing the low level actions and conditions. The user has to define
how the low level actions and conditions work. JBT does not know how
these domain-dependent actions and conditions work, so the user has to
provide a Java implementation of them.

1Note that, when talking about BTs, node and task are used interchangeably.

2

• Creating BTs with the JBT Editor. Here, the user creates BTs that are
exported into generic XML files.

• Creating the Java declaration of the BTs that were declared in the XML
files. This is automatically done by one of JBT’s tools.

• Running the BTs by using the core classes of JBT.

In the next sections we will describe all of these steps. Also, we will con-
ceptualize them through a real example on a real game, since we will build a
tree that is able to control a Terran Marine of the Real Time Strategy Game
StarCraft.

2 JBT, an Overview

In this section we describe the JBT architecture as well as the main features
that BTs have.

2.1 Model Driven by Ticks

JBT implements a BT model driven by ticks. A BT must be evaluated through
ticks, so every game cycle an external caller ticks the tree in order for the tree
to update its status. A tick is just a way of giving the tree some CPU time
to update their status; in particular, ticks are used to give the nodes of the
tree some time to evaluate whether they have finished or not, and consequently
make the tree evolve.

The simplest approach to BTs driven by ticks is that of ticking the root node
and then letting each node recursively tick its children according to its semantics.
However, this is a very inefficient process, since in general the major part of the
nodes of the tree are just waiting for their children to finish. Therefore, they
should not receive ticks, since unless their children are done they will do nothing
useful when receiving the tick. Therefore, in general only very few nodes should
be ticked at a game cycle, and as a result JBT implements a model in which
there is a list of tickable nodes. Only the nodes in the list can be ticked.

2.2 Model Independent from Execution

When running a BT, there should be a clear distinction between the tree that
is being run (the model) and how it is actually being run (the execution). For
each particular behaviour, we distinguish between the Model BT that defines it
and how it is being run. The how is what the BT Executor does. Basically, for
every entity in the game that wants to run a behaviour (Model BT), there is a
BT Executor. The BT Executor takes the Model BT and processes it (without
modifying it), simulating the behaviour that is represented by the Model BT.
This choice implies that, apart from the Model BT, there is another type of
tree, the Execution BT. When an entity wants to execute a behaviour, the BT
Executor takes the Model BT and creates an Execution BT to execute the
behaviour. The BT Executor along with the Execution BT know how to run
the behaviour that the Model BT represents.

3

BT Executor

Control module

BT Executor BT Executor

Entity 1 Entity 2

Entity N

Model BT

Execution BT

Game AI
tick

Figure 1: Overview of the BT architecture

2.3 Architecture

Figure 1 shows an overview of the JBT Core architecture. There is a Model
BT that represents a particular behaviour. Also, there is a BT Executor for
every entity that wants to run the Model BT. Each BT Executor makes use of
the Model BT and builds an Execution BT that actually runs the behaviour
conceptualized by the Model BT. An external Game AI ticks the BT Executors,
in order for them to update the trees that they are running.

The user of the framework does not have to know all the details about how
JBT internally works. However, since he has to implement some classes in order
to run his own trees, at least he should know the general architecture of JBT.

2.4 BT Model

Before even starting to explain all the steps required to build and run BTs with
JBT, we have to first think about what BT model JBT offers. JBT implements
a BT model that is mainly based on that of [2]. Our model also include guards
and static and dynamic priority lists, as described in [1]. With this model the
user can implement a wide range of behaviours.

For instance, the tree of figure 2 represents a simple tree that is used by a
game character that wants to open a door. First of all, it checks if the door is
closed (condition DoorClosed). If so, then it tries to open it by executing the
action OpenDoor.

4

Figure 2: a simple behaviour tree

In the tree of figure 2 we can see four nodes. The node called Root is just
the root of the tree, and it has no actual meaning apart from it. Then there is
a Sequence node, which runs in sequence both of its children, the DoorClosed
condition and the OpenDoor action. The Sequence node is a standard node,
but both the DoorClosed and the OpenDoor nodes are domain dependent, that
is, they have been defined by the user so they have a useful meaning within the
context of the game being played.

The tree of figure 3 represents the behaviour of a character that is trying
to enter a room. The topmost selector succeeds as long as one of its children
succeed. The first child tries to enter the room when the door is locked. In such
case, the character tries several tactics to open the door. First, if it has the key,
it uses it to open the door. If it does not have the key, but it has a grenade, then
it uses the grenade in order to blow the door up. Finally, if none of the above
conditions are met, the character will try to enter the room through its window
(note that here a Subtree Lookup node is used. This node just runs a tree that is
already defined; in this case, the tree that will be run is EnterThroughWindow).
On the other hand, if the door is not locked and it is closed, the character will
just open it up.

2.4.1 Execution Context

All nodes in a BT have an execution context, which is usually shared by all of
them. The execution context, or context for short, acts as a blackboard that
can be used by nodes in order to write and read variables. For instance, a node
may write a variable into the context, under a name MyVariable. This variable
can be read then by using its name, MyVariable. This way, the context can be
seen as a way for the nodes of a BT to communicate.

However, not always all the nodes share the same context. In general, the
context of a BT is passed down from parents to children. Thus, the initial
context is that of the root of the tree, which will pass it to its children. The root’s
children will pass the context to their own children, and so on. Nevertheless,
some nodes do not pass their own context to their children, but another one
instead. This new context may be empty or not, and it may be of a different
type. JBT supports the following types:

• Basic Context: this is just a normal context, with no especial features. It
is the context that the user of the framework can create. Other types of
contexts are managed through decorator tasks, and the user cannot create
them.

5

Figure 3: a complex behaviour tree

6

• Hierarchical Context: a Hierarchical Context has another context (the
input context) as a base. When the Hierarchical Context cannot find a
variable within its own set of variables, it will ask its input context for
the variable. Note that the Hierarchical Context can be used to build
a complex hierarchy of context: if the input context is a Hierarchical
Context too, the request for the variable may go up the hierarchy until a
non-Hierarchical Context is reached.

• Safe Context: a Safe Context has another context (the input context) as
a base. Initially, all variables are read form the input context. However,
when a variable is modified, its value is not modified in the input context,
but locally modified instead. From then on, the variable will be locally
read (that is, from the set of variables of the Safe Context) instead of read-
ing if from the input context. Thus, the input context is never modified.
A Safe Context can be used to situations in which a certain context (the
input context) must be used in read-only mode.

• Safe Output Context: a Safe Output Context behaves much in the same
way as the Safe Context. It has another context, the input context, as a
base. However, this context also contains a set of output variables (that
is, a list of variables’ names). The list of output variables represents the
variables that can be modified in the input context. Variables other than
those in the list of output variables will be stored locally in the set of
variables of Safe Output Context, just as if it were a Safe Context. Thus,
when the Safe Output Context modifies the value of a variable, it will
normally set its value in a local variable (that is, a variable belonging to
the Safe Output Context). However, if the variable is one of the list of
output variables, the value will be set in the input context, which will
therefore be modified. When retrieving variables, a variable in the list
of output variables will always be retrieved from the input context. A
variable that is not in the list of output variables will also be retrieved
from the input context; however, when such variable is modified, the value
will be retrieved from the Safe Output Context (that is, from the moment a
variable that is not in the list of output variables is modified, it is managed
locally).

2.4.2 Native Tasks

JBT offers a wide range of tasks that can be used to build behaviour trees. JBT
basically implements the BT model described in [2], but extended with guards.

JBT supports the following tasks:

• Composite tasks: tasks with one or more children, whose execution de-
pends on the execution of their children. The task’s children are ordered.

– Sequence: task that sequentially executes all its children in order. If
one fails, the Sequence task fails. If all succeeds, the Sequence task
succeeds.

– Selector: task that sequentially executes all its children in order. If
one succeeds, the Selector task succeeds. If all fail, the Selector task
fails.

7

– Parallel: task that concurrently executes all its children. A Paral-
lel task does have a parallel policy. If the parallel task’s policy is
sequence, the parallel fails if one child fails; if all succeed, then the
parallel succeed. If the parallel task’s policy is selector, the parallel
fails if all its children fail. If one succeeds, then the parallel also
succeeds.

– Random Selector: task that executes all its children in a random or-
der. If one fails, the Sequence task fails. If all succeeds, the Sequence
task succeeds.

– Random Sequence: task that sequentially executes all its children in
random order. If one succeeds, the Selector task succeeds. If all fail,
the Selector task fails.

– Dynamic Priority List: task that executes the child with the highest
priority whose guard is evaluated to true. At every AI cycle, the
children’s guards are re-evaluated, so if the guard of the running child
is evaluated to false, it is terminated, and the child with the highest
priority starts running. The Dynamic Priority List task finishes when
no guard is evaluated to true (thus failing) or when its active child
finishes (returning the active child’s termination status).

– Static Priority List: task that executes the child with the highest pri-
ority whose guard is evaluated to true. Unlike the Dynamic Priority
List, the Static Priority List does not keep evaluating its children’s
guards once a child is spawned. The Static Priority List task finishes
when no guard is evaluated to true (thus failing) or when its active
child finishes (returning the active child’s termination status).

• Decorator tasks: tasks with one child whose purpose is to alter the way
other tasks behave.

– Interrupter: task that controls the termination of its child task. An
Interrupter simply lets its child task run normally. If the child returns
a result, the Interrupter will return it. However, the Interrupter can
be asked to terminate the child task and return an specified status
when done so. The task that can interrupt an Interrupter is the
Perform Interruption task.

– Inverter: task used to invert the status code returned by its child.
When the decorated task finishes, its status code gets inverted.

– Limit: task that limits the number of times a task can be executed.
This decorator is used when a task (the child of the decorator) must
be run a maximum number of times. When the maximum number
of times is exceeded, the decorator will fail forever on.

– Repeat: task that runs its child task forever. When its child task
finishes, it runs it once more.

– Until Fail: task that runs its child as long as it does not fail. When
the child task fails, Until Fail succeeds.

– Succeeder: task that runts its child but, no matter its returned status,
the succeeder will always succeed.

8

– Hierarchical Context Manager: task that creates a new context for
its child. The context that it creates is an empty (with no variables)
Hierarchical Context whose input context is the context that is passed
to the Hierarchical Context Manager.

– Safe Output Context Manager: task that creates a new context for its
child. The context that it creates is an empty (with no variables) Safe
Output Context whose input context is the context that is passed to
the Safe Output Context Manager.

– Safe Context Manager: task that creates a new context for its child.
The context that it creates is an empty (with no variables) Safe
Context whose input context is the context that is passed to the Safe
Context Manager.

• Leaf tasks: tasks with no children.

– Wait: task that keeps running for a period of time, and then succeeds.
The user can specify for how long (in milliseconds) the Wait task
should be running.

– Subtree Lookup: see the following sections to see what this node
does.

– Perform Interruption: task that interrupts an Interrupter task.

– Variable Renamer: task that renames a variable in the context.

– Success: task that immediately succeeds.

– Failure: task that immediately fails.

– Action: generic action that is executed in the game engine.

– Condition: generic condition that is executed in the game engine.

3 Step 1: Defining Low Level Actions and Con-
ditions

The first step2 when creating BTs is to define the set of low level actions and
conditions that the trees will be using. These actions and conditions are domain
dependent, that is, they depend on the game that the trees will be run for. For
instance, if we are dealing with a first person shooter (FPS from now on), then
we may need actions and conditions such as those used in the trees of section
2.4.

However, we are going to build a more complex example. Here we are going
to define a behaviour tree that is able to control a Terran Marine of StarCraft,
so we have to define actions and conditions that are useful for such context.
The behaviour that we want to implant in the Terran Marine is as follows:

The marine is constantly checking three conditions. If there is no danger
around the marine, then he just patrols around its current position. Patrolling
around a position means that the marine will move randomly around a central
point, and will attack whatever he finds on its way. However, if he finds himself
in a low level danger situation (that is, a dangerous situation he thinks he can

2Well, it does not necessarily have to be the first step, but we have to start at somewhere.

9

survive), he will try to kill whatever enemy finds dangerous. On the other hand,
if he finds himself in a high level danger situation (that is, a dangerous situation
he thinks he cannot survive), he will run away to the closest base.

We therefore define some actions and conditions that will be used by the
BT:

• Actions:

– Attack: this action just makes the marine attacks a specific unit.

– Move: this action makes the marine move to a specific target position
on the map.

– AttackMove: this action makes the marine mote to a specific target
position on the map. Also, if he finds an enemy on its way, he will
combat the enemy.

– ComputeClosestBasePosition: this action computes the position of
the base that is closest to the marine.

– ComputeCharacterPosition: this action just computes the current
position of the marine.

– ComputeRandomClosePosition: given a position A, this action com-
putes a random position that is close to A.

• Conditions:

– LowDanger: this condition checks if the marine is in a low danger
situation.

– HighDanger: this condition checks if the marine is in a high danger
situation.

Actions and conditions must be defined according to the MMPM domain
file format. For those unaware of what MMPM is, this does not really pose
a problem, since what we are really interested in is the format that MMPM
follows in order to define actions and conditions.

A MMPM domain file defines the conceptual level of a game (its domain),
by declaring what entities, actions, sensors and goals are present in the game.
We will not describe all of them, but only what we need to declare actions and
conditions that can be used in BTs.

A MMPM domain file has the following structure:

<Domain package="valid Java package name">

<ActionSet>

<!-- Actions declaration -->

</ActionSet>

<SensorSet>

<!-- Sensors declaration -->

</SensorSet>

<GoalSet>

<!-- Goals declaration -->

10

</GoalSet>

<EntitySet>

<!-- Entities declaration -->

</EntitySet>

</Domain>

However, we are only interested in the set of actions and conditions, so
< GoalSet > and < EntitySet > can be left empty (but they actually have
to be present). The < ActionSet > element defines the set of actions that are
present in the game, which are also the set of low level actions that can be
used when building BTs. An < ActionSet > element contains a sequence of
< Action > elements, each one being an action. An < Action > element has
one attribute, its name (which is called name). The < SensorSet > element
defines the set of sensors that can be used in the game. A < SensorSet >
element contains a sequence of < Sensor > elements, each one being a sensor.
A < Sensor > element has two attributes: its name and its type. In MMPM,
a sensor is an operation that queries something about the world. As a result, a
sensor can return any3 type of value. Here we are interested in sensors whose
type is boolean (BOOLEAN in the MMPM domain file), since they represent
what in BTs is known as conditions, that is, a query operation that returns
either true or false. Therefore, the set of boolean sensors of the MMPM domain
file is the set of conditions that can be used when building BTs.

Both actions and sensors may have input parameters. An input parameter is
a parameter that is supposed to be used by the action or sensor when running.
For instance, the Move action above does have one input parameter, which
is the target position where the unit must go to. An input parameter has a
name and a type. Thus, both < Action > and < Sensor > elements may have
a sequence of < Parameter > elements, each one being a parameter. Each
< Parameter > element has two attributes, its name and its type. Therefore,
actions and sensors have the following structure:

<Action name="MyActionName">

<Parameter name="ParameterName1" type="ParameterType1"/>

...

<Parameter name="ParameterNameN" type="ParameterTypeN"/>

</Action>

<Sensor name="MySensorName" type="BOOLEAN">

<Parameter name="ParameterName1" type="ParameterType1"/>

...

<Parameter name="ParameterNameM" type="ParameterTypeM"/>

</Sensor>

MMPM supports the following types for parameter types: FLOAT , BOOLEAN ,
STRING, INTEGER, DIRECTION , COORDINATE, PLAY ER, ENTITY ID
and ENTITY TY PE. This set of parameter types may seem overwhelming,
which is why in general several of them are not used. FLOAT , BOOLEAN ,
STRING and INTEGER are self-explanatory. DIRECTION represents an

3Really not any.

11

integer value, which is why, if it is used as the type of a parameter, JBT will
treat it just as an integer. COORDINATE represents a coordinate in an
N-dimensional coordinate system. In practice, a COORDINATE value is a
non-empty sequence of real values (for instance, ”23 -4.5 67”, ”-3.45 ” or ”12.45
-0.34 9.44 -12.3”). PLAY ER represents the name of a player of the game, so in
practice it is treated as a string (STRING). ENTITY ID represents the iden-
tifier of an entity in the game. In practice, it is treated as a string (STRING).
ENTITY TY PE represents the type of an entity. In practice, it is treated as
a string (STRING).

As a consequence, the user will generally use just FLOAT , BOOLEAN ,
STRING, INTEGER and COORDINATE, since the rest of MMPM pa-
rameter types are equivalent to STRING.

MMPM format, however, does not include an important parameter type,
object. In general, there will be actions and sensors will make use of input
parameters of many types. In order to be able to manage a wide range of types,
JBT extends the MMPM domain file format so that parameters also accept the
OBJECT type. An OBJECT is just a variable of any type.

The MMPM domain file that defines the set of actions and conditions for
the Terran Marine example is as follows:

<Domain package="mypackage">

<ActionSet>

<!-- Orders the current unit to attack another unit -->

<Action name="Attack">

<Parameter name="target" type="ENTITY_ID"/>

</Action>

<!-- Orders the current unit to go to a target position -->

<Action name="Move">

<Parameter name="target" type="COORDINATE"/>

</Action>

<!-- Orders the current unit to go to a target position. If

an enemy is found along the way, the unit will combat him -->

<Action name="AttackMove">

<Parameter name="target" type="COORDINATE"/>

</Action>

<!-- Orders the position of the base that is closest to the

current unit -->

<Action name="ComputeClosestBasePosition"/>

<!-- Computes the position of the current unit -->

<Action name="ComputeCharacterPosition"/>

<!-- Computes a random position that is close to the input

position -->

<Action name="ComputeRandomClosePosition">

<Parameter name="initialPosition" type="COORDINATE"/>

</Action>

12

</ActionSet>

<SensorSet>

<!-- Checks if the current unit is in a low danger situation -->

<Sensor name="LowDanger" type="BOOLEAN"/>

<!-- Checks if the current unit is in a high danger situation -->

<Sensor name="HighDanger" type="BOOLEAN"/>

</SensorSet>

<EntitySet>

</EntitySet>

<GoalSet>

</GoalSet>

</Domain>

One of the ways nodes in BTs communicate with each other is by using the
execution context : a node may write a variable into the context and another
node may use it later. In this scenario it is therefore very important that nodes
know the name of the variables that other nodes put into the context. In the
set of actions and conditions above there are several nodes that manipulate the
context. In particular:

• The ComputeCharacterPosition action writes into the context a variable
of type COORDINATE containing the current position of the unit. The
name of such variable is CharacterPosition.

• The ComputeClosestBasePosition action writes into the context a variable
of type COORDINATE containing the position of the closest base. The
name of such variable is ClosestBasePosition.

• The ComputeRandomClosePosition action writes into the context a vari-
able of type COORDINATE containing a random position that is close
to the input position. The name of such variable is RandomClosePosition.

• The LowDanger sensor writes into the context a variable of type ENTITY ID
containing the identifier of the closest dangerous enemy. The name of such
variable is LowDangerTarget.

4 Step 2: Implementing Low Level Actions and
Conditions

Once that low level actions and conditions have been defined (see section 3), the
next step is to provide an implementation for them. JBT does not know what
does an action such as ComputeCharacterPosition or AttackMove. Therefore,
it is the user of the framework who has to tell JBT how they work.

The life cycle of actions and conditions of a BT is very simple: initially, when
the flow of execution reaches the node, it is spawned. From then on, at every
game tick, the node is ticked. Every time the node is ticked, it has to report

13

about its termination status, so that the tree may evolve in case the node has
finished. As a result, the programmer will have to define how all the domain
dependent actions and conditions behave when they are spawned and ticked.

Actions and conditions are each represented by two classes of the JBT Core,
jbt.model.task.leaf.action.ModelAction.java and jbt.execution.task.leaf.action.ExecutionAction.java
in the case of actions, and jbt.model.task.leaf.condition.ModelCondition.java and
jbt.execution.task.leaf.condition.ExecutionCondition.java in the case of condi-
tions. Domain dependent actions such as the ones defined above must extend
these classes in order for JBT to know how to work with them.

In JBT there are two classes for every type of node. Remember from section
2.2 that in JBT there are two types of BTs, the Model BT and the Execution
BT. The Model BT is composed of model tasks4, while the Execution BT is
composed of execution tasks. It is the execution tasks that define how the tasks
work, that is, how they behave when they are spawned and ticked. In the case
of actions and conditions, the four classes presented above are the base classes
for their respective representation as model tasks and execution tasks.

JBT Core offers a tool that semi-automatize the task of creating all the
classes from each action and condition of the MMPM domain file. It is the Java
class jbt.tools.btlibrarygenerator.ActionsAndConditionsGenerator.java.

For every MMPM action, ActionsAndConditionsGenerator creates two classes:
one extending ModelAction, which conceptually represents the action, and an-
other one extending ExecutionAction, which represents how the action actually
works -whose abstract methods must be completed in order for the action to
perform any task at all. We will explain this later-.

Also, for every MMPM boolean sensor, two classes are created: one extend-
ing ModelCondition, which conceptually represents the condition (sensor), and
another one extending ExecutionCondition, which represents how the condition
actually works -whose abstract methods must be completed in order for the
condition to perform any task at all. We will explain this later-.

The syntax of the program is as follows:

ActionsAndConditionsGenerator -c configurationFile [-r relativePath] [-o]

Where configurationFile is an XML file that contains all the information
required to run the application. The syntax of such file is:

<Configuration>

<DomainFile>MMPMDomainFile1</DomainFile>

<DomainFile>MMPMDomainFile2</DomainFile>

...

<DomainFile>MMPMDomainFileN</DomainFile>

<ModelActionsPackage>Name of the package for generated model

action classes</ModelActionsPackage>

<ModelConditionsPackage>Name of the package for generated model

condition classes</ModelConditionsPackage>

<ModelActionsOutputDirectory>Name of the directory where model

4Remember that in BT terminology, a task and a node are the same thing.

14

actions are created</ModelActionsOutputDirectory>

<ModelConditionsOutputDirectory>Name of the directory where model

conditions are created</ModelConditionsOutputDirectory>

<ExecutionActionsPackage>Name of the package for generated

execution action classes</ExecutionActionsPackage>

<ExecutionConditionsPackage>Name of the package for generated

execution condition classes</ExecutionConditionsPackage>

<ExecutionActionsOutputDirectory>Name of the directory where

execution actions are created</ExecutionActionsOutputDirectory>

<ExecutionConditionsOutputDirectory>Name of the directory where

execution conditions are created</ExecutionConditionsOutputDirectory>

</Configuration>

The order in which the elements are specified is not relevant. If the input files
do contain only actions, parameters related to conditions may not be specified,
and vice versa.

The -r option is used to add a path to the beginning of the files listed in the
configuration file; as a result, each file is considered to be placed at the path
specified in the -r option. The -r option may not be specified, in which case the
files are considered to be at the current execution directory.

The -o option (standing for overwrite) is either is specified or not. If it is
not specified, generated output files will not overwrite any existing file in the
file system, and as a result, the corresponding class file will not be produced in
case there is a file with the same name in the file system. If the option -o is
specified, then generated output files will overwrite any file in the file system
whose name matches.

So, in brief, this program parses a MMPM domain file and, for each action
and boolean sensors produces the JBT classes that are required to run such
actions and conditions in a BT. In particular, the created execution classes
define what they will do when spawned and ticked.

The generated ModelAction and ModelCondition classes are complete, so
they do not need to be modified after being created by the ActionsAndCondi-
tionsGenerator. However, the ExecutionAction and ExecutionCondition gener-
ated classes contain a set of abstract method that must be implemented accord-
ing to the semantics of the respective actions and conditions, so that they do
what they are expected to do. This is the only step that must be done in order
for JBT to be able to work with the low level actions and conditions provided
by the user.

In particular, the abstract methods that must be implemented are:

protected void internalSpawn();

protected Status internalTick();

protected void internaTerminate();

protected void restoreState(ITaskState state);

protected ITaskState storeState();

protected ITaskState storeTerminationState();

15

internalSpawn() and internalTick() are the most important methods, so they
should be well implemented.

internalSpawn() represents the spawning process of the task (action or con-
dition). When the flow of execution of the tree reaches the task, internalSpawn()
gets called. Therefore, this method must be defined so that it starts the process
associated to the task. For instance, the internalSpawn() method of the Move
action above should order the current unit to go to the target position; the in-
ternalSpawn() method of the Attack action above should order the current unit
to attack the target enemy.

The automatically generated skeleton contains an initial implementation of
the internalSpawn() method, which is as follows:

protected void internalSpawn() {

/*

* Do not remove this first line unless you know what it does and you

* need not do it.

*/

this.getExecutor().requestInsertionIntoList(

jbt.execution.core.BTExecutor.BTExecutorList.TICKABLE, this);

/* TODO: this method’s implementation must be completed. */

System.out.println(this.getClass().getCanonicalName() + " spawned");

}

This initial definition contains a very important aspect of the execution
process of the task. As it is said in the comments, the first line should not be
removed unless the user knows what it does and he thinks it is not necessary to
do it. What that line does is to request that the task be inserted into the list
of tickable nodes (section 2.1). Since in general this is what we want the task
to do (because we want the task to receive ticks), that line should not be
removed.

When implementing all these abstract methods, the user may access the
execution context of the task by calling this.getContext(). That method just
returns the context of the task as an IContext object. The IContext interface
defines two main methods, one for reading a variable from the context, and
another one for writing a variable into the context:

public interface IContext {

/**

* Returns the value of a variable whose name is <code>name</code>, or null

* if it is not found.

*/

public Object getVariable(String name);

/**

* Sets the value of a variable. If the variable already existed, its value

* is overwritten. <code>value</code> may be null in order to clear the

* value of the variable.

*/

public boolean setVariable(String name, Object value);

16

...

}

Remember that MMPM domain files also let the designer specify input pa-
rameters for actions and sensors. These are parameters that actions and sensors
are supposed to use when running. The generated JBT ExecutionAction and
ExecutionCondition classes include getter methods for such input parameters.
As a result, the programmer will be able to access the value of the input pa-
rameters in the abstract methods he has to implement, by using the getter
methods. The value for the input parameters are either retrieved from the ex-
ecution context(IContext) or directly provided at construction time, but these
details are hidden from the programmer that implements the action or condition
(he should just use the getter methods to retrieve whatever input parameters
may be needed). For instance, for the Attack action, the next getter method is
created:

/**

* Returns the value of the parameter "target", or null in case it has not

* been specified or it cannot be found in the context.

*/

public java.lang.String getTarget(){...}

Thus, in the implementation of all the abstract methods, the user should
use this getTarget() method if he wanted to retrieve the identifier of the target
unit to attack. This whole thing about the getter methods may be a little bit
confusing at first. However, bear in mind that when the user creates a behaviour
tree (which we will explain later), he can either specify that the input parameter
of a task must be retrieved from a variable of the context, or provide an actual
value for the parameter. When the task is spawned and run, it does not really
care about where the parameter comes from as long as there is a value that it
can use. The generated getter methods hide these details, so no matter where
the parameter comes from (either from the context or from an actual value
provided by the user when he created the BT), it just provides the value that
the task expects to use.

Once the task has been spawned, it will be ticked whenever the BT gets
ticked. The ticking process is performed by the internalTick() method. Thus,
from the moment the task gets spawned, at every tick, internalTick() will be
called.

internalTick() is in charge of keeping track of the termination status of
the task. If the task has not finished yet when internalTick() is called, then
it must return the termination status Status.RUNNING. If the task has fin-
ished successfully, then the method should return the termination status Sta-
tus.SUCCESS. If the task has finished unsuccessfully, then the method should
return Status.FAILURE. For instance, the internalTick() method of the Move
action of our Terran Marine example should check if the unit has arrived at
the target position. If it has not, then Status.RUNNING should be returned.
If the unit has arrived at the target position, then Status.SUCCESS should
be returned. Finally, y for some reason the action could not be completed
(for instance because the target position is unreachable), then Status.FAILURE
should be returned. Note that, even though the Status enum has more values

17

other than SUCCESS, FAILURE and RUNNING, the internalTick() method
must return only one of these three. Doing otherwise will throw an exception.

One of the ideas behind the driven by ticks architecture is that, when the
tree is ticked, it should not take very long for it to return, so internalSpawn()
and internalTick() are supposed to return very quickly. However, sometimes
tasks perform computationally expensive processes. In that case, instead of
performing the expensive computation inside the internalSpawn() method of
the task, it should be performed in another execution thread. When inter-
nalSpawn() is called, it should create another thread that carries out the com-
putation. On the other hand, the internalTick() method would query the thread
to check if its computation has finished or not, and return Status.RUNNING,
Status.SUCCESS or Status.FAILURE accordingly.

The internalTerminate() method is not so important. Sometimes, when
a BT is running, some of its tasks get abruptly interrupted. This happens
for instance when one of the children of a parallel task (which is following
the sequence policy) fails. When that happens, all of its children, which were
being concurrently evaluated, get terminated, so they must stop running. Other
scenario in which this happens is when a perform interruption task interrupts
an interrupter. In that case, the interrupter and its child stop running.

It is for cases like these that the internalTerminate() method is defined. The
internalTerminate() method must make the task stop running. For instance, in
the case of the Move action, it should order the unit to stop moving. Moreover,
if the task started some other thread to perform some computations, it should
stop it. In general, when the internalTerminate() is called, the task should stop
running and should also free whatever resources it acquired.

With respect to the storeState(), storeTermination and restoreState(ITaskState
state), they are related to persistent tasks. Some tasks in BTs are persistent in
the sense that, after finishing, if they are spawned again, they should remember
past information. Take for example the Limit task. A Limit task allows to
run its child node only a certain number of times (for example, 5). After being
spawned, it has to remember how many times it has been run so far, so that,
once the threshold is exceeded, it fails. In general, it could be said that some
tasks need to retain some persistent information to be used in the future when
the task is spawned again.

All the persistent information of a task should be saved into an ITaskState
object. The ITaskState interface represents a collection of variables that can be
accessed:

public interface ITaskState {

/* Returns the value of a state variable by its name. */

public Object getStateVariable(String name);

}

When a task finishes, (it returns Status.SUCCESS or Status.FAILURE in in-
ternalTick()), the storeState() method is automatically called by the framework.
This method should then create and return an ITaskState object containing all
the persistent information that the task may need if it is spawned again in the
future. If no persistent information is needed, then null must be returned. An
ITaskState object is just a collection of variables that can be retrieved by name.
In order for the user to create ITaskState objects, he can make use of the factory
class jbt.execution.core.TaskStateFactory.

18

It also may be the case that a task that is abruptly terminated (internal-
Terminate() is called) needs to store persistent information. If that is the
case, then storeTerminationState() is automatically called by the framework,
instead of storeState(). storeTerminationState() follows the same semantics as
storeState().

The persistent information that a task stores via its storeState() and storeTer-
minationState() methods is restored via the restoreState(ITaskState state) method.
This method is called just before the task is spawned (that is, before calling in-
ternalSpawn()). In restoreState(ITaskState state) the task should analyse the
input ITaskState object and restore whatever information it contains (if null,
then it means that there is no past information to remember).

In the case of the Move action of the Terran Marine example, the storeState(),
storeTerminationState() and restoreState(ITaskState state) methods are empty.

As a final example on implementing low level actions and conditions, lets
follow the whole process for the few actions and conditions defined in the domain
explained in section 3.

Let us suppose that the MMPM domain file is stored in the file Terran-
MarineDomain.xml. Then, the ActionsAndConditionsGenerator application
could be run with the next configuration file (stored in configurationFile.xml):

<Configuration>

<DomainFile>TerranMarineDomain.xml</DomainFile>

<ModelActionsPackage>bts.actions</ModelActionsPackage>

<ModelConditionsPackage>bts.conditions</ModelConditionsPackage>

<ModelActionsOutputDirectory>src/bts/actions

</ModelActionsOutputDirectory>

<ModelConditionsOutputDirectory>src/bts/conditions

</ModelConditionsOutputDirectory>

<ExecutionActionsPackage>bts.actions.execution

</ExecutionActionsPackage>

<ExecutionConditionsPackage>bts.conditions.execution

</ExecutionConditionsPackage>

<ExecutionActionsOutputDirectory>src/bts/actions/execution

</ExecutionActionsOutputDirectory>

<ExecutionConditionsOutputDirectory>src/bts/conditions/execution

</ExecutionConditionsOutputDirectory>

</Configuration>

Let us suppose that the ActionsAndConditionsGenerator is called with the
following arguments:

ActionsAndConditionsGenerator -c configurationFile.xml -r /home/outputDirectory

Then, the ActionsAndConditionsGenerator will parse the domain file /home/outputDirectory/-
TerranMarine.xml, and it will create output classes for each action and boolean
sensor in the domain file, which will be stored in the corresponding files. For in-
stance, for the Attack action, two classes will be created, /home/outputDirectory/src/bts/actions/Attack.java
(the model task class) and /home/outputDirectory/src/bts/actions/execution/Attack.java
(the execution task class). For the boolean LowDanger sensor, two classes will be
created, /home/outputDirectory/src/bts/conditions/LowDanger.java (the model
task class) and /home/outputDirectory/src/bts/conditions/execution/LowDanger.java

19

(the execution task class). Then we should implement the abstract methods of
all the execution classes. For instance, the implementation of the Move.java
execution class may be like this:

/** ExecutionAction class created from MMPM action Move. */

public class Move extends jbt.execution.task.leaf.action.ExecutionAction {

...

/**

* Returns the value of the parameter "target", or null if not found

* anywhere.

*/

public float[] getTarget() {

/* Whatever has been automatically generated. */

...

}

protected void internalSpawn() {

this.getExecutor().requestInsertionIntoList(

jbt.execution.core.BTExecutor.BTExecutorList.TICKABLE, this);

/*

* Retrieve the identifier of the entity (Terran Marine) running

* this action from the context. Here we are supposing that the

* context will contain it.

*/

String currentEntityID = (String) this.getContext().

getVariable("CurrentEntityID");

/*

* Now we assume that there is a generic "Game Engine" that can

* be used to send generic orders to units of the game. Note that, in

* order to retrieve the target position, we use the automatically

* generated getter method.

*/

GameEngine.sendMoveOrder(currentEntityID, this.getTarget());

}

protected jbt.execution.core.ExecutionTask.Status internalTick() {

/*

* In this method we will just check whether the unit has reached the

* target position. If the target position is unreachable, then

* Status.FAILURE is returned. Otherwise, if the unit has reached the

* target position, Status.SUCCESS is returned. Otherwise,

* Status.RUNNING is returned.

*/

String currentEntityID = (String) this.getContext().

getVariable("CurrentEntityID");

if(!Util.reachablePosition(currentEntityID, this.getTarget())){

return Status.FAILURE;

20

}

float[] currentPosition = GameEngine.getPosition(currentEntityID);

float[] targetPosition = this.getTarget();

if(Math.distance(currentPosition, targetPosition) < 0.5){

return Status.SUCCESS;

}

else{

return Status.RUNNING;

}

}

protected void internalTerminate() {

/* We just order the unit to stop. */

String currentEntityID = (String) this.getContext().getVariable(

Constants.CONTEXT_CURRENT_ENTITY);

GameEngine.stopUnit(currentEntityID);

}

protected void restoreState(jbt.execution.core.ITaskState state) {

/* Does nothing. */

}

protected jbt.execution.core.ITaskState storeState() {

/* No persistent state information to return. */

return null;

}

protected jbt.execution.core.ITaskState storeTerminationState() {

/* No persistent state information to return. */

return null;

}

}

5 Step 3: Creating BTs with the JBT Editor

Once that the domain dependent actions and conditions of the game have been
defined and a JBT implementation for them has been provided, the next steps
are quite easy to follow.

It is now when the user should define the behaviour trees to use in the
game. Following our Terran Marine example, we will define several trees that
implement the behaviour that we described in section 3.

Behaviour trees are first described in XML files. Here we are not going
to describe the XML format that JBT understands, since we discourage the
user from writing them in plain text. Instead, we propose to use the JBT
Editor (composed of the two projects under the “./JBTEditor” directory of the
repository), a GUI application through which it is really easy to define behaviour

21

Figure 4: JBT Editor after being opened

trees.
The JBT Editor is an Eclipse RCP application. As such, it must be run

under the Eclipse SDK environment or use the executable files provided for
each platform. When opening if from Eclipse, you have to open the project
jbt.tools.bteditor, and then open the file bteditor.product with the Product Con-
figuration Editor. Once it has been opened, go to the “Overview” page, and
click on “Launch an Eclipse application”. A window like that of figure 4 should
show up.

The JBT Editor is a very simple tool, so learning how to use it should not
take very long.

In order to create a new BT, just click on the “new BT” icon or select “File-
¿New BT”. A new editor should open up showing an empty BT (that is, a tree
containing only a single node, the root of the tree. To the right of the window
there is a tree-like menu (the Nodes Navigator) where the user can select nodes
to build the tree. In order to add a node to a tree, just drag it from the Nodes
Navigator and drop it onto whatever node of the tree to insert it as a child or
sibling of the target node. The root node can have only one child. However,
other nodes, such as sequences or selectors may have many of them. Decorators
can have only one child, and leaf nodes do not have any children.

By using the set of provided standard nodes of the Nodes Navigator, the
user can build complex behaviour trees. However, in order to build really useful
trees, the user must use the domain-dependent actions and conditions from the
game. The JBT Editor lets the user load a MMPM domain file as described
in section 3. Just click on the “Load MMPM Domain” or select “File-¿Load
MMPM Domain” and select the file that contains the low level actions and
conditions. After doing so, the Nodes Navigator will be added a new entry for
the actions and conditions within the domain file, which the user will be able
to use when building BTs.

For instance, if we load the domain file described in section 3, we get the
actions and conditions shown in figure 5.

22

Figure 5: The Nodes Navigator after loading the domain file

Figure 6: The dialog for editing the input parameters of the AttackMove action

The JBT Editor lets the user specify values for the input parameters of nodes.
By double clicking on a node that has input parameters, a dialog where the user
can specify values for the input parameters. For instance, if the AttackMove ac-
tion is double clicked, then the dialog of figure 6 is shown. In the dialog the user
can specify a value for the parameter “target”, whose type is COORDINATE.
Thus, the text field only supports values such as “45 62” or “10 -3 45”. As we
mentioned in section 4, when building a BT, the user can specify whether the
input parameters of actions and conditions are retrieved from the context or an
actual value is provided at construction time. The “From context” check box
lets the user specify if the parameter has to be retrieved from the context or
not. If the check box is not ticked, then the user must provide a value for the
parameter in the text field. However, if the check box is ticked, then what the
user does is to specify the name of the context’s variable where the value of the
parameter will be retrieved from.

For instance, in figure 7 the user has specified a value (“12 34 4.5”) for
the input parameter “target” of the AttackMove action. However, in figure 8
the user has indicated that the value of the input parameter “target” will be
retrieved from the variable “TargetVariable” of the context.

Once the BT has been completed, the user can save it as an XML file. In

23

Figure 7: A parameter for which an actual value is provided

Figure 8: A parameter whose value will be retrieved from the context

order to do so, just click on the “Save” or “Save As” icons (or select “File-¿Save”
or “File-¿Save As”) and enter a file name.

When saving a BT, the JBT Editor checks if the structure of the tree is
correct. If not, incorrect nodes are highlighted in red color and an explanation
for the error is shown in the Node Info view (to the right of the window) when
the node is selected.

Also note that a name for the BT must be provided. The name of a BT
is specified in the root node of the tree. When the root is double clicked, a
dialog appears that lets the user assign the tree a name. BTs’ names are very
important, because it is the way that trees are referenced. In particular, names
are essential in terms of reusability. For instance, the Subtree Lookup task
simulates a particular BT, and the way that the Subtree Lookup knows what
BT to simulate is by providing the name of the tree.

Let us now design the BT that implements the Terran Marine behaviour
that we described in section 3. An initial implementation for such tree could be
that of figure 9.

The behaviour is pretty simple: the tree is always executing (see the Re-

Figure 9: Initial tree for the Terran Marine behaviour

24

Figure 10: Selecting a guard for the Attack node

peat node) a Dynamic Priority List (DPL) that is constantly checking three
conditions:

• If the current unit is in a low danger situation, then the unit is ordered to
attack the closest dangerous enemy. This is represented by the first child
of the DPL.

• If the current unit is in a high danger situation, then the unit runs away
to the closest base. This is represented by the second child of the DPL
(the Sequence).

• Finally, if none of the above conditions are met, the unit just “patrols”.
This is represented by the third child of the DPL, the Subtree Lookup
node (we will further explain this later).

There are some details that must still be defined though. So far, the tree
does not provide a way of checking the three conditions above. In order to do
so, we can make use of guards, since the DPL interacts with children that have
guards defined. In order to add a guard to a node, just right click on the node
and select “Edit Guard”. A dialog should appear that lets the user edit the
guard of the node.

In JBT, guards are represented by BTs. In particular, a guard can be a
single node or a complete and correct BT. When the user clicks on “Add simple
guard”, a dialog lets the user select a single leaf node (action, condition or a
standard leaf node) to be used as a guard. If the user clicks on the “Add complex
guard”, however, a new editor is opened so the user can create a complete BT
to be used as the node’s guard.

In our example, the guard of the Attack action is just the condition Low-
Danger. Therefore, we have to click on the “Add simple guard” button and
select the “LowDanger” task from the list, as shown in figure 10. Note that
after inserting the guard, a small shield icon will appear on top of the node that
has been added a guard.

In the case of the Sequence node, its guard is just the condition HighDanger,
so we add it just the same way. Now we have to define the input parameters of
the tasks.

First of all there is the Attack node. The intended behaviour is for the
soldier to attack the closest unit once that the LowDanger condition has been
triggered. Thankfully, LowDanger writes into the context the identifier of the

25

Figure 11: The input parameter of Attack

Figure 12: The BT for the Standard Patrol behaviour

closest entity (as we described in section 3), in a variable with name LowDan-
gerTarget. Therefore, the input parameter of Attack should be as represented in
figure 11, since the value of the input parameter of the Attack action is present
in a variable of the context whose name is LowDangerTarget.

With respect to the Move action, the idea is that the unit goes to the closest
base. Since the position of the closest base has been computed by the Com-
puteClosestBasePosition action and written into the context in a variable with
name ClosestBasePosition, then the input argument of Move must be read from
the context and its value must be the variable name ClosestBasePosition.

Now let us look at the final part of the tree. When none of the danger
conditions are met, the marine has to patrol around its current position. Since
patrolling is a complex task that may be reused in another trees, we decide
to put it into another BT and reuse of from the Terran Marine BT. This is
accomplished by the Subtree Lookup task, whose input parameter is set to
StandardPatrol. StandardPatrol is the name of the tree that will implement the
patrol behaviour.

The tree of figure 12 implements the patrol behaviour. Initially, the current
position of the unit is computed by the ComputeCharacterPosition action. This
position is written into the variable CharacterPosition of the context, as we
mentioned in section 3. From then on, the is a forever loop (Repeat node) that
constantly computes a random position that is close to the one computed by
the ComputeCharacterPosition task, and then orders the unit to AttackMove
to that target position. It is important to note that the tree must have a name
(it is set in the root of the tree), in this case StandardPatrol, which is the name
that was used in the SubtreeLookup task of the Terran Marine BT.

Note that a name for the Terran Marine BT must be provided, so we will
assume that its name is TerranMarine.

26

6 Step 4: Creating a Java Declaration of the
BTs

Once our BTs have been defined in the XML format of the JBT Editor, the
next steps are quite easy. Actually, there is no more complex work to be done
by the user from now on.

So far we have provided a definition and implementation of domain depen-
dent low level actions and conditions. We have also defined our BTs and stored
them in XML files using the JBT Editor. The next step is to provide a Java
implementation of the trees so that JBT can actually run them.

This step is automatically performed by the JBT Core. The JBT Core has
an application, the jbt.tools.btlibrarygenerator.BTLibraryGenerator.java, that
basically takes the XML definition of some BTs and creates a .java file that
contains the implementation of such trees.

In JBT, BTs are grouped together in BT libraries. A BT library is just
a collection of BTs that can be retrieved by name (actually, the name that is
specified for the tree in the JBT Editor). A BT library is implemented by the
IBTLibrary interface. This interface just represents a set of BTs that can be
retrieved by name:

public interface IBTLibrary extends Iterable<Pair<String, ModelTask>> {

/* Returns the BT of name name, or "null" if not found. */

public ModelTask getBT(String name);

}

Note that, in JBT, a Model BT (see section 2.2) is represented by the ab-
stract class ModelTask. Thus, when we ask an IBTLibrary to give us a BT
by its name, it just retrieves the Mode BT that represents the tree, which is
represented by a ModelTask.

What the BTLibraryGenerator does is to automatically create a BT library,
that is, a class that implements the IBTLibrary interface, that can be used to
retrieve the BTs defined in the XML files. In particular, given a set of behaviour
trees specified in XML files and the MMPM definition of the low level actions
and conditions that are used in the trees, it creates the corresponding Java class.

The syntax of this program is as follows:

BTLibraryGenerator -c configurationFile [-r relativePath] [-o]

Where configurationFile is an XML file that contains all the information
required to run the application. The syntax of such a file is:

<Configuration>

<BTLibrary>

<BTFile>BTFile1</BTFile>

<BTFile>BTFile2</BTFile>

...

<BTFile>BTFileN</BTFile>

<DomainFile>MMPMDomainFile1</DomainFile>

<DomainFile>MMPMDomainFile2</DomainFile>

...

27

<DomainFile>MMPMDomainFileN</DomainFile>

<ModelActionsPackage>Name of the package where model action

classes are placed</ModelActionsPackage>

<ModelConditionsPackage>Name of the package where model

condition classes are placed</ModelConditionsPackage>

<LibraryClassName>Name of the class that is going to be

created</LibraryClassName>

<LibraryPackage>Name of the package for the generated BT

library</LibraryPackage>

<LibraryOutputDirectory>Name of the directory where the

generated library is going to be stored</LibraryOutputDirectory>

</BTLibrary>

<BTLibrary>

...

</BTLibrary>

...

</Configuration>

The order in which the elements are specified is not relevant.
In the file the user can define several BT libraries, each one within the BTLi-

brary element. For each BT library defined in a BTLibrary element, the program
will produce an output file (class implementing the IBTLibrary interface) for
the library.

The -r option is used to add a path to the beginning of the files listed in the
configuration file; as a result, each file is considered to be placed at the path
specified in the -r option. The -r option may not be specified, in which case the
files are considered to be at the current execution directory.

The -o option (standing for overwrite) is either is specified or not. If it is
not specified, the generated output files will not overwrite any existing file in
the file system, and as a result, a behaviour tree library may not be produced
in case there is a file with the same name in the file system. If the option -o
is specified, then generated output files will overwrite any file in the file system
whose name matches.

In the Terran Marine example, we want to create a BT library that contains
the two BTs that we created in section 5. Let us suppose that the tree defining
the Terran Marine behaviour was stored in the file TerranMarine.xbt, and that
the tree defining the patrol behaviour was stored in the file StandardPatrol.xbt.
Then, we could use the following configuration file to produce the BT library:

<Configuration>

<BTLibrary>

<BTFile>TerranMarine.xbt</BTFile>

<BTFile>StandardPatrol.xbt</BTFile>

28

<LibraryClassName>TerranMarineBTLibrary</LibraryClassName>

<LibraryPackage>bts.btlibrary</LibraryPackage>

<LibraryOutputDirectory>src/bts/btlibrary</LibraryOutputDirectory>

<DomainFile>TerranMarineDomain.xml</DomainFile>

<ModelActionsPackage>bts.actions</ModelActionsPackage>

<ModelConditionsPackage>bts.conditions</ModelConditionsPackage>

</BTLibrary>

</Configuration>

Where note that TerranMarineDomain.xml is the domain file that we cre-
ated in section 3. The ModelActionsPackage and ModelConditionsPackage must
also be those specified in the configuration file of the ActionsAndConditions-
Generator.

So now let us suppose that the configuration file above is stored in a file
called BTConfigurationFile.xml. The BTLibraryGenerator may be called with
the following arguments:

BTLibraryGenerator -c BTConfigurationFile.xml -r /home/outputDirectory

Then, the BTLibraryGenerator will parse the configuration file and it will
realize that it has to create just one BT library (the only BTLibrary element
in the configuration file). It will then parse the XML files of the trees that the
library will contain (TerranMarine.xbt and StandardPatrol.xbt) and finally will
create an BT library class named TerranMarineBTLibrary, which will be placed
in the output directory home/outputDirectory/stc/bts/btlibrary. Our purpose
here is not to analyse all the details of the produced class, but just point out that
it can be used through the public interface that it implements (the IBTLibrary
mentioned earlier). The class TerranMarineBTLibrary will contain both trees,
so

getBT("TerranMarine");

will return the tree implementing the Terran Marine behaviour, and

getBT("StandardPatrol");

will return the tree implementing the patrol behaviour.
The way we can actually run these trees is explained in section 7.

7 Step 5: Running the Behaviour Trees

So that is almost all. The last step is to run the trees that have been put into
one or several BT libraries.

The way BTs are run in JBT is really simple, and follows the ideas mentioned
in sections 2.1, 2.2 and 2.3.

Basically, the IBTLibrary is used to retrieve Model BTs. Once a Model BT
has been retrieved, a BT Executor must be created to run it. The BT Executor
must be fed with an initial context that the BT will use when running5. Let’s

5Remember that the BT that actually runs is the Execution BT, but that detail is of no
interest at this point.

29

suppose that we have created our TerranMarineBTLibrary, and that we want
to use it in order to control a particular Terran Marine in the game. First of
all, two details must be taken into account.

On the one hand, the actions that we implemented (well, we actually im-
plemented only one action, Move, but you get the idea) made the assumption
that the identifier of the unit running the action was present in the context,
under a variable named “CurrentEntityID” (you can revisit the implementation
in section 4). In general, it may be necessary for the context that is used by the
tree to have some initial variables in it. In such case, an appropriate context
should be created.

On the other hand, the SubtreeLookup task poses a big problem when it is
run. Remember that the SubtreeLookup node simulates the behaviour of a tree
given its name. However..., how does it know from where to retrieve a tree given
its name? For instance, in the case of the Terran Marine tree, the SubtreeLookup
is suppose to emulate a tree named StandardPatrol, but it does not know where
to get such a tree from.

The context is used in order to fix this problem. Actually, the context must
contain all the trees that are used within the internal execution of the tree.
In this case it means that the context that is initially passed to the tree must
contain the BT StandardPatrol. If it does not, when the Terran Marine tree
is run it will throw an exception complaining about not being able to find the
corresponding tree.

We can see that an appropriate context must be created to run the tree.
JBT Core provides a factory class, the jbt.execution.core.ContextFactory.java
that defines several methods for creating generic contexts (IContext objects of
the Basic Context type described in section 2.4.1). In our case, we can make
use of the method that takes as input an IBTLibrary and makes an IContext
that contains all the BTs of the BT library. Then, we could make use of the
methods in the IContext interface to add the identifier of the marine that is
supposed to be run by the tree:

/* First of all, we create the BT library. */

IBTLibrary btLibrary = new TerranMarineBTLibrary();

/* Then we create the initial context that the tree will use. */

IContext context = ContextFactory.createContext(btLibrary);

/*

* Now we are assuming that the marine that is going to be

* controlled has an id of "terranMarine1"

*/

context.setVariable("CurrentEntityID","terranMarine1");

The next step is to create the BT Executor to run the tree. In JBT, a BT Ex-
ecutor is represented by the IBTExecutor interface. In order to create an IBTEx-
ecutor object to run a particular BT, the factory class jbt.execution.core.BTExecutorFactory.java
must be used. The BTExecutorFactory has several methods for creating BT
Executors; one of them receives as input the Model BT to run and the initial
context:

/* Now we get the Model BT to run. */

30

ModelTask terranMarineTree = btLibrary.getBT("TerranMarine");

/* Then we create the BT Executor to run the tree. */

IBTExecutor btExecutor = BTExecutorFactory.createBTExecutor(terranMarineTree, context);

/* And finally we run the tree through the BT Executor. */

do{

btExecutor.tick();

}while(btExecutor.getStatus() == Status.RUNNING);

Note that running a BT is a very simple process. The IBTExecutor interface
defines one main method, tick(), which implements the ticking process of a BT.
Every time the tick() method is called, the BT is given some CPU time to do
its work, as was explained in section 2.1.

In order to check the current execution status of the tree, the getStatus()
method is used. As long as the status is Status.RUNNING, the tree has not
finished so it should continue to receive ticks.

References

[1] Gonzalo Flórez-Puga, Marco A. Gómez-Mart́ın, Pedro P. Gómez-Mart́ın,
Belén Dı́az-Agudo, and Pedro A. González-Calero. Query enabled behaviour
trees. IEEE Transactions On Computational Intelligence And AI In Games,
1(4):298–308, November 2009.

[2] Ian Millington and John Funge. Artificial Intelligence for Games. Morgan
Kaufmann, second edition, 2009.

31

