
Build a RESTful Web service using Jersey and
Apache Tomcat
Skill Level: Introductory

Yi Ming Huang (huangyim@cn.ibm.com)
Software Engineer
IBM

Dong Fei Wu (wudongf@cn.ibm.com)
Staff Software Engineer
IBM

Qing Guo (qingguo@cn.ibm.com)
Software Engineer
IBM

24 Sep 2009

Representational state transfer (REST) was introduced in early 2000 by Roy
Fielding's doctoral dissertation. However, in the Java™ community, it was not
standardized until the JSR 311(JAX-RS) specification was finalized in 2008. The first
release of its reference implementation is even later. In this article, I introduce Jersey,
which is the reference implementation of JSR 311, by describing its essential APIs
and annotations. I'll also show you how you can smoothly transfer from servlet-style
services to RESTful services by integrating Jersey into Apache Tomcat.

RESTful Web service introduction

Representational State Transfer, or REST, was introduced and defined in 2000 by
the doctoral dissertation of Roy Fielding, one of the principal authors of the HTTP
specification versions 1.0 and 1.1.

The most important concept in REST is resources, which are identified by global
IDs— typically using URIs. Client applications use HTTP methods (GET/ POST/
PUT/ DELETE) to manipulate the resource or collection of resources. A RESTful

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 16

mailto:huangyim@cn.ibm.com
mailto:wudongf@cn.ibm.com
mailto:qingguo@cn.ibm.com
http://www.ibm.com/legal/copytrade.shtml

Web service is a Web service implemented using HTTP and the principles of REST.
Typically, a RESTful Web service should define the following aspects:

• The base/root URI for the Web service such as
http://host/<appcontext>/resources.

• The MIME type of the response data supported, which are
JSON/XML/ATOM and so on.

• The set of operations supported by the service. (for example, POST,
GET, PUT or DELETE).

Table 1 illustrates the resource URI and HTTP methods used in typical RESTful
Web services. (Resources also gives you more introduction and design
considerations for RESTful Web services.)

Table 1. Example of a RESTful Web service
Method / Resource Collection of resources, URI

like:
http://host/<appctx>/resources

Member resources, URI like:
http://host/<appctx>/resources/1234

GET List all the members of the
collection resources.

Retrieve a representation of one
resource identified as 1234.

PUT Update (replace) the collection
with another one.

Update the member resource
identified as 1234.

POST Create a member resource in
the collection where the ID of it
is automatically assigned.

Create a sub resource under it.

DELETE Delete the entire collection of
resources.

Delete the member resource
identified as 1234.

JSR 311 (JAX-RS) and Jersey

The proposal for JSR 311 or JAX-RS (The Java API for RESTful Web Services) was
started in 2007, and the release of version 1.0 was finalized in October 2008.
Currently, JSR 311 version 1.1 is in the draft state. The purpose of this JSR is to
provide a set of APIs that can simplify the development of REST-style Web services.

Before the JAX-RS specification there were frameworks like Restlet and RestEasy
that could help you implement the RESTful Web services, but they were not intuitive.
Jersey is the reference implementation for JAX-RS, and it contains three major
parts.

• Core Server: By providing annotations and APIs standardized in JSR 311,
you can develop a RESTful Web service in a very intuitive way.

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 2 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Core Client: The Jersey client API helps you to easily communicate with
REST services.

• Integration: Jersey also provides libraries that can easily integrate with
Spring, Guice, Apache Abdera, and so on.

In the following sections of the article, I introduce all of these components, but will
focus more on the Core Server.

Build a RESTful Web service

I'll begin with a "hello world" application that can be integrated into Tomcat. This
application will get you through setting up the environment and will cover the basics
of Jersey and JAX-RS.

Then, I'll introduce a more complicated application to go deeper into the essentials
and features of JAX-RS, such as multiple MIME type representations support, JAXB
support, and so on. I will excerpt code snippets from the sample to introduce the
important concepts.

Hello World: The first Jersey Web project

To set up the development environment you need the following artifacts (see
Resources for downloads):

• IDE: Eclipse IDE for JEE (v3.4+) or IBM Rational Application Developer
7.5

• Java SE5 or above

• Web container: Apache Tomcat 6.0 (Jetty and others will also work)

• Jersey libraries: Jersey 1.0.3 archive, which includes all the necessary
libraries

Setting up the environment for Jersey

First, create a server run time for Tomcat 6.0 on Eclipse. This is the Web container
for your RESTful Web application. Then create a dynamic Web application named
"Jersey," and specify the target run time to be Tomcat 6.0.

Finally, copy the following libraries from the Jersey archive to the lib directory under
WEB-INF:

• Core Server: jersey-core.jar, jersey-server.jar, jsr311-api.jar, asm.jar

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 16

http://www.ibm.com/legal/copytrade.shtml

• Core Client: (Used for testing) jersey-client.jar

• JAXB support: (Used in the advanced example) jaxb-impl.jar, jaxb-api.jar,
activation.jar, stax-api.jar, wstx-asl.jar

• JSON support: (Used in the advanced example) jersey-json.jar

Developing the REST service

Now that you have set up the environment you are ready to develop your first REST
service, which simply says "Hello" to the client.

To do this, you need to direct all the REST requests to the Jersey container by
defining a servlet dispatcher in the application's web.xml file. (See Listing 1.)
Besides declaring the Jersey servlet, it also defines an initialization parameter
indicating the Java package that contains the resources.

Listing 1. Define the Jersey servlet dispatcher in the web.xml file
<servlet>
<servlet-name>Jersey REST Service</servlet-name>

<servlet-class>
com.sun.jersey.spi.container.servlet.ServletContainer

</servlet-class>
<init-param>

<param-name>com.sun.jersey.config.property.packages</param-name>
<param-value>sample.hello.resources</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>
<servlet-name>Jersey REST Service</servlet-name>
<url-pattern>/rest/*</url-pattern>

</servlet-mapping>

Now you will write a resource named HelloResource, which accepts the HTTP GET
and responses with the cliché "Hello Jersey."

Listing 2. HelloResource in package sample.hello.resources
@Path("/hello")
public class HelloResource {

@GET
@Produces(MediaType.TEXT_PLAIN)
public String sayHello() {

return "Hello Jersey";
}

}

There are several points in the code that need highlighting:

• Resource Class: Notice the resource class is a plain old java object
(POJO) and is not restricted from implementing any interface. This adds
many advantages such as reusability and simplicity.

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 4 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Annotations: They are defined in javax.ws.rs.*, which are part of the
JAX-RS (JSR 311) specification.

• @Path: This defines the resource base URI. Formed with context root and
hostname, the resource identifier will be something like
http://localhost:8080/Jersey/rest/hello.

• @GET: This means that the following method responds to the HTTP GET
method.

• @Produces: Defines the response content MIME type as plain/text.

Testing the Hello app

To test the app, open your browser and enter the URL
http://<host>:<port>/<appctx>/rest/hello. You will see the response "Hello Jersey."
This is quite simple, with annotations taking care of the request, response, and
methods.

The following sections will cover the essential parts of the JAX-RS specification and
will be introduced using some code snippets from the Contacts example application.
You can find all the code for this more advanced sample in the source code package
(see Download).

Resources

Resources are the key parts that compose a RESTful Web service. You manipulate
resources using HTTP methods like GET, POST, PUT, and DELETE. Anything in
the application can be a resource: employees, contacts, organizations, everything. In
JAX-RX, resources are implemented by a POJO, with an @Path annotation to
compose its identifier. A resource can also have sub resources. In this case, the
parent resource is a resource collection while the sub resources are member
resources.

In the sample Contacts application, you will manipulate individual contacts and
collections of contacts. ContactsResource is the collection resource with the URI
of /contacts, and ContactResource is the member resource with the URI of
/contacts/{contactId}. The underlining JavaBean is a simple Contact class with id,
name, and address as its member fields. See Listings 3 and 4 for details. You can
also download the full source code package at the end of this article (see
Download).

Listing 3. ContactsResource
@Path("/contacts")
public class ContactsResource {

@Context
UriInfo uriInfo;

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 16

http://www.ibm.com/legal/copytrade.shtml

@Context
Request request;

@GET
@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
public List<Contact> getContacts() {

List<Contact> contacts = >new ArrayList<Contact>();
contacts.addAll(ContactStore.getStore().values());
return contacts;

}

@Path("{contact}")
public ContactResource getContact(

@PathParam("contact") String contact) {
return new ContactResource(uriInfo, request, contact);

}
}

There are several interesting things here that you should note.

• @Context: Use this annotation to inject the contextual objects such as
Request, Response, UriInfo, ServletContext, and so on.

• @Path("{contact}"): This is the @Path annotation combined with
the root path "/contacts" that forms the sub resources' URI.

• @PathParam("contact"): This annotation injects the parameters into
the path, contact id in this case, to the method parameter. Other available
annotations are @FormParam, @QueryParam, and so on.

• @Produces: Multiple MIME types are supported for responses. In this
and the preceding case, application/xml will be the default MIME type.

You may also notice that the GET methods return custom Java objects instead of a
String (plain text), as is shown in the previous Hello World example. The JAX-RS
specification requires that the implementation support multiple representation types
like InputStream, byte[], JAXB elements, collections of JAXB elements, and so on,
as well as the ability to serialize them to XML, JSON, or plain text as responses. I
will provide more information on representation techniques, and especially on the
JAXB element representation, later in this article.

Listing 4. ContactResource
public class ContactResource {

@Context
UriInfo uriInfo;
@Context
Request request;
String contact;

public ContactResource(UriInfo uriInfo, Request request,
String contact) {

this.uriInfo = uriInfo;
this.request = request;
this.contact = contact;

}

@GET

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 6 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
public Contact getContact() {

Contact cont = ContactStore.getStore().get(contact);
if(cont==null)

throw new NotFoundException("No such Contact.");
return cont;

}
}

The code for ContactResource is straightforward. And, note the following items:

• Representation Type Contact: Contact is a simple JavaBean annotated
by @XmlRootElement, which makes it possible to be represented as
XML or JSON.

• ContactStore: It's a HashMap-based in-memory data store whose
implementation is not important for this article.

Method

HTTP methods are mapped to CRUD (create, read, update and delete) actions for a
resource. Although you can make slight modifications such as making the PUT
method to be create or update, the basic patterns are listed as follows.

• HTTP GET: Get/List/Retrieve an individual resource or a collection of
resources.

• HTTP POST: Create a new resource or resources.

• HTTP PUT: Update an existing resource or collection of resources.

• HTTP DELETE: Delete a resource or collection of resources.

Because I have already introduced the GET method, I will start my descriptions with
POST. I will continue using the Contact example as I explain these other methods.

POST

Usually a new contact is created by filling in a form. That is, an HTML form will be
POSTed to the server, and the server creates and persists the newly created
contact. Listing 5 demonstrates the server-side logic for this.

Listing 5. Accept the form submission (POST) and create a new contact
@POST
@Produces(MediaType.TEXT_HTML)
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
public void newContact(

@FormParam("id") String id,
@FormParam("name") String name,
@Context HttpServletResponse servletResponse

) throws IOException {

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 16

http://www.ibm.com/legal/copytrade.shtml

Contact c = new Contact(id,name,new ArrayList<Address>());
ContactStore.getStore().put(id, c);

URI uri = uriInfo.getAbsolutePathBuilder().path(id).build();
Response.created(uri).build();

servletResponse.sendRedirect("../pages/new_contact.html");
}

Note that the following parts make this example work.

• @Consumes: Declares that the method consumes an HTML FORM.

• @FormParam: Injects the form input identified by the HTML name
attribute to this method.

• @Response.created(uri).build(): Builds a new URI for the newly
created contact as /contacts/{id} and set the response code as
201/created. You can access the new contact using
http://localhost:8080/Jersey/rest/contacts/<id>.

PUT

I use the PUT method to update an existing resource. However, this can also be
implemented as an update or by creating a resource as shown in the code snippet in
Listing 6.

Listing 6. Accept PUT request and create or update a contact
@PUT
@Consumes(MediaType.APPLICATION_XML)
public Response putContact(JAXBElement<Contact> jaxbContact) {

Contact c = jaxbContact.getValue();
return putAndGetResponse(c);

}

private Response putAndGetResponse(Contact c) {
Response res;
if(ContactStore.getStore().containsKey(c.getId())) {

res = Response.noContent().build();
} else {

res = Response.created(uriInfo.getAbsolutePath()).build();
}
ContactStore.getStore().put(c.getId(), c);
return res;

}

I cover a number of different concepts in this example, highlighting the following
concepts.

• Consume XML: The putContact() method accepts the request content
type of APPLICATION/XML, while this input XML will bind to the Contact
object using JAXB. You will find the client code in next section.

• Empty response with different status code: The response of the PUT

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 8 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

request will not have any content, but will have a different status code. If
the contact exists in the data store, I update this contact and return
204/no content. If there is a new contact, I create it and return
201/created.

DELETE

It's quite simple to implement a DELETE method. Take a look at Listing 7 for an
example.

Listing 7. Delete a contact identified by its ID
@DELETE
public void deleteContact() {

Contact c = ContactStore.getStore().remove(contact);
if(c==null)

throw new NotFoundException("No such Contact.");
}

Representation

In the previous sections, I illustrated several representation types. Now I'll briefly go
through them and give you a close look at the JAXB representation. Other supported
representation types are byte[], InputStream, File, and so on.

• String: Plain text.

• Response: A generic HTTP response that can contain your custom
content with a different response code.

• Void: An empty response with a status code of 204/no content.

• Resource Class: Delegate the process to this resource class.

• POJO: JavaBeans that are annotated with @XmlRootElement, which
makes it a JAXB bean, and which you can bind to XML.

• Collection of POJOs: A collection of JAXB beans.

JAX-RS supports the use of JAXB (Java API for XML Binding) to bind a JavaBean to
XML or JSON and vise versa. The JavaBean must be annotated with
@XmlRootElement. Listing 8 takes a Contact bean as an example. The fields
without an explicit @XmlElement annotation will have the XML element named the
same as themselves. Listing 9 displays the serialized XML and JSON representation
for one Contact bean. Representation for a collection of contacts is much the same
and has <Contacts> as the wrapper element by default.

Listing 8. Contact bean
@XmlRootElement
public class Contact {

private String id;
private String name;

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 9 of 16

http://www.ibm.com/legal/copytrade.shtml

private List<Address> addresses;

public Contact() {}

public Contact(String id, String name, List<Address> addresses) {
this.id = id;
this.name = name;
this.addresses = addresses;

}

@XmlElement(name="address")
public List<Address> getAddresses() {

return addresses;
}

public void setAddresses(List<Address> addresses) {
this.addresses = addresses;

}
// Omit other getters and setters

}

Listing 9. The representation for one Contact

XML representation:
<contact>
<address>

<city>Shanghai</city>
<street>Long Hua Street</street>

</address>
<address>

<city>Shanghai</city>
<street>Dong Quan Street</street>

</address>
<id>huangyim</id>

<name>Huang Yi Ming</name>
</contact>

JSON representation:
{"contact":[{"address":[{"city":"Shanghai","street":"Long

Hua Street"},{"city":"Shanghai","street":"Dong Quan
Street"}],"id":"huangyim","name":"Huang Yi Ming"}]}

For more advanced topics using JAXB see the project home in Resources.

Clients that communicate with REST services

In the example so far, I have developed a RESTful Web service that supports CRUD
contacts. Now I'll explain how to communicate with this REST service using curl and
Jersey client APIs. In doing so, I'll test the server-side code and give you more
information about the client-side technologies.

Use curl to communicate with the REST service

Curl is a popular command-line tool that can send requests to a server using
protocols like HTTP and HTTPS. It is a good tool to communicate with RESTful Web

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 10 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

services because it can send content by any HTTP method. Curl is already
distributed with Linux® and Mac, and there is a utility that you can install for the
Windows® platform (see Resources).

Now, let's initialize the first curl command that gets all the contacts. You can refer to
Listing 3 for the server-side code.

curl http://localhost:8080/Jersey/rest/contacts

The response will be in XML and will contain all the contacts.

Notice the getContacts() method also produces an application/json MIME-type
response. You can request content in this type also.

curl –HAccept:application/json
http://localhost:8080/Jersey/rest/contacts

The response will be a JSON string that contains all the contacts.

Now I will PUT a new contact. Notice that the putContact() method in Listing 6
accepts XML and uses JAXB to bind the XML to the Contact object.

curl -X PUT -HContent-type:application/xml --data "<contact><id>foo</id>
<name>bar</name></contact>" http://localhost:8080/Jersey/rest/contacts/foo

A new contact identified by "foo" is added to the contacts store. You can use URI
/contacts or /contacts/foo to verify the contacts collection or individual contact.

Using the Jersey Client to communicate with the REST service

Jersey also provides a client library that helps you to communicate with the server
as well as unit test the RESTful services. The library is a generic implementation that
can cooperate with any HTTP/HTTPS-based Web service.

The core class for the client is the WebResource class. You use it to build a request
URL based on the root URI, and then send requests and get responses. Listing 10
shows how to create a WebResource instance. Notice that WebResource is a
heavy object, so you create it once.

Listing 10. Create the WebResource instance
Client c = Client.create();
WebResource r=c.resource("http://localhost:8080/Jersey/rest/contacts");

The first Jersey client example is to send a GET request to fetch all the contacts and
print the response status code and response content. See Listing 11.

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 11 of 16

http://www.ibm.com/legal/copytrade.shtml

Listing 11. GET all contacts and print the response
ClientResponse response = r.get(ClientResponse.class);
System.out.println(response.getStatus());
System.out.println(response.getHeaders().get("Content-Type"));
String entity = response.getEntity(String.class);
System.out.println(entity);

Listing 12 shows a second example that creates a new contact identified by "foo".

Listing 12. Create one contact
Address[] addrs = {

new Address("Shanghai", "Ke Yuan Street")
};
Contact c = new Contact("foo", "Foo Bar", Arrays.asList(addrs));

ClientResponse response = r
.path(c.getId())
.accept(MediaType.APPLICATION_XML)
.put(ClientResponse.class, c);

System.out.println(response.getStatus());

Notice the APIs for the WebResource instance. It builds the URI, sets the request
headers, and invokes the request in one line of code. The content (Contact object) is
bound to XML automatically.

Listing 13 shows the last example that retrieves the contact identified by "foo" (which
I created in the last example) and then deletes it.

List 13. Retrieve "foo" contact and delete it

GenericType<JAXBElement<Contact>> generic = new GenericType<JAXBElement<Contact>>() {};
JAXBElement<Contact> jaxbContact = r

.path("foo")

.type(MediaType.APPLICATION_XML)

.get(generic);
Contact contact = jaxbContact.getValue();
System.out.println(contact.getId() + ": " + contact.getName());

ClientResponse response = r.path("foo").delete(ClientResponse.class);
System.out.println(response.getStatus());

Notice here that when you want to get a response that is a JAXB bean, you need to
use the generic type feature introduced in Java 2 Platform, Standard Edition (J2SE).

Play with these examples using the Jersey client. You can find more sample code in
the source package too (see Download). Also refer to the Jersey Web site for more
information (see Resources).

Conclusion

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 12 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Jersey can be integrated with other frameworks or utility libraries using the Jersey
integration libraries. Currently, Jersey can integrate with Spring, Guice, and can
support ATOM representation with apache-adbera integration. You'll find APIs and
guides on getting started on Jersey project home.

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 13 of 16

http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download
method

Source code Jersey.Sample.Contact.Src.zip 10KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 14 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/ajax/wa-aj-tomcat/Jersey.Sample.Contact.Src.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Find introduction and other related links for REST on Wikipedia.

• Check out the trial for Rational Application Developer.

• Read this paper on the Jersey client APIs to get more information.

• You can get more information on JAX-RS (JSR 311) on the Java Community
Process Web site.

• The JAXB Reference Implementation Project gives more information on JAXB.

Get products and technologies

• Download Eclipse from the project Web site

• Get Java SE 5.0 from the company Web site.

• Download Apache Tomcat 6.x from the project Web site.

• You can find downloads, sample code archives, users' guides, and JAX-RS API
documents on the Jersey Project Home.

• Get curl for Windows.

About the authors

Yi Ming Huang
Yi Ming Huang is a software engineer working on Lotus ActiveInsight in the China
Development Lab. He has experience on Portlet/Widget-related Web development
and is interested in REST, OSGi, and Spring technologies.

Dong Fei Wu
Dong Fei Wu is the chief programmer of the IBM WebSphere Dashboard Framework.
He is experienced in J2EE-related areas.

Qing Guo
Qing Guo is the development lead of the IBM WebSphere Dashboard Framework. He

ibm.com/developerWorks developerWorks®

Build a RESTful Web service using Jersey and Apache Tomcat
© Copyright IBM Corporation 2009. All rights reserved. Page 15 of 16

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.ibm.com/developerworks/downloads/r/rad/
https://www.sun.com/offers/details/Java_Jersey_Client.xml
http://jcp.org/en/jsr/summary?id=311
https://jaxb.dev.java.net/
http://www.eclipse.org/downloads/
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://tomcat.apache.org/download-60.cgi
https://jersey.dev.java.net/
http://curl.haxx.se/download.html
http://www.ibm.com/legal/copytrade.shtml

is experienced in J2EE-related areas.

developerWorks® ibm.com/developerWorks

Build a RESTful Web service using Jersey and Apache Tomcat
Page 16 of 16 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	RESTful Web service introduction
	JSR 311 (JAX-RS) and Jersey
	Build a RESTful Web service
	Resources
	Method
	Clients that communicate with REST services
	Conclusion
	Downloads
	Resources
	About the authors

