Project Supported By:

Kinetic Data, Inc.
235 East 6th Street
St. Paul, MN 55101
651-695-8566
www.kineticdata.com

KINETIC LINK

User’s Guide
Version 1.0.0

Revised August 28, 2006

Klink-Ars User’s Guide

© 2006, Kinetic Data, Inc.

Kinetic Data, Inc, a BMC Software® Solutions Partner.

Remedy, a BMC Software Company

Remedy, the Remedy logo and all other Remedy product or service names and registered
trademarks are trademarks of BMC Software, Inc.

Page 1

Klink-Ars User’s Guide

Contents

Chapter 1 Klink Overview. 3
01 o) 07)y FE OO PPNt 3

Chapter 2 Klink Design 4
CalliNg KINK.....ccueiiviiieiiieieiti ettt ettt ettt eete et e e re e b e eteebesseesseesaesseesaessesssaseessesseessesseessenseenns 4
KUNK RESUILS ..ottt et ettt et et sae et e st et et e et e bt entesseeneeeneenes 5

Chapter 3 Klink Framework Calls 7
Klink Management CallS..........c.ccveeierieiierieiesiesie sttt et eeteste et e saeesaesseessessaessesssessesssesseensenseensenns 7
Meta Information Related Calls.........ccocvviririiininiinineieicceeeeece sttt 8
Structure Related Callsoocovioiiiiiiiiicccecc ettt 10
Data Related Calls........c.couecivuiieiiieiiieiiieineenietrietetce ettt sttt e 11

Appendix A Sample Code 14
SAMPIE JAVA ClL......ooiiiiiiieiiiiieieciee ettt ettt te e e et e b e te e b e essesbeeraesneeraesreeneenes 14

Page 2

Klink-Ars User’s Guide

CHAPTER 1 KLINK OVERVIEW

What is Klink?

Kinetic Link, or Klink, is a web framework that provides an HTTP interface for interacting
with backend data sources. The framework itself is written using Java Servlets and Apache
Struts, however once Klink is running any language that can make HTTP requests and
parse the xml results can be used to consume the framework.

What is Klink-Ars?

The design of Klink allows it to be extended to interact with just about any backend data
source. Currently, the only data source supported is the Action Request System
(commonly referred to as Remedy). Klink-Ars is the version of Klink that provides the
ability to interact with Ars Servers. In the future, additional versions of Klink may be
released providing the ability to interact with SAP, HP Service Desk, or directly with
databases. For the purpose of this document, the term Klink will be used to refer to the Ars
distribution.

How does Klink work?

At its heart, Klink is an application that sits on top of a web server capable of serving Java
Servlets. Requests are made by submitting an HTTP request and specifying required
information as part of the URL, HTTP header information, or as HTTP parameters as
required by that particular framework call. These requests function very similar to the
standard requests made by browsers to retrieve web pages, in fact any web browser can
be used to begin interacting with a backend data source through Klink.

Why use Klink?

Klink was initially developed to provide an easy, extensible, and flexible way to interact with
Remedy. Remedy provides two basic methodologies (a Java Wrapper APl and Web
Services) for external interaction when the User Tool and Mid-tier are not sufficient.
Unfortunately, the APl is difficult to work with and manage and the Remedy Web Service
support is extremely limited. Kinetic Link is a way of interacting with Remedy systems
without the hassle of dealing directly with the APl or working around the limitations of web
services.

SuPPORT

For support please visit the support forums located on the Klink homepage
(http://www.kineticfoundation.org/klink), or contact the main development team at
klink@kineticdata.com.

Page 3

http://www.kineticfoundation.org/klink

Klink-Ars User’s Guide

CHAPTER 2 KLINK DESIGN

CaLuing KLINK

The Klink framework is called by making an HTTP request to a URL similar to
http://host.domain.com/klink/framework_call, where host.domain.com is the domain name
or IP address of the server hosting the Klink webapp and framework_call is a valid Klink
call (for a full list of framework calls, please see Chapter 3 — Klink Framework Calls). The
easiest way to test to see if Klink is functioning properly is to make the about framework
call. For example, pointing a web browser to htip./mybox:8080/klink/about will call the
about framework method on the instance of Klink running on the server mybox port 8080.

Making Calls to Klink-Ars

In order to successfully communicate with a Remedy server Klink needs to know two
things: the location of the Remedy Server and a set of valid user credentials. The server
information is included as part of the HTTP request URL and the user information can be
included either as part of that server information within the URL or as an HTTP header
element via HTTP basic authentication. The Klink framework itself is stateless, so server
and user information must be sent as part of every framework call.

SPECIFYING THE REMEDY SERVER

In general, the Remedy Server information is provided on the request URL after the
framework method name in the following format: Server:TcpPort:RpcPort where Server is
the domain name or IP address of the Remedy server, TcpPort is the TCP port that the
server is listening on, and RpcPort is the RPC port that the server is listening on. For
example, the framework call http:/mybox:8080/klink/usercheck/RemServ1:3000:9000 will
validate the current user on the Remedy server instance running on RemServ1, TCP port
3000, RPC port 9000. When not provided, the TCP and RPC port default to 0, which
attempts to contact the Remedy PortMapper service on the Remedy server to automatically
obtain the port information. The call http:/mybox:8080/klink/usercheck/RemServ1 is
identical to http./mybox:8080/klink/usercheck/RemServ1:0 as well as the call
http://mybox:8080/klink/usercheck/RemServ1:0:0. Therefore, if a TCP port is required to
connect to a Remedy server but not an RPC port the server information can be in the
following format: Server:TcpPort. If an RPC port must be specified without a TCP port the
following syntax can be used: Server:0:RpcPort.

SreciFyiNg THE REMEDY User CREDENTIALS

The easiest way to specify user credentials is as part of the server information on the URL.
This can be done by prepending user:pass@ to the server information, where user is the
username and pass is the password that Klink will use to interact with the Remedy server.

For example, http.//mybox:8080/klink/usercheck/Demo:dpass1@RemServ1 will attempt to

validate the user Demo using dpass? as the password on the remedy server RemServ1.

Page 4

http://mybox:8080/klink/user/Demo:dpass1@RemServ1
http://mybox:8080/klink/user/RemServ1:0:0
http://mybox:8080/klink/user/RemServ1:0
http://mybox:8080/klink/user/RemServ1
http://mybox:8080/klink/user/RemServ1:3000:9000
http://mybox:8080/klink/about
http://host.domain.com/klink/framework_call

Klink-Ars User’s Guide

Klink also supports specification of user credentials through HTTP Basic Authentication.
When interacting with Klink via a web browser, assuming no special actions are taken, the
first time you try to access a non-management framework call (any framework call not used
to interact with Klink itself) you will be prompted for a username and password. These
credentials are then used as your default user credentials for the length of that browser
session. Most browsers allow Authentication to be reset by prepending user:pass@ to the

web server. For example, http.//myUser-myPass@mybox:8080/klink/user will reset your

default user credentials to myUser and myPass.

Whenever a non-management framework call is accessed without specifying user
credentials (either as part of the server information or via HTTP Basic Authentication) a
HTTP 401 Unauthorized response will be returned. When credentials are sent both via
HTTP Basic Authentication and as part of the server information the credentials specified
as part of the server information take precedence over those specified using basic auth.

KLink REsuLTS

All Klink framework calls return an HTTP response with a text/xml content type and xml the
body of the response. Following is an example of the xml skeleton returned from a
framework response:

<Response RequestMethod="entries” Success="true">
<Messages>
<Message Type="InvalidParameter”>
Unrecognized HTTP parameter "itemss", parameter ignored.
</Message>
</Messages>
<Result>
</Result>
</Response>
The root element, Response, contains attributes representing the invoking method name
and the success of the call as well as the child nodes Messages and Result. The Success
attribute will always have the value true when the framework call was successful and false
when there was an error processing the request.

Whenever there is a problem processing the request, a Message will be included as a child
element to the Messages node. A Message element includes the MessageType and the
actual message. See Generic Klink Messages and Klink-Ars Messages for a description of
the types of messages returned in this node.

The Result element will either be null or have a single child element that represents the
result of a framework call. See Chapter Three or Appendix B for a complete list of result
children.

Generic Klink Messages

Klink can provide the users with three standard message types: InvalidParameter,
InternalException, and UnexpectedException. Below is an example of each as well as a
short description.

Page 5

Klink-Ars User’s Guide

INVALIDPARAMETER

An InvalidParameter message is used to alert the Klink user to any invalid framework call

parameters that don’t prevent the call from completing. Invalid framework call parameters
could be unrecognized parameter names or invalid parameter values that have fell over to
a default.

<Message Type="InvalidParameter”>
Unrecognized HTTP parameter "itemss", parameter ignored.
</Message>
<Message Type="InvalidParameter”>
Unable to process the Includenullitems prameter, "truee" is not a valid value.
</Message>

INTERNALEXCEPTION

An InternalException message is used when there was an expected problem handling the
framework request. These include problems such as invalid parameter values for
parameters without a default, problems connecting to the Remedy server, and problems
generating the result element.

<Message Type="InternalException”>
Unable to convert the sort items to numerical values, "w" is not a valid number.
</Message>

MobeLExcepTiON

A ModelException message is used when there is a problem creating, modifying, or
converting any of the result elements or when the entry xml specified for an update or
create call is invalid.

<Message Type="ModelException”>
Unable to process an entry with conflicting inherent (specified as Entry Xml
attribute) and explicit structure IDs.

</Message>

UNExPECTEDEXCEPTION

An UnexpectedException message is used when there was an unrecoverable problem
handling the framework request. These can occur for values that the Klink framework
doesn’t validate as well as extreme cases which havn’t been encountered yet.

<Message Type="UnexpectedException”>
java.lang.IllegalArgumentException: length longer than
AR MAX ENTRYID SIZE

</Message>

Klink-Ars Messages

Klink can also return Ars Messages back to the user. These can be error messages,
warning messages, or any messages triggered by a Remedy filter message action. All
Message elements created from Ars messages have a type of “ArsMessage” and may
have additional attributes such as the message number and Ars message type.

<Message MessageNumber="59" Type="NOTE">
This message was generated by a filter message action!

</Message>
<Message MessageNumber="59" Type="WARNING">
No such user exists -- successfully connected as a guest user: </Message>

<Message MessageNumber="353" Type="ERROR">
You have no access to form: User</Message>
</Messages>

Page 6

Klink-Ars User’s Guide

CHAPTER 3 KLINK FRAMEWORK CALLS

KLink MANAGEMENT CALLS

About
Call: /klink/about

This call returns information about the running system. This includes the version
information for both Klink and the libraries required for klink to run. Libraries shown as
missing will prevent Klink from functioning properly.

Logconfig
Call: /klink/logconfig
Parameters: configfile, configproperties

This framework call is disabled by default. This framework call can be enabled by
uncommenting it from the struts-config.xml file. For more information please see the
Installation and Configuration Guide. When logconfig is called without specifying a
parameter the current log4j configuration parameters are displayed, along with the current
source of those configurations. Specifying a configfile will do a live reload (flushing current
properties and loading the new) of the logging configuration, loading parameters from the
file specified. Properties can be added/modified by hand via the configproperties
parameter. Using the configproperties parameter will not force a flush of the current
configuration.

Sample1: http.//<klinkhost>/klink/logconfig
This will display the current log4j configuration parameters.

Sample2: http://<klinkhost>/klink/logconfig?configfile=DEFAULT
This will reset the log4j configuration parameters based on the file specified in the

application's web.xml file (See the Installation and Configuration Guide for more
information).

Sample3: http.//<klinkhost>/klink/logconfig?configfile=C:\log4j\GenericDEBUG.cfg
This will flush the current log4j configuration parameters and load a new configuration

based on the file specified (In this case GenericDEBUG.cfg).

Sample4: http:/<klinkhost>/klink/logconfig?configproperties=

log4j.logger.com.kd.klinkzDEBUG
This will either add or modify the current log4j.logger.com.kd.klink configuration parameter

without flushing previous configurations.

Sample5: http:/<klinkhost>/klink/logconfig?configfile=C:\log4\GenericDEBUGL ogging.cfg

&configproperties=log4j.logger.com.kd.klink:2DEBUG, fileAppender
This will flush the current configurations, load the configurations from the configfile

specified, and add or modify the current log4j.logger.com.kd.klink configuration parameter.

Page 7

Klink-Ars User’s Guide

MEeTA INFORMATION RELATED CALLS

Configurations
Call: /klink/configurations/<Datasource>
Parameters: items

Retrieves configuration information for the Remedy server specified by Datasource.
Configuration items are specified by name, a complete list is available by making a
configurations call without including the items parameter.

Sample1: http:/<klinkhost>/klink/configurations/<datasource>
This will return a list of all of the configurations for the <remedyserver> Remedy Server.

Sample2: http.//<klinkhost>/klink/configurations/<datasource>?items=SERVER_ID,
SERVER NAME.SERVER VERSION

This will return only the SERVER_ID, SERVER_NAME, and SERVER_VERSION
configurations.

Permissions
Call: / klink/permissions/<Datasource>/<Structure>[/<ltemID>[,<ltemID>[...]]]
Parameters: items

Retrieves form and field permissions. The base framework call will return permissions to
the form itself. When the items parameter is included the framework call will return form
permissions and the permissions for all of the specified ItemIDs. When ItemIDs are
specified as a part of the framework call only those specified will be returned, without the
form permission information.

Sample1: http:/<klinkhost>/klink/permissions/<datasource>/<structure>
This will return the permissions for the structure specified.

Sample2: http:/<klinkhost>/klink/permissions/<datasource>/<structure>?items=1,2,3
This will return the permissions for the structure speciried and the three fields shown.

Sample3: http.//<klinkhost>/klink/permissions/<datasource>/<structure>?items=all
This will return the permissions for the structure specified and the permissions for all of the
structure items associated with that structure.

Sample4: http:/<klinkhost>/klink/permissions/<datasource>/<structure>/1
This will return the permissions for structure item 1 on the structure specified.

Sample5: http./<klinkhost>/klink/permissions/<datasource>/<structure>/1,2,3
This will return the permissions for structure items 1, 2, and 2 on the structure specified.

Page 8

Klink-Ars User’s Guide

Statistics
Call: /klink/statistics/<Datasource>

Retrieves statistics information for the Remedy server specified by Datasource. Statistics
items are specified by name, a complete list is available by making a statistics call without
including the items parameter.

Sample1: http.//<klinkhost>/klink/statistics/<datasource>
This will return a list of all of the statistics for the <datasource> Remedy Server.

Sample2: http./<klinkhost>/klink/statistics/<datasource>?items=CURRENT USERS
This will return only the statistics specified in the items parameter.

Usercheck
Call: /klink/usercheck/<Datasource>

Validates the user by attempting to log in to the Remedy system. If the user was unable to
log in (due to bad password, bad account name on a server with guest accounts disabled)
or there were any messages that occured during login (such as warning messages if the
user has been logged in as a guest) then these will be included in the Klink response. The
result element contains the user credentials used for the login. The below examples are all
specifying the user credentials as part of the datasource in the framework call, however
usercheck functions the same when they are specified as the HTTP Basic Authentication
header.

Sample1: http:/<klinkhost>/klink/user/TestUser:correctpass@ <datasource>

This will return the context info and no messages because everything is correct.

Sample?2: http:/<klinkhost>/klink/user/TestUser:wrongpass@<datasource>

This will return an error message because the password is incorrect.

Sample3: http.//<klinkhost>/klink/user/NoUser@<datasource>
Assuming NoUser is a not an existing user, this will return the context info and a warning
message if guest accounts are enabled or an error message.

Page 9

Klink-Ars User’s Guide

STtrucTURE RELATED CALLS

Structure
Call: /klink/structure/<Datasource>/<Structure>
Parameters: items

Returns a description of the structure specified. By default, this will describe all data-
related structure items. To include non-data-related structure items set the items
parameter to "all". A subset of structure items can be retrieved by specifying a list of IDs as
the value of the items parameter.

Sample1: http:/<klinkhost>/klink/structure/<datasource>/<structure>
This returns a description of the data-related structure items on the structure specified.

Sample2: http.//<klinkhost>/klink/structure/<datasource>/<structure>?items=all
This returns a description of all of the structure items on the structure specified.

Sample3: hitp.//<klinkhost>/klink/structure/<datasource>/<structure>?items=1,3,7
This returns a description of the structure items with IDs 1, 3, and 7.

Structures
Call: /klink/structures/<Datasource>

Retrieves a list of all of the structures the requesting user has access to on the Remedy
Server.

Sample1: http.//<klinkhost>/klink/structures/<datasource>

Page 10

Klink-Ars User’s Guide

DATA ReLATED CALLs

Attachment

Call: /klink/attachment/<Datasource>/<Structure>/<EntrylD>/<AttachmentltemID>

This returns an attachment entry item and is the only way to retrieve the actually
attachment data. Calls to entry will only return the attachment name and size. The data is
represented as the file contents base64 encoded. To retrieve the byte stream of the
attachment simply decode the value of the data element.

Create
Call: /klink/create/<Datasource>[/<Structure>]
Parameters: entry, returnentry

This will create an entry within the specified structure. The simplest way to specify the
entry information is on the Url via the http parameter "entry". However, the best practice for
production systems is to set the content type of the HTTP request to be application/xml and
include the entry xml as the request body. The format of the entry xml is identical to the
xml returned as a result of the "entry" framework call, however only the entry items required
for creation need to be present. By default, this call will only return an empty Entry element
with the ID and Structure attributes set. If a full view of the Entryltems is required, the
"returnentry” parameter can be set to true. The Structure can either be set as an attribute
to the Entry element or as part of the request Url. If it appears in both and is different, Klink
will return a ModelException.

Sample1: http:/<klinkhost>/klink/create/<datasource>?

entry=<Entry Structure="TestForm"/>
This will return likely return an error because field 2 (Submitter) and 8 (Short Description)

are required and don't have defaults.

Sample2: http.//<klinkhost>/klink/create/<datasource>/TestForm?entry=<Entry
Structure="TestForm"><Entryltem ID="2">Bob</Entryltem><Entryltem
ID="7">Assigned</Entryltem><Entryltem ID="8">

Description</Entryltem></Entry>
This will create an entry in the Assigned state (field id 7 is Status).

Sample3: http./<klinkhost>/klink/create/<datasource>/TestForm?returnentry=true&
entry=<Entry><Entryltem ID="2">$USER$</Entryltem><Entryltem
ID="7">Assigned</Entryltem><Entryltem ID="8">

Description</Entryltem></Entry>
This will create an entry in the Assigned state and return the full description of the entry.

Sample4: http:/<klinkhost>/klink/create/<datasource>/TestForm?returnentry=true&
entry=<Entry Structure="TestForm2"><Entryltem ID="2">$USER$

</Entryltem><Entryltem ID="7">Assigned</Entryltem><Entryltem
ID="8">Description</Entryltem></Entry>
This will return and error since the implicit and explicit structures are different.

Page 11

Klink-Ars User’s Guide

Delete
Call: /klink/delete/<Datasource>

Removes an entry from the database.

Sample1: http:/<klinkhost>/klink/delete/<datasource>/<structure>/000000000000001
This will physically remove the entry with ID 000000000000001 from the structure

specified.

Entries
Call: /klink/entries/<Datasource>/<Structure>
Parameters: items, limit, qualification, range, sort, target

This returns a list of entries matching specific criteria. The call retrieves a list of up to the
limit specified entries (and any entry items included in the items parameter, or all of them if
"all" is specified) matching the qualification, sorts them according to the sort parameter (the
entry item id by default), applies the range to this sorted list, then selects a target from that
range. The items parameter affects what information about the entry is returned, by default
only the entry id. The limit parameter sets the maximum number of entries to retrieve,
however the limit can't be larger then that supported by the datasource. The limit defaults
to the datasources set limit, or unlimited if the datasource doesn't have a limit. The
qualification can be any qualification or query string, which the datasource supports, and
defaults to a qualification, which is always true. The range parameter accepts a list of
ranges, which can be either single indexes or a range in the format <first>-<last> and
defaults to the entire list of entries. The sort parameter takes a list of entry item IDs to sort
on and can either use increasing sorting (+) or decreasing sorting (-). By default, entries
are sorted by ID. Finally, the target parameter defines which of the entries within the range
are to be returned; the first, the last, a random entry, or all of the entries by default.

Sample1: http.//<klinkhost>/klink/entries/<datasource>/TestForm
This will return the IDs of all of the entries in the TestForm structure.

Sample2: http:/<klinkhost>/klink/entries/<datasource>/BensForm?
items=7.8&qualification="1">9&range=1,3-5&sort=1-,7 &target=rand

This will retrieve a list of entries with entry item 1 (or Field 1 for Remedy, Request ID by

default) greater than nine, sort them based on decreasing values of entry item 1 and

increasing values of entry item 7 (Field 7, or status, for Remedy), pick a random entry from

the first, third, fourth, or fifth entries, and return the Entry ID, Status (field 7), and Short

Description (field 8).

Page 12

Klink-Ars User’s Guide

Entry
Call: /klink/entry/<Datasource>/<Structure>/<Entry|D>[,<EntryID>[...]]
Parameters: items

This will return the generic xml representation for each of the specified entry IDs. By
default, only the entry items that have non-null values will be returned. Null valued entry
items can be included by setting the Hitp parameter items to "all". Additionally, a subset of
specific entry items can be requested by passing in a list of entry item IDs through the
items parameter.

Sample1: http./<klinkhost>/klink/entry/<datasource>/<structure>/000000000000001
This will return an Xml description of the entry with the ID specified from the structure

specified (but won't include entry items with null values).

Sample2: http./<klinkhost>/klink/entry/<datasource>/<structure>/000000000000001
Zitems=all

This will return an Xml description of the entry with the ID specified from the structure

specified including all null valued entry items..

Sample3: http:/<klinkhost>/klink/entry/<datasource>/TestForm/000000000000008,
000000000000012

This will return an Xml description of the entries specified from TestForm (but won't include
fields with null values).

Sample4: http./<klinkhost>/klink/entry/<datasource/TestForm/000000000000008,
000000000000012?items=8,536880920

This will return an Xml description of the entries specified from TestForm but will only

include the entry items with IDs of 8 (short description) and 536880920 (say for example an

attachment field).

Update
Call: /klink/create/<Datasource>[[/<Structure>]/<EntrylD>]
Parameters: entry, returnentry

This will update an entry within the specified structure. As with create, the entry xml can be
specified either by the http parameter "entry" or as an application/xml Http request body
and is the same format as that which is returned by the entry framework call. By default,
this call will only return an empty Entry element with the ID and Structure attributes set. If a
full view of the Entryltems is required, the "returnentry" parameter can be set to true. The
Structure can either be set as an attribute to the Entry element or as part of the request Url.
If it appears in both and is different, Klink will return a ModelException. Similarly, the entry
ID can either be set as an attribute to the Entry element or as part of the request Url. If the
entry ID is not present in either, or it appears in both and is different, a ModelException will
be thrown.

Page 13

Klink-Ars User’s Guide

AprPENDIX A SampLE CoDE

SampLE JAva CALL

// Set up the required parameters

String klinkServer = “MyServer:8080";
String remedyServer = “RemedyServer”;
String credentials = “Demo:demopass”;

// Make the initial connection

String urlString = “http://” + klinkServer + “/klink/create/” + remedyServer;
java.net.URL url = new URL("http://flounder:8080/klink/create/womprat");
java.net.URLConnection conn = url.openConnection();

conn.setDoOutput (true) ;

// Set the required header information

String encoding = new sun.misc.BASE64Encoder () .encode (credentials.getBytes());
conn.setRequestProperty ("Authorization", "Basic " + encoding);
conn.setRequestProperty ("Accept", "application/xml") ;

conn.setRequestProperty ("Content-Type", "application/xml");

// Write the request

java.io.OutputStreamWriter wr = new OutputStreamWriter (conn.getOutputStream());
wr.write ("<Entry Structure=\"TestForm\"/>");

wr.flush();

// Prepare for the response
java.io.InptStreamReader isr = new InputStreamReader (conn.getInputStream());
java.io.BufferedReader rd = new BufferedReader (isr);

// Retrieve the response

String line;

while ((line = rd.readLine()) != null) {
System.out.println(line);

}
// Clean Up

wr.close();
rd.close();

Page 14

