
Readme for Macro/Keybind Mod API API Version 10
Using this API you can add your own features to the Macros Mod scripting engine, before you begin, you should be comfortable

with using MCP to decompile Minecraft and make mods and also with building a .jar file containing compiled classes.

Using the API with your development environment
The API package contains both the compiled and obfuscated binaries and also the unobfuscated sources designed for use with

the Minecraft Coder Pack (MCP). You can choose to put the binaries into the minecraft jar before decompilation or just use the

MCP sources. Use the binaries if you are working on obfuscated code and just want to include a library on your build path.

The sources consist of two Eclipse projects, MacrosAPI and CommonLib. MacrosAPI contains the API classes and CommonLib

contains a small number of common upstream dependencies which are not a part of the API. You will need to include both

projects in your workspace if you are using the sources with Eclipse.

Requirements for modules
Modules must be provided in .zip or .jar format and must be named module_module_module_module_ followed by the name of your module, eg.

module_mymodule.jar

Actions and providers in your module must implement the correct API version for the version of macros you wish to use the

module with.

Check the console output when loading the game to check your module was loaded or ignored.

About the API
There are 3 kinds of classes you can include in your module which provide different functionality:

Script Actions

Script Actions are the "commands" which exist in the scripting language. They can execute in different modes

depending on the type of command.

NormalNormalNormalNormal actions should do their processing in the execute() function and should return false to all

of the type enumeration functions (except isClocked(), see below).

LatentLatentLatentLatent actions should do their processing in the canExecuteNow() function and use execute()

as the completion function. They should return false to all of the type enumeration

functions.

Stack pushStack pushStack pushStack push actions can manipulate the stack, they should return true to isStackPushOperator() and

implement the executeStackPush() function. They can optionally implement

executeStackPop() if they need to provide special handling for certain pop operations.

Stack push operators must implement canBePoppedBy() and return true for at least one

type of stack pop operator.

Stack popStack popStack popStack pop actions pair with stack push actions, they should only return true in isStackPopOperator()

and the rest of the pop logic is handled by the canBePoppedBy() and executeStackPop()

in the corresponding push.

CondCondCondConditionalitionalitionalitional actions push the stack, they should return true to isConditionalOperator() and perform

their processing in executeConditional().

Conditional popConditional popConditional popConditional pop actions are like pop actions but for conditionals, they should likewise return true for

isStackPopOperator() but must also implement matchesConditionalOperator() in a

similar way to the canBePoppedBy() function on regular stack pushes.

Script Actions are singletons and may be called asynchronously by different simultaneously-running macros. They are

thread-safe but should not make any assumptions about the identity of the calling thread.

Because script actions themselves are not generally stateful, they can provide stateful behaviour by storing state data

in the command instance which is invoking them. To achieve this the IMacroAction instance is provided to all calls

against the action and the instance.SetState() and instance.GetState() can be used to store and retrieve an instance

state object which you can use to make stateful behaviour possible.

Script actions also recieve tick updates from the script engine regardless of whether they are currently executing, you

can use this tick callback to allow your script action to perform processing outside of its execution, ticks callbacks can

be "clocked" (called only once per tick) or "unclocked" (called every frame) and the type of callback is determined by the

isClocked() function. I recommend returning true if you don't plan to use tick events, to reduce the overhead in the

script engine.

isClocked() also determines the latent behaviour of the script action, since clocked events will experience a 1 tick

wait between calls to canExecuteNow(), whereas unclocked events will receive a callback every frame.

For regular script actions (latent or otherwise), execution in a script is straightforward. When the action is queued for

execution, the script engine first calls the canExecuteNow() function. This function should return true if the executive

should call the execute() function, or false to pause script execution. You can do as much processing in the

canExecuteNow() function as you like and return false for each tick until your process is "finished", at which point

execute() will be called.

execute() is called once canExecuteNow() returns true, and should return either null or an IReturnValue

implementation. Return values are not implemented in the current executive, but actions can return a return value

appropriate to their function if you choose and it will be supported in the future. getLocalMessage() and

getRemoteMessage() are supported, and can be used to send log messages to the user, or chat messages to the

server respectively.

For examples of how the canExecuteNow/execute functions interact, consider three existing script actions:

LOGLOGLOGLOG doesn't need to provide any latent functionality so always returns true in canExecuteNow().

It provides its functionality in execute() and returns a return value with a localMessage.

WAITWAITWAITWAIT doesn't do anything in execute(), but initialises a timer in its canExecuteNow() function

and stores it in the instance state. It returns false until the timer has expired at which point

it returns true. It does nothing in execute() except return null.

FOVFOVFOVFOV uses the canExecuteNow() function to interpolate the player's FOV value by a tiny amount

each tick. Once the interpolation is complete it returns true. In the execute() function it

sets the FOV to the final value in case the interpolator suffered a rounding error during its

processing.

In general, script actions should perform their processing as quickly as possible. Latent functions should process over

several ticks by using canExecuteNow() as a latent tick function.

Script actions mustmustmustmust return their action name in the toString() function!

Variable Providers

Variable Providers provide dynamic variables into the script engine when scripts are run by the user. Variable providers

should be as light weight because they are updated frequently.

Registered variable providers receive a call to updateVariables() each frame and after every script action is

executed. The provider should calculate/obtain the variable values and store them in an internal cache to avoid

recalculating where necessary.

Variable providers should return one of four types in response to a call to getVariable()

null A provider should return null if the variable can not be provided by this provider.

Integer Boxing is required to allow the engine to recognise the variable type. For numeric variables

the provider should return an Integer

Boolean Boxing is required to allow the engine to recognise the variable type. For boolean variables

the provider should return a Boolean.

String String variables should return a String object.

In general, variable providers should always return the same variables, if variables are calculated dynamically then you

should ensure that variables are initialised/returned with a default value when a real value is not available.

Scripted Iterators

Scripted iterators are a special type of variable provider that support providing an array of values inside a FOREACH

loop. In general, scripted iterators should build their collection in their constructor, and read from the cached values

during iteration.

Implementing API objects
The three types of API objects are available in the IScriptAction, IVariableProvider and IScriptedIterator

interfaces. To create your custom objects you must implement the relevant interfaces. To complete the implementation

of the API, you must annotate your class with an APIVersion annotation with value set to the Macros API version you

wish to support (currently 10).

onInit() is only called for your custom class if the APIVersion annotation matches the active API version number.

You should register your action or provider with the ScriptCore in this function.

For example, in a custom script action:

@Override
public void onInit()
{
 // Register this action with the script core.
 ScriptCore.registerScriptAction(this);
}

@Override
public String toString()
{
 return "customaction";
}

Script actions MUST override toString() and return their action name. This is the name which is then used in scripts

to invoke the action.

