
Rock solid UI modeling using
annotation processing

Case of study

@gdigugli

@jubaudry

Speakers

• @gdigugli – Gilles Di Guglielmo

• Java Developer since 1999

• Software architect at

• ILOG – IBM

 2D Graphic toolkit

 Rule Engine

• Prima-Solutions

 SOA Platform for J2EE

 Domain models code generators

• @jubaudry – Julien Baudry

• Java Developer since 2007

• Senior developer at

• Prima-Solutions

 SOA Platform for J2EE

 Domain models code generators

 Reinsurance software

Agenda

Context

Quick demo

Modeling approach

Dependency Model

Field features

Extensions

Live coding demo

Back to LesFurets.com

Context at LesFurets.com

• 5 questions sets for an insurance aggregator

 Car form (160 questions)

 Motorbike form (180 questions)

 Health form (50 questions)

 Home form (70 questions)

 Loan form (40 questions)

• A lot of questions with business rules linked by
dependencies and business rules

Sample : old question set for motorbike

Nature of dependencies

• Visibility
 I declare a claim -> question set for this claim appears

• Value range
 I’ve been owning a car for one year -> constraint on the

date for a claim should be later than the car’s purchase
date

• Reset
 I change the number of occurred claims from 2 to 1 ->

previous details of claim number 2 should be dropped

• Validation
 I change my date of birth -> I could not obtain my car

license before being 18 years old

Complexity and bug hell

• Historical design was
based on a page scope

• All the rules between
fields were embedded in
each page code

• Business rules were
directly written on the
widget values without
MVC pattern

• Page navigation was
triggering model updates
that were sent to the
server

• Governance of the business
rules between fields was
difficult

• Lots of side effects between
rules

• Improving or adding new
rules provided a lot of
regressions

• Dependencies between
fields was not documented

• Adding new fields or
shuffling the fields order
required a lot of testing

The CSS ids : a limited starting point

• All the form fields were still having a CSS class
and an ID for CSS skinning

 No real taxonomy

 No guaranty that CSS ids are unique

 Styling is evolving with his own constraints

 Not the original purpose of CSS

Using CSS on web forms hides an
implicit model that could be leveraged

Requirements

• Ensuring non regression even with frequent
changes on forms
 No unexpected side effects between business rules

 Make unit testing possible

• Enabling a fast and up-to-date understanding of
the form complexity

• Reducing the maintenance effort

• Supporting fields shuffle

• Supporting AB testing

MDL4UI our OSS sandbox

• Available on github

 http://github.com/lesfurets/mdl4ui

• Full framework and example

• Based on GWT and Twitter bootstrap

• Ready to fork and play

• Requires Java 6+ and Maven

• 50 sec to build and run from scratch

WE ACCEPT PULL REQUESTS

http://github.com/lesfurets/mdl4ui

Context

Quick demo

Modeling approach

Dependency model

Field features

Extensions

Live coding demo

Back to LesFurets.com

Context

Quick demo

Modeling approach

Dependency model

Field features

Extensions

Live coding demo

Back to LesFurets.com

MDL4UI model concepts

Screen

MDL4UI model concepts

Blocks

MDL4UI model concepts

Groups

MDL4UI model concepts

Fields

Introducing MDL4UI model layers

FieldID – GroupID – BlockID – ScreenID - ScenarioID MetaModel

Field – Group – Block - Screen
Model Instance

(runtime)

FieldView – GroupView – BlockView - ScreenView
View of the MVC
pattern (runtime)

Customization layer

EFieldSample – EGroupSample – BlockSample - EScreenSample Model

screens() : ScreenID [0..*]

nextScreen(screenID : ScreenID [1]) : ScreenID [1]

ScenarioID

nextBlock(blockID : BlockID [1]) : BlockID [1]

ScreenID

elementType() : ElementType [1]

childs() : UIElement [0..*]

UIElement

type() : FieldType [1]

FieldID

ElementID

GroupID

BlockID

FieldID – GroupID – BlockID – ScreenID - ScenarioID MetaModel

We define a UI MetaModel, and
all concept for other layers.

screens() : ScreenID [0..*]

nextScreen(screenID : ScreenID [1]) : ScreenID [1]

ScenarioID

nextBlock(blockID : BlockID [1]) : BlockID [1]

ScreenID

PASSWORD_CONFIRMATION

MAX_WEEKLY_EMAILS

EMAILS_PREFERENCES

EMAIL_ACCEPTED

PHONE_NUMBER

FIRST_NAME

LAST_NAME

PASSWORD

LANGUAGE

BIRTHDATE

TIMEZONE

LOGIN

EMAIL

«enumeration»

EFieldSample

SCR_REGISTRATION_BY_PHONE

SCR_REGISTRATION_BY_MAIL

SCR_DONE

«enumeration»

EScreenSample

elementType() : ElementType [1]

childs() : UIElement [0..*]

UIElement

PERSONAL_INFORMATIONS

PHONE_SETTINGS

MAIL_SETTINGS

ACCOUNT

«enumeration»

EBlockSample

type() : FieldType [1]

FieldID

SCENARIO_PHONE

SCENARIO_MAIL

«enumeration»

EScenarioSample

EMAIL_GROUP

«enumeration»

EGroupSample

ElementID

GroupID BlockID

Customization layer

EFieldSample – EGroupSample – BlockSample - EScreenSample Model

We define our UI model (screens,
fields, etc.), only using

enumerations.

elementType() : ElementType [1]

childs() : UIElement [0..*]

UIElement

-label : String [1]

-help : St ring [1]

-placeholder : String [1]

-renderer [1]

-state : FieldState [1]

-validation : FieldValidation [1]

Field

-label : String [1]

Block

Element

Screen

Group

-items

0..*

-blocks

0..*

-fields

0..*

Field – Group – Block - Screen
Model Instance

(runtime)

We instantiate our UI model,
with i18n resources injected.

-controlGroup : ControlGroup [1]

-validation : HelpInline [1]

FieldView

elementType() : ElementType [1]

childs() : UIElement [0..*]

UIElement

-form : WellForm [1]

-modify : But ton [1]

-submit : Button [1]

-fieldset : Fieldset [1]

-act ions : FormActions [1]

BlockView

+getScreen() : Screen [1]

ScreenView

-container : Container [1]

DefaultScreenView

ElementView

-row : Row [1]

GroupView

-childs

1
-childs

0..*
-childs

0..*

FieldView – GroupView – BlockView - ScreenView
View of the MVC
pattern (runtime)

We instantiate all HTML widgets
from a UI model instance, using

GWT and twitter bootstrap
frameworks.

From the point of view of a screen

MetaModel
Model

Instance
(runtime)

View of the
MVC pattern

(runtime)
Model

From the point of view of a field

MetaModel
Model Instance

(runtime)
View of the MVC
pattern (runtime)

Model

Implementing the model

Why modeling as code ?

• Sorry we are Java developers

• Built-in continuous integration for the model

• No code generation required to implement the model

• Modeling concept understanding is not required

• Modeling stack is transparent for UI development

• Tooling is very fast

• Memory footprint is very low

• A lot of consistency checking is done by the compiler

• More benefits to come in the next slides …

Context

Quick demo

Modeling approach

Dependency Model

Field features

Extensions

Live coding demo

Back to LesFurets.com

We need a dependency graph

• Implementing business rules involves triggering
the behaviors using a dependency model

• No semantics on the dependency
• Fields receive dependency events with source

attribute
• Each field implements various features to react

to dependency events
 Visibility of the fields
 Value range definition
 Reset of value
 Validation of value

Validation dependency

Visibility dependency

In code declarative
dependencies modeling

• Implemented using enumerations
• Only direct dependency between fields
• Reference one field as source
• Reference multiple fields as targets

Dependencies processing

A

B C

D

A –> B,D
B –> D,A
D –> A,B
C –> D,A,B

A –> B
B –> D
D –> A
C –> D

Declared
dependencies

Deep dependencies
resolved

Dependencies
graph

Hand written code Underlying model Generated code

Deep dependency, dependency cycle,
graph validation

• Cycle declaration between fields is allowed

• Deep dependencies are statically resolved
 For each field the deep dependencies are

generated during the compilation

 Model declared in EFieldDependency[Sample]

 Deep dependency are generated in
EFieldDeepDependency[Sample]

 Dependency order is not guaranteed

• No runtime infinite loop

Simple dependency API

public interface FieldDependencyFactory {

 FieldID[] get(FieldID fieldId);
}

• Implementation is generated by our maven plugin
• Graph is built from the FieldDependency declaration
• Deep dependencies are statically resolved for each field

 Look at the implementation EFieldDeepDependency[Sample]

• No runtime computation of the dependencies
• Safe and efficient

• Implements a java code generator
• XMI export of the model from code
• Computes the deep dependencies graph
• Based on the maven project compilation

classpath

• Executes the MDL4UI maven plugin
• Loads previously compiled model in Mdl4ui-

model
• Generates the graph as code
• Compiles the generated code

Code generation using a maven
custom plugin

Mdl4ui-base

Mdl4ui-maven

Mdl4ui-fields

Mdl4ui-model

Model interfaces
• Model declaration

• Model interfaces
• Model declaration

Walkthrough the model
in a maven plugin

 void lookOver(ElementID parentId) {

 for (ElementID childId : parentId.childs()) {

 if (childId.elementType() == GROUP ||

 childId.elementType() == BLOCK)

 lookOver(childId);

 else

 System.out.println("field :" + childId);

 }

 }

• Simple tree API to explore the structure

• Easy use of recursive algorithms

Maven plugin declaration

 <plugin>

 <groupId>org.mdl4ui</groupId>

 <artifactId>mdl4ui-maven</artifactId>

 <executions>

 <execution>

 <id>generate-model</id>

 <phase>process-classes</phase>

 <goals>

 <goal>generateModel</goal>

 </goals>

 <configuration>

 <screenClasses>

 <screenClasse>org.mdl4ui.ui.sample.EScreenSample</screenClasse>

 </screenClasses>

 </configuration>

 </execution>

 ….

 Model instance is
available in the maven
project classpath
through the maven
dependencies

 We load the model
from the screens
elements

Context

Quick demo

Modeling approach

Dependency Model

Field features

Extensions

Live coding demo

Back to LesFurets.com

Goal and inspiration

• UI logic is often synonym of spaghetti code

• Decoupling UI and logic is often difficult to implement

• Slicing the logic in tiny pieces of code is the key for :

 Testability

 Governance

• Inspiration

 MVC (client side)

 JavaBean

 BeanValidation

 Injection, CDI, Guice, Dagger

• Browser runtime using JavaScript is a heavy constraint

 Inversion of control is difficult to implement

Features provided by fields

• FieldInitializer
 Initialize default value and range

• FieldEditor
 MVC pattern to sync the model during form completion
 Validation during form completion
 Reset after visibility changes

• FieldBehaviour
 Visibility update
 Dependency update

• Labeling
 Attached widget labels, help messages, place holders

FieldInitializer API

public interface FieldInitializer {

 void init(Field field,

 FieldEvent event);

}

• Initialize the field during the
bootstrap of the application

FieldEditor API

public interface FieldEditor {

 void updateFromContext(Field field, WizardContext context,

 FieldEvent fieldEvent);

 void updateContext(Field field, WizardContext context,

 FieldEvent fieldEvent);

 void reset(Field field, WizardContext context,

 FieldEvent fieldEvent);

 FieldValidation validate(Field field, WizardContext context,

 FieldEvent fieldEvent);

}

• WizardContext is the
entry point of the
domain model for
the MVC pattern

• updateFromContext
and updateContext
read and update the
domain model of the
MVC pattern

• reset is called after a

field is hidden or a
value change from a
dependency

FieldBehaviour API

public interface FieldBehaviour {

 boolean isVisible(FieldID fieldId,

 WizardContext context,

 FieldEvent fieldEvent);

 void updateValue(Field field,

 WizardContext context,

 FieldEvent event);

}

• isVisible returns the
visibility following the
value of the domain
model

• updateValue is triggered
by the dependency
management

Declaring a feature of a field

public class AcceptEmailsBehaviour extends DefaultBehaviour {

 @Override

 public boolean isVisible(FieldID fieldId, WizardContext context,

 FieldEvent fieldEvent) {

 SampleContext sampleContext = (SampleContext) context;

 Boolean acceptEmail = sampleContext.getUserAccount().isAcceptEmail();

 return acceptEmail != null && acceptEmail;

 }

}

@InjectSampleBehaviour(

 @OnField({ EFieldSample.EMAILS_PREFERENCES,

 EFieldSample.MAX_WEEKLY_EMAILS }))

Injecting the field features with
annotations and meta annotation

Meta annotation Custom annotation Injected resource

@InjectInit

@InjectSampleInit
Reference one or more EFieldSample

Any class implementing
FieldInitializer

@InjectEditor @InjectSampleEditor
Reference one or more EFieldSample

Any class implementing
FieldEditor

@InjectBehaviour @InjectSampleBehaviour
Reference one or more EFieldSample

Any class implementing
FieldBehaviour

@InjectLabel

@InjectSampleLabel
Reference one or more EField, EGroup,
EBlock and EScreen[Sample]

Any interface method without
parameter returning a String

@InjectHelp @InjectSampleHelp
Reference one or more EField, EGroup,
EBlock and EScreen[Sample]

Any interface method without
parameter returning a String

@InjectPlaceHolder @InjectSamplePlaceHolder
Reference one or more EField, EGroup,
EBlock and EScreen[Sample]

Any interface method without
parameter returning a String

The plumbing using APT

We use Annotation Processing Tool to bind together the
various field features and the fields
• APT is a standard tooling packaged with the JDK since

Java 6
• Allows to generate source code and resources in the

source path of the compiler during the early stage of the
compilation process

• Source code processing based on javax.lang.model API
• Code processing is triggered by annotation
• No built-in code generator

 Use basic template mechanism to simplify source code
generation

Generated pattern to glue things
together

 Code generation is triggered
by @InjectBehaviour

 APT processor is executed
during the compilation of
Mdl4ui-field project

 We perform some validations,
like detecting duplicated
injections

 We use a factory pattern
returning the right instance for
each field

 An implementation for GWT
client runtime purpose

 A mock implementation GWT
less for unit testing purpose

+isVisible(fieldId : FieldID [1], context : WizardContext [1], fieldEvent : FieldEvent [1]) : boolean [1]

+updateValue(field : Field [1] , context : W izardContext [1] , event : FieldEvent [1]) : void [1]

FieldBehaviour

+get(fieldId : FieldID [1]) : FieldBehaviour [1]

FieldBehaviourFactory

.. .

«Generated»

MockFie ldBehaviourFactory

.. .

«Generated»

GwtFieldBehaviourFactory

DefaultBehaviour

-behaviours *-behaviours *

Replicate the factory pattern
for each feald feature

Meta annotation Feature factory

@InjectInit

@InjectEditor

@InjectBehaviour

@InjectLabel

@InjectHelp

@InjectPlaceHolder

Context

Quick demo

Modeling approach

Dependency Model

Field features

Extensions

Live coding demo

Back to LesFurets.com

Content of MDL4UI

[INFO] Reactor Summary:
[INFO]
[INFO] mdl4ui-root SUCCESS [0.375s]
[INFO] mdl4ui-i18n SUCCESS [1.921s]
[INFO] mdl4ui-base SUCCESS [0.829s]
[INFO] mdl4ui-model SUCCESS [2.860s]
[INFO] mdl4ui-maven SUCCESS [1.641s]
[INFO] mdl4ui-fields SUCCESS [4.751s]
[INFO] mdl4ui-webapp SUCCESS [39.632s]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 52.166s

• Mdl4ui-I18n : foundation framework for text resource injection, containing APT
processors and annotations

• Mdl4ui-base: foundation framework for the UI model interfaces, containing
APT processors and annotations

• Mdl4ui-model: model instance for our code sample, including fields and
dependencies

• Mdl4ui-maven: maven plugin part of the foundation framework that generate
and check the dependency graph between the fields, export the model in XMI

• Mdl4ui-fields: business rules, validation and field editors (MVC pattern) for
our sample

• Mdl4ui-webapp: the web
application that assembles
the code, compiles various
resources with GWT and
adds styling

SCR_REGISTRATION_BY_PHONE

PERSONAL_INFORM ATIONS : M y Informations

BIRTHDATE :

Birth date

EMAIL : Emai l FIRST_NAME :

First Name

LAST_NAME :

Last Name

PHONE_SETTINGS : M y Settings and Phone Number

LANGUAGE :

Language

PHONE_NUMBER

 : Phone

Number

TIMEZONE :

Timezone

ACCOUNT : My Account

LOGIN : Login PASSWORD :

Password

PASSWORD_CO

NFIRMATION :

Confi rm your

password

Generate UML to
understand the model

MDL4UI UML

ScreenID Package

BlockID Package

GroupID Package

FieldID
Instance

specification

FieldLabel Class

FieldDependency Dependency

• Use to document the model and specify evolution
• Visualize the dependency graph
• Artifact Generated during the continuous integration

Field tracking

• Use field features to track
 Field inputs

 Field validation errors

 Screen and block navigation

• Use of tracking results
 Find common user profiles

 Improve forms for faster input

 Find ergonomic issues

AB testing and shuffling the fields

• Define two versions of a webpage (A and B)

• Split traffic amongst those versions

• Determine which one was more successful
 Validate any new design

 Improve the conversion rate

• How it can be done?
 Define new fields and new FieldBehaviour

 Define two different scenarios

Unit testing

• Need to test fields using regression tests:
 validation rules

 field visibility update

 domain model read & update

 domain model reset

• Generated mock factories allow to execute
features implementation without a web
application container (GWT)

Unit testing

 @Test
 public void dependencies() {
 FieldDependencyFactory dependencyFactory
 = new FieldDependencySampleFactory();

 Collection<FieldID> dependencies =
 Arrays.asList(dependencyFactory.get(EMAIL_ACCEPTED));

 assertEquals(2, dependencies.size());
 assertTrue(dependencies.contains(EMAILS_PREFERENCES));
 assertTrue(dependencies.contains(MAX_WEEKLY_EMAILS));
 }

Unit testing

 @Test
 public void visibility() {
 FieldDependencyFactory dependencyFactory = new FieldDependencySampleFactory();
 MockFieldBehaviourFactory behaviourFactory = new MockFieldBehaviourFactory();

 SampleContext context = new SampleContext();

 for (FieldID dependency : dependencyFactory.get(EMAIL_ACCEPTED)) {
 FieldBehaviour behaviour = behaviourFactory.get(dependency);

 context.getUserAccount().setAcceptEmail(false);
 assertFalse(behaviour.isVisible(dependency, context, null));

 context.getUserAccount().setAcceptEmail(true);
 assertTrue(behaviour.isVisible(dependency, context, null));
 }
 }

Selenium and integration testing

• Selenium is a test automation framework for
web applications

 sends commands to a browser

 retrieves results (parsing the DOM)

• Supports:

 Java, Ruby, Python, C#, etc.

 Firefox, Chrome, IE, iOS & Android browsers, etc.

Selenium and integration testing

• Generation of page object classes

 representing a screen or a block with selenium
framework

 exposing methods to manipulate each fields

• Make testing easier

 hide selenium framework complexity

 minimize the test maintenance effort

Selenium and integration testing

SCR_REGISTRATION_BY_PHONE

SCR_REGISTRATION_BY_MAIL

SCR_DONE

«enumeration»

EScreenSample

PERSONAL_INFORMATIONS

PHONE_SETTINGS

MAIL_SETTINGS

ACCOUNT

«enumeration»

EBlockSample

 @Test
 public void testRegistration() {
 RegistrationByMailScreen registrationScreen
 = new RegistrationByMailScreen(getDriver());
 registrationScreen.assertDisplayed();

 registrationScreen.getPersonalInformations()//
 .assertDisplayed()//
 .setFirstName("John")//
 .setLastName("Doe")//
 .setBirthdate(new DateMidnight(1980, 1, 1))//
 .setEmail("john@doe.com")//
 .submit();

 registrationScreen.getMailSettings().assertDisplayed;
 }

Context

Quick demo

Modeling approach

Dependency Model

Field features

Extensions

Live coding demo

Back to LesFurets.com

Context

Quick demo

Modeling approach

Dependency Model

Field features

Extensions

Live coding demo

Back to LesFurets.com

Refactoring and Agile practice

• Opportunity based

• 12 iterations with production deployment

• 1 year of step by step refactoring

• Test coverage from 10% to 50% (in progress)

• Automated testing on more than 400 fields in
5 complex forms

Project implementation timeline

Under investigation

• Multi Variable Testing

• Machine learning algorithm on field tracking

• Dynamic shuffling of the fields order

• Adaptive path for the forms completion

Enjoy MDL4UI

