Meme Tracker

Social Network Generation and Ranking

Eshwaran Vijaya Kumar
Dept. of Electrical & Computer
Engineering
The University of Texas at
Austin
eshwaran@utexas.edu

Categories and Subject Descriptors
H.4 Information Systems Applications|: Machine Learn-
ing, Text Mining

General Terms
Machine Learning, Text Mining, MapReduce

1. INTRODUCTION

The term meme was first coined by the British evolutionary
biologist Richard Dawkins in [6] to identify cultural ideas
that replicate, mutate and spread in a society. The Internet,
as a social ecosystem, provides an interesting space where
ideas can spread rapidly, change and die out in a matter of
weeks. The purpose of this study is two-fold: to design an
information retrieval system that can identify short phrases
of text that are repeated ("memes”), and to recover and
analyze the latent social network that could have potentially
acted as a flow pathway for the memes. As part of this
project, we explore some ways of modeling a meme, most
of which are tied together by the fact that in the context
of written text on the Internet, we can consider a meme to
be a short and semantically significant phrase of text that
occurs frequently at different times and locations.

The first phase of the project is to model a meme and use
that model to discover memes in a document collection. Our
modeling techniques are inspired primarily by prior work in
this field by Leskovec et. al in [9] and by Kolak and Schilit
in [8]. In their paper, Leskovec et. al present "algorithms
for tracking phrases that travel through online media and
for clustering textual variants of such phrases”. Similarly,
Kolak and Schilit report their work on scalable algorithms
for mining quotations from large book collections. Our ex-
tension to these works lies in modifying some assumptions
that the respective authors make, which we think impose
significant restrictions on the quality of discovered memes
and the structure of the latent social network uncovered.

Leskovec et. al. [9] have designed a scalable system for de-
tecting memes that emphasizes the fact that a meme evolves
and exhibits rich variations. They have also analysed the la-
tent social network and news cycle that is generated when

temporal information is incorporated with the extracted memes.

Their model of a meme, while recognizing the fact that a

Saral Jain
Dept. of Computer Science
The University of Texas at
Austin
saral@cs.utexas.edu

Prateek Maheshwari
Dept. of Computer Science
The University of Texas at

Austin
prateekm@utexas.edu

meme can mutate, requires a strong assumption that every
such meme is enclosed within quotation marks. Another as-
sumption that the authors make is that the evolution of a
meme over time can be tracked by the increase in length of
the meme. While the first assumption might be reasonable
in the well formatted world of news sites, it usually isn’t
valid in the stylistically less stringent world of blogs. It is
also not clear why the second assumption should be true
in general. We relax these assumption and propose that the
information carried by a meme is represented in a single sen-
tence or a part of it. While this assumption is not without
its flaws, it helps us split a document or a blog post into
smaller chunks from which phrases that appear in multiple
documents can be identified. We can then use lexical, prob-
abilistic and semantic similarity measures to identify pieces
of text that are similar to each other. We believe that this
process will discover memes that are semantically similar to
each, despite lexical mutations like paraphrases or transpo-
sition of words. For example, the phrase "Lipstick on a pig”
will be identified as a mutation of the phrase "Lipstick on a

7

hog”.

Kolak and Schilt [8] have created a system for creating hy-
perlinks derived from quotations shared between books in
an online library, that gives us an inspiration for another
way of discovering memes. They make an assumption that
books that share quotations are related to each other, which
falls within Dawkins’ original definition of a meme. They
point out that there are situations where different parts of
a single quotation might be shared between different books.
This is analogous to scenarios where parts of the same idea
get utilized in multiple websites, which therefore are part
of the same latent social network that we are trying to un-
cover. For example, we would like to identify that the meme
”Lipstick on a pig” could be part of a "super-meme” that dis-
cusses the book: "Lipstick on a Pig: Winning In the No-Spin
Era by Someone Who Knows the Game” [5].

The second phase of the project is to generate the latent
social network and analyze its quality. Irrespective of the
modeling approach we take, we form an adjacency list using
the fact that two or more blog posts share a meme and
impose a direction on the edges using time meta-data.

Once the various meme-graphs are generated, evaluation of
the quality of the graph needs to be done. For evaluating
results, we propose an indirect method of evaluation: we
design a search engine that we hope will do better for the

purpose of meme identification. The idea is to rank the
blog posts in some manner so that the results returned by
the search engine are ordered. The rankings are discovered
using the page rank algorithm which when given a directed
and possibly weighted graph assigns a relative importance
to every node in a set depending on the number of incoming
edges. This algorithm has been used with great success in
ranking web graphs where edges are based on hyperlinks
that are incoming to a particular node. Since it is relatively
difficult for us to obtain a gold dataset of ranked memes, we
wish to use the results of this hyperlink graph as a baseline
to answer the question: Do the graphs we generate discover
at least as much of the social network that would have been
generated by explicit hyperlinks?

In this document, we describe our project, explain the progress

made and talk about challenges that we are currently facing
and steps that we plan to take to overcome those. We also
illustrate a plan of action to tie up the several components of
the project together. The document is organized as follows:
we first describe two different ways of generating a meme-
graph. In the next part we discuss our proposed method for
evaluation of the memes. We finally present a timeline of
the steps that we plan to take over the next few weeks to
complete the project successfully.

2. EXTENDING SHINGLES

The first phase of the project is automatically identifying
and tracking memes from a corpus of documents that are po-
tentially linked to each other by memes. Kolak and Schilt [8]
describe a scalable technique for detecting quotations that
are shared between pairs of documents, that we employ here
for meme detection. We describe this in the next section and
discuss the implementation challenges that we face.

2.1 Sequence Generation Overview

Given a corpus of documents (cleaned blog posts), we gener-
ate key-value pairs where the key is an ngram and value is a
pair of documents that contains that key. To do this, we first
parse each blog post and generate shingles composed a space
delimited collection of words. These shingles are then used
to build an inverted index where the keys are shingles and
value is a "bucket list”. The bucket list is a data structure
that is an array of buckets, where each bucket contains an
unique identifier for a blog post and a position marker which
identifies the start of the shingle in the document. The next
phase is to merge shingles that are contiguous to each other
in a pair of documents. We parse each document and gener-
ate all the shingles in it. We then create a set of sequences
with the following method: We start from the first shingle in
the source document and create a set of ”active” sequences
where each sequence has a unique identifier marking a doc-
ument that shares this shingle, and the position where this
shingle is present in the document. Then for successive shin-
gles, we iteratively walk through the sequences to determine
if the next potential shingle in a given sequence is present in
the successive shingle’s bucket list and decide to either con-
clude the sequence or keep continuing the building of the
sequence based on that result.

2.2 Implementation and Challenges
The first implementation challenge that we have worked on
is the cleaning of the dataset to strip away HTML tags. We

had initially built an in-memory python processor which uti-
lized the ”beautiful soup” library to strip the HTML tags.
This turned out to be too slow (even though we just need a
linear pass through the dataset) and we instead rewrote the
code in Java using a similar library to do this with MapRe-
duce.

The second challenge that we are currently working on is
trying to efficiently scale the sequence generation phase in
Map Reduce. Our current approach involves a sequence of
two jobs. The first job constructs shingles from the cleaned
up text and generates a shingle table where the values are
a list of buckets. In our second job, the map phase involves
transmitting as key, a bucket, and as value, the entire bucket
list. A partitioner ensures that all the keys corresponding
to a single document go to a single Reduce task. Within a
single reducer, we compute all possible sequences that are
shared by a ”source document”, which was the key in the
reducer, and all other documents.

There were issues with this approach that emerged as we
were trying to scale the process up: initially, we had an is-
sue with a large number of out of memory errors. Our first
approach had used text strings to represent the bucket lists,
we have optimized that by using an array of IntWritable
pairs instead. The next issue is the large amount of inter-
mediate data that is generated in the form of the bucket lists
themselves: we are trying to solve this issue by compress-
ing the intermediate output using a splittable compression
codec such as LZO.

2.3 Grouping Of Sequences

An intermediate step that could lead to a richer graph struc-
ture is to group similar memes into a ”"super-meme”. The
idea is to merge groups of sequences that have a partial
overlap to form a single, larger, meme. For this, we use the
approach used by Kolak and Schilit [8]. For a given doc-
ument, we order all the sequences by their start positions
in the document. We then initialize a group that contains
the first sequence. We iteratively merge any sequence that
has an overlap with the group’s current active sequence, and
add all the corresponding documents into the group. A new
group is created if we find that the current sequence has
no overlap with the previous group. The final result of this
MapReduce-able phase is, for each super-meme, an array of
document identifiers that share a substring of it.

3. DIRECT STRING SIMILARITY

The approach taken by Kolak and Schilit [8], i.e., generating
and extending shingles and then grouping the final results,
has a few drawbacks. For one, they set the minimum size of
shingles to 8 to reduce the amount of intermediate output.
A long shingle length would require sentences containing the
meme to have a significant and exact overlap, an assumption
that is not necessarily true in practice. For example, the
following two sentences have the same information content,
but would not be detected by the shingles approach for a
shingle length greater than 5 (corresponding to the ngram
7at the Intel Developer Forum”).

The processors were announced in San Jose at the In-
tel Developer Forum.

The new processor was unveiled at the Intel Developer

Forum 2003 in San Jose, Calif.

One way to overcome this limitation would be to use a
smaller minimum size for shingles. However, setting the
shingle size lower would increase the amount of intermediate
output and the size of each bucket list, and will consequently
increase the amount of time spent extending the shingles for
each document in the next phase. Also, in the shingling
approach, we generate the shingles irrespective of sentence
boundaries, which generates many redundant shingles.

Another problem is that if the different variations of the
meme have been paraphrased, the shingling approach would
limit the detectable meme to the longest sequence that two
sentences share. Furthermore, if the memes are generated
by following a shingling approach, we need to group the
memes that share common subsequences into their common
”superstring” by grouping the shingles based on the words
they share. This problem is equivalent to finding a hamil-
tonian path in a graph of the meme strings in which the
strings are the nodes and all memes that share a substring
are directionally connected. The problem of finding Hamil-
tonian paths in a graph is known to be NP-hard and the
solution will not necessarily give accurate results since the
meme strings might have an ngram overlap without being
originally related.

To avoid these problems we propose an alternate approach
to generating and grouping the memes based on a pairwise
string similarity computation. For this approach, we con-
sider a sentence to be the atomic unit that conveys infor-
mation related to a meme. The idea behind the process
is to shortlist the strings from the document collection that
might be related to each other and compute one or more syn-
tactic/semantic string similarity measures for those pairs of
strings. If the score is above a certain threshold (to be de-
termined experimentally), they will be considered to be the
same meme. The process is described below in more detail.

3.1 Preprocessing for Shortlisting Pairs

In the pairwise string similarity approach described above,
we need to shortlist the strings that might potentially be
the same meme and compute their similarity. Given enough
computing power and time, we could compute the similarity
of all the strings in the corpus with each other. However, this
is not practically feasible given the large number of strings,
and hence we shortlist the strings we will be computing the
similarity scores for. To shortlist the strings, we make an
assumption that similar strings share at least one ngram (of
a size to be determined experimentally) and conversely, that
each pair of strings that share the same ngram is a candidate
for similarity computation. We construct an inverted index
from ngrams to a postings list, containing strings that con-
tain that particular ngram, from the document collection. If
we take a cross product of the postings list for each ngram
with itself and keep unique string pairs, we get a list of the
string pairs that are candidates for similarity computations.

3.2 Experimental Results

We conducted experiments to analyse the effect of ngram
size for shortlisting pairs on the efficiency and effectiveness
of retrieval, and the results have been reported in another

project report to by one of the authors. The major con-
clusions from the analysis are that the accuracy of retrieval
decreases linearly while the amount of output generated de-
creases exponentially for values of n >= 3. The exact value
of n used for shortlisting the pairs depends on the size of the
dataset, but we can increase the value of n if the amount of
intermediate data grows too large without sacrificing too
much accuracy.

3.3 Computation of String Similarity

We will implement and evaluate some of the lexical, proba-
bilistic and semantic similarity measures described in [3], [1]
and [11] on MapReduce. As of now, we have implementa-
tions of two of the word overlap based similarity measures,
which we are now in the process of evaluating. The first
measure is based on the word overlap between two stings
and computes the simialirity of two strings as the number
of common words divided by the length of the source string.
The second measure takes the inverse document frequency
weights for the common words into account and multiplies
the score for the first measure by the sum of inverse doc-
ument frequency values for each of the words in the inter-
section. Once we have evaluated these measures, we will
implement more sophisticated measures like locality sensi-
tive hashing and translation based models.

The procedure for generating similarity rankings for memes
can be implemented as a MapReduce job that takes each
pair to be evaluated as the input. The Map task computes
the similarity score for the pair and emits a (<string 1, string
2>, score) pair. We use a partitioner and a group compara-
tor to combine and sort the similarity scores for all strings
with a particular string. The reducer then recieves and emits
each string and a list of strings similar to it, sorted by their
similarity scores. The final output of the job is then, for
each meme, a sorted list of memes that are most similar to
it.

3.4 Grouping

The output of the previous phase is, for each string, a rank-
ing of similar strings by similarity scores. Using this output
we can create a grouping of similar memes by computing a
closure on top n similar strings by the following algorithm:

1. Select a string Si whose group is to be computed.
Choose a value of n. Create an empty grouping set.

2. For string Si, select the top n strings ranked by their
similarity to Si. Let these strings be Sij, 1 <=j <=n.

3. If Sim(Sij, Si) > a threshold, add Sij to the grouping
set. Mark Si as visited.

4. If all strings in the set are visited, stop. Else, for each
string Sij in the set not yet visited, repeat step 2.

The threshold is required to remove strings with low simi-
larity scores from groups. If we repeat this process for each
string, we have a grouping of the memes discovered in the
first phase.

4. GRAPH GENERATION

Depending on whether or not we group similar memes to-
gether, we can generate the meme graph in two different
ways. Both approaches are discussed below.

4.1 With Grouping

With either of the two approaches for discovering memes,
we have two ways of constructing the meme graphs for com-
puting the pagerank. We can either group similar memes
together, or we can use individual memes to induce a graph.

If we have a grouping of similar memes, we construct the
edges between blog posts that contain those memes, and
the direction of the edge is determined by the time stamps
of the blog posts. The edges are directed from the post
that appears earlier to the post that appears later, following
that idea that the newer post borrows from the older one,
and hence is less important. From a grouping of posts that
contain similar memes, we construct a single directed path
from the newest post in the group to succesively older ones.
One alternative to this that we want to explore is creating an
edge from a new post to all other older posts. The intuition
is that with this method, the oldest post will have the most
weight (since pagerank gives emphasis to incoming links,
and reduces emphasis for outgoing links), followed by the
2nd oldest post, and so on. The motivation behind this is
that if we have a single edge between the posts, then the
weights computed by page rank would be very small for all
the intermediate posts, since each of them would have just
one inlink and outlink for a given meme.

4.2 Without Grouping

Another approach to construction a graph is not grouping
the memes together and instead creating a single edge for
each meme string, directed from the newer post to the older
post that shares that string.

Regardless of whether grouping is done, we generate an ad-
jacency list as follows: We take a pair or array of documents
and impose directed edges between them. The direction of
the edge is determined by the time stamp of the blog. We
expect that this will be possible in an in-memory program
where an index that contains document ID and time stamp
is loaded and utilized to generate the edge directions.

S. EVALUATION

The motivation here is to evaluate the richer graphs gen-
erated by mining memes and inferring links between the
memes using temporal information against the baseline ap-
proach of using the link graph generated on the raw blog
data to determine pageranks for blogs. The pageranks ob-
tained using these different graphs are separately used to en-
hance the relevant results obtained for user’s meme queries.
We claim that our approaches would outperform the base-
line approach of inferring pagerank by link structure, since
we mine richer semantics of the data by inferring memes.

We implement a search engine for memes on the blog dataset
using Apache Lucene [7], which is an open source library
with text indexing and searching capabilities. Lucene has
been successfully used in larger active internet websites, to
power high performing search engines. In addition to in-

dexing and searching, Lucene offers advanced search sup-
port including Boolean operators, wildcard searches, field
and range queries.

Implementation for this module has been completed on the
blog dataset. We break the query into terms and operators.
There are two types of terms: single terms like ”bottle” or
”man”, and phrases like "big fish”, i.e. a group of words in
quotes.

Further the user can also combine multiple terms with Boolean
operators like AND, NOT etc. to form complex queries. In
addition, we support wildcard searches to help the users
search for inexact versions of meme queries (these include
77”7 and 7*” symbols with the usual regular expression eval-
uations). An interesting feature we take advantage of is to
support fuzzy searches based on Levenshtein algorithm to
search for terms with similar phonetics or with similar lex-
ical similarity to a given query. We ascertain that these
complex queries can give the user support to perform inex-
act searches or an exploratory search, where he is unsure of
the exact meme he is looking for.

We also build an inverted index of the blog corpus, to per-
form keyword based searches. The index hierarchy can be
seen in Figure 1 and terms are simple strings. Indexes store

= consists of

Documents [l

Fields * consists of

Terms

Figure 1: Index Hierarchy

information about terms in order to improve search effi-
ciency.

We store the inverted index and the frequency with which
the term appears in each document. Further as part of prox-
imity data we also store the position where the term appears
in each document along with the normalization scores used
to calculate the ranking for a given query. Please note that
for this blog data, we consider each blog entry as a separate
instance rather than the whole blog website. For scoring
we use a combination of the Vector Space Model (VSM) of
Information Retrieval [2] and the Boolean model to deter-
mine how relevant a given Document is to a User’s query.
The idea behind the Vector space model is the more times
a query term appears in a document relative to the num-
ber of times the term appears in the entire collection, the
more relevant that document is to the query. VSM score of
document d for a query q is the Cosine Similarity measure
of the weighted query vectors V(gq) and V(d) which can be

computed as:

P V(g)"V(d)

cosine-similarity(q,d) VTV @] (1)
where V(¢)TV(d) is the dot product of the weighted vectors,
and |[V(q)|| and ||[V(d)| are their Euclidean norms. We
obtain the relevant blogs for a given query using the above,
with the scores. In the rest of the paper, we augment these
results with other techniques to improve the search results
for the user.

We improve on the results obtained by the above technique
by using the pagerank [12][4], technique for determining the
importance of blogs in the dataset. Without expanding on
the idea of pagerank in detail, the intuitive idea behind the
algorithm is to measure the relative importance of a page
(a blog entry in this case) with respect to the entire set of
documents.

In brief, given a page = which is referenced by pages t1 to
tn, with O(t) as the out-degree of the page, a as the random
jump factor and a graph containing total N nodes, the page
rank for ¢t can be expressed as :

PR(r) = a(y) + (1 a)Z(P(iS;)) @)

i=1

A point to observe here is that pagerank determines the
importance of a blog irrespective of the query and hence
can be augmenting with the above VSM approach to bet-
ter satisfy the users information need, by reordering search
results according to both criteria. In terms of implementa-
tion, dealing with a massive blog data, we have implemented
an extremely optimized version of page rank in map-reduce
using in-map combiners, range partitioning and combiners.
We also had to partition the link graph induced from the
dataset in order to be able to deal with the massive amount
of data.

To combine the above techniques, we are looking at vari-
ous heuristics like term weighing, re-ordering of results etc.
However, at this stage we have not yet settled on the exact
combining strategy which would yield optimum results for
our dataset. There is an appreciable amount of literature
available to best combine the orderings obtained for rank-
ing purposes [10], like the weighted majority algorithm and
we plan to implement the same. We are also experimenting
with BoostingTermQuery, BoostingSpanQuery and Custom-
ScoreQuery features provided in Lucene to encorporate the
page rank evaluations while returning relevant results to the
user.

The above combination of vector-space model and page rank
on the original link graph of the blogs will be our baseline
estimate to evaluate the users meme queries. As mentioned
in the previous sections, we propose three different ways
to generate the link graph after extracting memes from the
data:

1. Using the shingling approach without grouping.
2. Using the shingling approach with grouping.

3. Using direct similarity comparisions with grouping.

We evaluate the page rank on the graphs obtained using
the three techniques above and combine them separately
with the vector space model approach. Then we proceed to
evaluate the returned results for a large set of users meme
queries (as well as generic queries, for the sake of exper-
imentation). We claim that we would be able to obtain
much enhanced results, relevant to the users meme query
using our approaches than the baseline page rank mecha-
nism, as explained in the previous sections. We believe that
in using our approaches we successfully mine richer seman-
tics for memes, by extracting relevant memes from the blogs
data, thus creating a graph which more closely models the
importance of blogs for meme data.

In addition to the above techniques for evaluation, we pro-
pose to build an interface to view/interact with memes ex-
tracted by our algorithm on the blog dataset. We utilize the
search engine to enable the user to perform complex queries
on the dataset for obtaining the memes. As a stretch goal,
we aim to enable a kind of exploratory search using a faceted
interface where the user can browse the search results in an
exploratory manner, thus enabling him to satisfy his infor-
mation need. As a part of future work we also propose
to present the memes evolution in the dataset for a specific
meme query, using the temporal information available. This
opens up avenues for evaluating the quality of the generated
memes as well as the performance of each of the above men-
tioned graphs using human evaluations/mechanical turk in
addition to the above experiments against the baseline ap-
proach. Finally, another opportunity is to generate a smaller
synthetic dataset to analyze memes, their properties, and to
determine how well our search engine and meme detection
algorithm recover them. Having this smaller gold standard
data, would enable us to perform experiments and retrieval
precision and recall measures for our algorithm. Finally,
for the sake of experimentation, we already have gold stan-
dard dataset for generic queries (non-meme) and expected
results for our original dataset and it would be interesting to
observe how our inferred page ranks from meme-graph com-
pare against the baseline pagerank and the gold-standard
results for those generic queries.

6. PROJECT PROGRESS/MILESTONES

1. Preparing the data - Clean the blog dataset using Java
and JQuery and convert it to JSON for further pro-
cessing.

e Who: Eshwaran
e Status: Completed

2. Implement substring matching using longest common
substrings on mapreduce to identify common memes
in pairs of blog posts.

e Who: Eshwaran
e Status: In Progress

e Projected Completion Date: November 11, 2011

3. Preprocess the dataset to shortlist meme strings for
which similarity scores are to be completed.

e Who: Prateek

e Status: In Progress

10.

11.

e Projected Completion Date: November 5, 2011

Implement a way of computing string similarity based
on various similarity measures to find common memes
in pairs of blog posts.

e Who: Prateek

e Status: In Progress

e Projected Completion Date: November 10, 2011
Once we have the memes for the dataset, find and im-
plement a way to group all blog posts for a given meme.

e Who: Eshwaran, Prateek

e Status: Pending

e Projected Completion Date: November 15, 2011

e Date
Implementation of Lucene Search Engine on raw blog
data. Includes scaling to the massive dataset, inverted
indexing and interface for querying.

e Who: Saral

e Status: Completed
Implement Page Rank on the original blog data using
outlinks. Includes optimizations like in-mapper com-
bining, graph partitioning and range partitioning to
scale to the large dataset.

e Who: Saral

e Status: In Progress

e Projected Completion Date: November 11, 2011
Implement Page Rank on the new versions of graphs
generated by inferring temporal links on extracted memes.

e Who: Saral

e Status: Pending

e Projected Completion Date: November 20, 2011
Implement Page Rank on the new versions of graphs
generated by inferring temporal links on extracted memes.

e Who: Saral

e Status: Pending

e Projected Completion Date: November 20, 2011
Implementation of new ranked ordering combining PageR-
ank and Vector based models.

e Who: Saral

e Status: In Progress

e Projected Completion Date: November 20, 2011
Evaluation: Comparison of performance of user queries
on the four approaches. Also, evaluation on generated
synthetic data and on the goldstandard data available
for generic queries on the blog data.

e Who: Eshwaran, Prateek

e Status: Pending

e Projected Completion Date: November 25, 2011

12. Exploratory/Faceted search over the meme results for
a given user query. Also, visualizing meme evolution
using temporal features in the dataset.

e Who: Saral
e Status: Pending
e Projected Completion Date: November 25, 2011

Please refer to the Pivotal Tracker generated report for de-
tailed activity on progress

7. REFERENCES

[1] P. Achananuparp, X. Hu, and X. Shen. The evaluation
of sentence similarity measures. Data Warehousing
and Knowledge Discovery, pages 305-316, 2008.

[2] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern
information retrieval, volume 463. ACM press New
York, 1999.

[3] N. Balasubramanian, J. Allan, and W. Croft. A
comparison of sentence retrieval techniques. In
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 813-814. ACM, 2007.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine® 1. Computer
networks and ISDN systems, 30(1-7):107-117, 1998.

[5] T. Clarke. Lipstick on a pig: winning in the no-spin
era by someone who knows the game. Free Pr, 2006.

[6] R. Dawkins. The selfish gene. Oxford University Press,
USA, 2006.

[7] E. Hatcher and O. Gospodnetic. Lucene in action.

[8] O. Kolak and B. Schilit. Generating links by mining
quotations. In Proceedings of the nineteenth ACM
conference on Hypertext and hypermedia, pages
117-126. ACM, 2008.

[9] J. Leskovec, L. Backstrom, and J. Kleinberg.
Meme-tracking and the dynamics of the news cycle. In
Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 497-506. Citeseer, 2009.

[10] N. Littlestone and M. Warmuth. The weighted

majority algorithm. 1989.

[11] D. Metzler, S. Dumais, and C. Meek. Similarity

measures for short segments of text. Advances in
Information Retrieval, pages 16-27, 2007.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The

pagerank citation ranking: Bringing order to the web.
1999.

