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ABSTRACT 

 

Artificial neural networks have been used for many years to 

classify objects and recognize patterns. This paper 

investigates the use of a self-organizing neural network, 

called the neocognitron, for use in character recognition. 

Character recognition requires a system which must 

succeed despite variations in the character and spatial 

shifts. For this study, a neocognitron will be created using 

Java due to the object oriented nature of an artificial neural 

network. This network will be trained to recognize five 

characters and then tested against the same characters with 

noise, with different scales, and with spatial shifts. The 

neocognitron performs well and is able to recognize 

characters with reasonable amounts of shift and variation.  

 

Index Terms— Neocognitron, Neural Network, Character 

Recognition, Pattern Recognition, Artificial Neural 

Networks, Java, Self-Organization, Unsupervised Learning 

 

1. INTRODUCTION 

 

The neocognitron is a self-organizing neural network which 

excels at visual pattern recognition. In order to perform 

character recognition, the methodology must be able to 

handle variations in the signal. Typically, written characters 

have not only spatial variations for each user, but also vary 

greatly in appearance between different individuals. 

This problem drives the need for a robust character 

recognition system that can handle these variations. The 

neocognitron provides a platform for character recognition 

which is resilient to changes in character appearance and 

spatial location. The neocognitron is a self-organizing neural 

network; this means that the features which are extracted are 

determined during training. 

By using a hierarchal system in which features are 

extracted within the first few layers, the later layers can 

provide the character recognition [2]. Such a system is able 

to be trained to recognize many different types of characters.  

Many previous attempts at designing a neural network 

for character recognition have failed to recognize characters 

that were distorted in shape, or contain shifts in position [1]. 

Additionally, the neocognitron was designed to mimic the 

known functionality of the human brain in how it recognizes 

some visual patterns. The structure of this network is 

suggested by the visual nervous system of vertebrate [1]. 

While the original paper from Fukushima provides initial 

values for most of the constants [1], and the Zhengjun 

investigates the optimal values for many of the weights [3], 

initial values for some of the weights are unknown. 

This paper will investigate the ability of the 

Neocognitron to recognize characters. The mathematics and 

structure of the neural network will be discussed in Section 

2, and then a test dataset will be proposed. Finally, the 

resulting neural network will be tested with the test dataset; 

this is shown in Section 3. Conclusions will be discussed in 

Section 4. 

 

2. PROPOSED APPROACH 

 

The complex structure of the neocognitron allows features 

to be extracted from an image regardless of shifts in 

position.  This structure is defined by the organization of the 

weights and connections of the network. In order to better 

visualize the structure of the neocognitron, first the layout of 

the network and the terminology used must be understood. 

The input is low resolution square image, for this 

implementation it will be a 16 by 16 image of a given 

character. Each layer consists of two “sub-layers”; for 

example, Layer 1 consists of an s-layer and a c-layer. Within 

each layer, there are multiple s-planes or c-planes. A 

flowchart of the high level structure can be seen in Figure 1.  

 

 

Figure 1: Top level block diagram of the Neocognitron 



 

Figure 2: Organization of each plane showing the inter-

layer connection window. 

Each plane of cells within every layer is a matrix of 

neurons; the type of neuron depends on which type of layer 

it is in. The size of the plane is typically square, as shown in 

Figure 2, where n is equal to m (5 by 5). Every plane in a 

given s-layer or c-layer is the same size. Though some 

connections are shown in Figure 1, not all of them are 

drawn. Each c-plane is connected only to the preceding s-

plane; each s-plane is connected to every preceding c-plane. 

Within each layer there also exists a single v-plane, 

regardless of how many s-planes or c-planes there are. The 

purpose of each v-cell is to provide an inhibitory response to 

an s-sell or c-cell in every plane. Due to the fact that there is 

only one v-plane per layer, every location in each s-plane or 

c-plane receives the same inhibitory input. The connection 

of each cell can be seen in Figure 3. 

For this implementation, three layers will be used with 

the size of each layer shown in Figure 1. It is important to 

note how the last c-layer has a plane size of 1 by 1. After 

training is completed, the network will propagated a given 

input; the result is a large output from single plane in the last 

layer, which consists of a single cell. Thus there should be at 

least as many planes in the final c-column as there are 

characters to be recognized. 

Before the structure will be defined further, the equations 

which characterize each cell type will be given. This 

mathematical foundation will provide a basis for seeing how 

each layer connects to other layers. 
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The above two equations represent the output of an s-

cell. The output, uSl(kl,n), is the output from the l-th layer, 

from the plane kl at the location n; where n is a two 

dimensional vector, which represents the location of a cell in 

a specific plane. This equation depends on four values, some 

of which are vectors and matrix values. 

 

Figure 3: Connections between each type of cell; shows 

inhibitory response from v-cell. 

The input signal, uCl-1(kl-1,n+v), represents the signal 

coming from the previous layer, Cl-1.The specific input is 

different for every plane in the input layer, kl-1. The input 

also depends on the location n, in that specific plane. The 

range of the inputs used for this cell is determined by a 

window of cells, Sl, which is centered around a specific 

point, n.  This can be visualized in Figure 2, each input 

windows box, Sl, is centered around a different.  

The input weights al(kl-1,v, kl) change from plane to 

plane, they also change depending on which plane the input 

is coming from in the previous layer. It is important to note 

that the input weights do not depend on the specific location 

within the plane. As such, within each plane the weights are 

the same for any given location; this is what allows features 

to be extracted regardless of spatial distribution. 

It is also important to note that this equation does not 

allow negative values. Equation 2 forces the output to zeros 

for any negative output values. Additionally, rl is used to 

scale the output when positive. There is a different rl value 

for each layer. The final value which the output of an s-cell 

relies on is from the v-cell plane. There is only one v-cell 

plane per s-sell layer; as such the v-cell output value 

depends only on the location in the plane, n. 

The v-cell output is then weighted by a single value 

bl(kl); this value is different for each plane within a given 

layer, but is not dependent on the location. Both the bl(kl) 

weights and the al(kl-1,v, kl) weights change as the network is 

trained. These values are what dictate how well the network 

extracts and recognizes certain patterns. 
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The above equation shows how the output of each v-cell 

in the v-plane is determined. This equation is very similar to 

the numerator in equation 1. The weight matrix, cl-1(v), is 

multiplied by the output squared from the previous c-layer, 

uCl-1. The weight matrix cl-1(v) is dependent only on the 

window. They are the same for every input plane and every 

location in the single v-plane.  
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This weighting matrix does differ from the other weights 

in this network due the fact that the summation of the entire 

matrix, for every plane in the previous layer, must be less 

than 1. Since the output from each c-cell will always be less 

than 1, which is shown further on in this section, the output 

of each v-cell will also be less than one when the above 

equation is satisfied. Additionally, the output of the v-cell is 

in essence, the weighted root mean square (RMS) of the 

previous c-layer’s output for a specific location n. 

The initial values for each weight will be discussed in 

Section 3, Results. Only the weight matrices al(kl-1,v, kl) and 

bl(kl) are updated during training; the cl-1(v) weights and the 

dl(v) weights are not, they remain constant once initialized. 

This concludes the mathematics needed for implementing 

the s-layer. 

For every s-layer, there is a matching c-layer which 

contains the same number of planes. Each plane in the c-

layer receives inputs from only a single plane in the 

previous s-layer. This differs from the s-planes which 

receive their inputs from every plane in the preceding c-

layer. 
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Equations 5 and 6 show how the output of each c-cell in 

a c-layer is mathematically determined. The output from the 

previous s-layer, uSl(kl,n+v), is multiplied by a weight matrix 

d. Each c-cell in a given plane receives an input only from 

the s-cells in the previous layer in the same plane. As such, 

there is no summation across multiple planes for a specific 

position. 

The weight matrix d(v), is only dependent on the window 

contained in Dl, and not which plane the c-cell is in nor the 

location within the specific c-plane. Therefore, there is a 

single set of weights for each c-layer; compared to s-layers 

which contain a different set of weights for plane of inputs 

and outputs. 

As with the s-cell, each c-cell receives an inhibitory input 

from a matching v-cell. For each c-layer, there exists only 

one v-plane. For every plane, there is a specific v-cell for 

each location; the output of a v-cell is determined using 

equation 7. 
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The same weighting value is used for the v-cells in the c-

layer as for each c-cell, dl(v). As previously mentioned, the 

initial values for each dl(v) will be discussed in the results 

section, Section 3. Unlike the c-planes in the c-layer, the v-

plane within the c-layer receives inputs from each plane in 

the preceding s-layer. This concludes the mathematics 

needed to propagate a signal through the network. 

In order for the network to learn certain patterns, and to 

self-organize, it must be trained. The first version of the 

neocognitron proposed by Fukushima uses unsupervised 

training [1]. Only two weights are modified during training, 

al(kl-1,v, kl) and bl(kl). 

In order to train the network representative cells for each 

layer must be determined each time an image is propagated. 

This methodology of training is a “winner takes all” 

approach. The cells with the highest output are reinforced, 

while the other cells are left alone. This approach allows 

each cell plane to self-organize so that it will recognize only 

one specific feature from its inputs. 

Since only the s-layer weights will be trained, the 

representative cells will only be determined within each s-

layer. Each s-plane in the layer to be trained is stacked on 

top of one another, like a deck of cards. A stack of s-cells 

for each position now exist. By using a window around each 

stack of s-cells, similar to that shown in Figure 2, an s-

column is created. As an example, if the window being used 

is 3 pixels by 3 pixels and there are 8 planes, each s-column 

“layer” will be 3 by 3 s-cells with a total of 8 “layers”. 

This s-column is generated for every pixel location; as 

such a given s-cell can be part of multiple s-columns. 

Within each s-column, the plane and the location of the s-

cell with the largest output are chosen as representative. 

Since there are multiple s-columns it is possible that more 

than one representative cell is chosen within a given plane; 

in this case, the one with the largest output is chosen so that 

no more than one cell is chosen per plane. 

For each plane which contains a representative cell,  ̂ , 
the a and b weights are increased the amount dictated by 

equations 8 and 9. The amount each cell is increased is 

determined by using the input at position  ̂. By increasing 

these values, each plane will recognize a single feature. 
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For every character which is propagated by the network 

during training, every s-layer’s weights are updated using 

the method described above. For both equation 8 and 9, the 

constant ql dictates how quickly the network will become 

trained. A different ql value is used for each s-layer. This 

concludes the theoretical foundation needed to implement a 

neocognitron. 

 

3. RESULTS 

 

Using Java, a neocognitron was built. This neocognitron can 

receive an input image of 16 pixels by 16 pixels. There are 

three total layers, as shown in Figure 1; each layer contains 

the same number of planes. The first s-layer has a cell 

resolution of 16 by 16 pixels and the first c-layer has a 

resolution of 10 by 10 pixels. The second s-layer has a 

resolution of 8 by 8 pixels and the second c-layer has a 



resolution of 6 by 6 pixels. The final s-layer has a resolution 

of 2 by 2 pixels, and the final c-layer contains only one pixel 

per plane. 

The weighting constants d, and c, were determined 

using equations 10 and 11 [3]. It is important that both 

weights be monotonically decreasing; by using values for 

both δ and γ which are less than one, this requirement will 

be met. 

 

  ( )    
| |

     (10) 

  ( )    ̅    
| |

    (11) 

 

The number of planes per layer and all the constants 

used for the final neocognitron were determined 

experimentally by cycling through a range of possibilities in 

order to determine the best values. The optimal values 

which were determined using this approach are shown in 

Figure 4. 

All b weights are initialized to zero, regardless of layer; 

and all a weights are initialized to a random value no greater 

than 0.5. The constant α was set to .478 and the number of 

planes in each layer is 16. Now that all the needed initial 

values are determined, the neocognitron can be trained using 

a set of test characters. 

The characters shown in Figure 5 were used for testing 

and verification of the neocognitron. Since the final 

recognition rate is determined by the initial values of the 

randomly generated al(kl-1,v, kl) weights, many neocognitron 

are created, trained, and tested; the one containing the 

highest recognition rate is saved for further use. 

The fourth number of each sequence shown in Figure 5 

is used to train the neocognitron; all of the numbers are used 

for determining the error rate of the network. A 

neocognitron created with the values shown in Figure 4 was 

able to realize a 73.3% recognition rate. Out of the twenty 

characters in figure 5, the network was unable to recognize 

four characters. Three of the four unrecognized characters 

was the number one; while the last unrecognized character 

was the first number four shown in Figure 5. 

Due to the fact that the number one is a very simple 

character and that it does not have many features, explains 

why it was not recognized by the neocognitron. Despite 

many differences between the verification characters and the 

training characters, the neocognitron performed very well. 

Despite the additional pixels and changes to the size and 

shape of each number, the neocognitron successfully 

recognized a large percentage of the verification characters. 

 

 Layer 1 Layer 2 Layer 3 

rl 4.81 1.44 2.57 

ql 0.20 9.60 13.94 

γl 0.11 0.42 0.06 

δl 0.49 0.87 0.52 

  ̅  0.12 .006 0.78 

Figure 4: Constant values used for each layer 

 

Figure 5: Characters used for training and verification 

The values shown in Figure 4 match many of the values 

used in Fukushima’s original network [1]. The first layer’s rl 

value is the largest, the ql value increases in each layer, and 

the constant α is approximately .5. Additionally, the number 

of planes is at least twice as large as the number of 

characters the network can recognize. 

This neocognitron can be trained to recognize up to 

sixteen different characters. If more than sixteen characters 

must be recognized, the number of planes will need to also 

be increased. Overall, the network was very successful in 

recognize numbers zero through four despite the fact that 

the characters were scaled and shifted spatially. 

 

4. CONCLUSIONS 

 

Intuitively, the neocognitron is perfectly designed for visual 

pattern recognition. The structure and theory behind the 

network implies a robust method for character recognition. 

Despite this, the implementation of the neocognitron 

proposed by Fukushima is not straight forward [1]. There 

are many values which need to be set perfectly for pattern 

recognition to be successful. By testing the network with 

many variations on these values, an optimal set of 

parameters have been found. Once such values were found, 

the trained network was able to recognize a set of test 

characters, which was different from the training set, with a 

73.3% success rate. Further studies could analyze the 

networks ability to recognize the entire English alphabet. To 

conclude, the neocognitron can be successfully trained to 

recognize characters despite shifts in position. 
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