
CHARACTER RECOGNITION USING A NEOCOGNITRON

Nicholas J. Conn

Electrical and Microelectronic Engineering Department, Rochester Institute of Technology, Rochester,

NY 14623, USA - 2012

nxc9827@rit.edu

ABSTRACT

Artificial neural networks have been used for many years to

classify objects and recognize patterns. This paper

investigates the use of a self-organizing neural network,

called the neocognitron, for use in character recognition.

Character recognition requires a system which must

succeed despite variations in the character and spatial

shifts. For this study, a neocognitron will be created using

Java due to the object oriented nature of an artificial neural

network. This network will be trained to recognize five

characters and then tested against the same characters with

noise, with different scales, and with spatial shifts. The

neocognitron performs well and is able to recognize

characters with reasonable amounts of shift and variation.

Index Terms— Neocognitron, Neural Network, Character

Recognition, Pattern Recognition, Artificial Neural

Networks, Java, Self-Organization, Unsupervised Learning

1. INTRODUCTION

The neocognitron is a self-organizing neural network which

excels at visual pattern recognition. In order to perform

character recognition, the methodology must be able to

handle variations in the signal. Typically, written characters

have not only spatial variations for each user, but also vary

greatly in appearance between different individuals.

This problem drives the need for a robust character

recognition system that can handle these variations. The

neocognitron provides a platform for character recognition

which is resilient to changes in character appearance and

spatial location. The neocognitron is a self-organizing neural

network; this means that the features which are extracted are

determined during training.

By using a hierarchal system in which features are

extracted within the first few layers, the later layers can

provide the character recognition [2]. Such a system is able

to be trained to recognize many different types of characters.

Many previous attempts at designing a neural network

for character recognition have failed to recognize characters

that were distorted in shape, or contain shifts in position [1].

Additionally, the neocognitron was designed to mimic the

known functionality of the human brain in how it recognizes

some visual patterns. The structure of this network is

suggested by the visual nervous system of vertebrate [1].

While the original paper from Fukushima provides initial

values for most of the constants [1], and the Zhengjun

investigates the optimal values for many of the weights [3],

initial values for some of the weights are unknown.

This paper will investigate the ability of the

Neocognitron to recognize characters. The mathematics and

structure of the neural network will be discussed in Section

2, and then a test dataset will be proposed. Finally, the

resulting neural network will be tested with the test dataset;

this is shown in Section 3. Conclusions will be discussed in

Section 4.

2. PROPOSED APPROACH

The complex structure of the neocognitron allows features

to be extracted from an image regardless of shifts in

position. This structure is defined by the organization of the

weights and connections of the network. In order to better

visualize the structure of the neocognitron, first the layout of

the network and the terminology used must be understood.

The input is low resolution square image, for this

implementation it will be a 16 by 16 image of a given

character. Each layer consists of two “sub-layers”; for

example, Layer 1 consists of an s-layer and a c-layer. Within

each layer, there are multiple s-planes or c-planes. A

flowchart of the high level structure can be seen in Figure 1.

Figure 1: Top level block diagram of the Neocognitron

Figure 2: Organization of each plane showing the inter-

layer connection window.

Each plane of cells within every layer is a matrix of

neurons; the type of neuron depends on which type of layer

it is in. The size of the plane is typically square, as shown in

Figure 2, where n is equal to m (5 by 5). Every plane in a

given s-layer or c-layer is the same size. Though some

connections are shown in Figure 1, not all of them are

drawn. Each c-plane is connected only to the preceding s-

plane; each s-plane is connected to every preceding c-plane.

Within each layer there also exists a single v-plane,

regardless of how many s-planes or c-planes there are. The

purpose of each v-cell is to provide an inhibitory response to

an s-sell or c-cell in every plane. Due to the fact that there is

only one v-plane per layer, every location in each s-plane or

c-plane receives the same inhibitory input. The connection

of each cell can be seen in Figure 3.

For this implementation, three layers will be used with

the size of each layer shown in Figure 1. It is important to

note how the last c-layer has a plane size of 1 by 1. After

training is completed, the network will propagated a given

input; the result is a large output from single plane in the last

layer, which consists of a single cell. Thus there should be at

least as many planes in the final c-column as there are

characters to be recognized.

Before the structure will be defined further, the equations

which characterize each cell type will be given. This

mathematical foundation will provide a basis for seeing how

each layer connects to other layers.

 ()

 [
 ∑ ∑ () ()

 () ()
] (1)

 [] {

 (2)

The above two equations represent the output of an s-

cell. The output, uSl(kl,n), is the output from the l-th layer,

from the plane kl at the location n; where n is a two

dimensional vector, which represents the location of a cell in

a specific plane. This equation depends on four values, some

of which are vectors and matrix values.

Figure 3: Connections between each type of cell; shows

inhibitory response from v-cell.

The input signal, uCl-1(kl-1,n+v), represents the signal

coming from the previous layer, Cl-1.The specific input is

different for every plane in the input layer, kl-1. The input

also depends on the location n, in that specific plane. The

range of the inputs used for this cell is determined by a

window of cells, Sl, which is centered around a specific

point, n. This can be visualized in Figure 2, each input

windows box, Sl, is centered around a different.

The input weights al(kl-1,v, kl) change from plane to

plane, they also change depending on which plane the input

is coming from in the previous layer. It is important to note

that the input weights do not depend on the specific location

within the plane. As such, within each plane the weights are

the same for any given location; this is what allows features

to be extracted regardless of spatial distribution.

It is also important to note that this equation does not

allow negative values. Equation 2 forces the output to zeros

for any negative output values. Additionally, rl is used to

scale the output when positive. There is a different rl value

for each layer. The final value which the output of an s-cell

relies on is from the v-cell plane. There is only one v-cell

plane per s-sell layer; as such the v-cell output value

depends only on the location in the plane, n.

The v-cell output is then weighted by a single value

bl(kl); this value is different for each plane within a given

layer, but is not dependent on the location. Both the bl(kl)

weights and the al(kl-1,v, kl) weights change as the network is

trained. These values are what dictate how well the network

extracts and recognizes certain patterns.

 () √∑ ∑ ()
 ()

 (3)

The above equation shows how the output of each v-cell

in the v-plane is determined. This equation is very similar to

the numerator in equation 1. The weight matrix, cl-1(v), is

multiplied by the output squared from the previous c-layer,

uCl-1. The weight matrix cl-1(v) is dependent only on the

window. They are the same for every input plane and every

location in the single v-plane.

∑ ∑ ()

(4)

This weighting matrix does differ from the other weights

in this network due the fact that the summation of the entire

matrix, for every plane in the previous layer, must be less

than 1. Since the output from each c-cell will always be less

than 1, which is shown further on in this section, the output

of each v-cell will also be less than one when the above

equation is satisfied. Additionally, the output of the v-cell is

in essence, the weighted root mean square (RMS) of the

previous c-layer’s output for a specific location n.

The initial values for each weight will be discussed in

Section 3, Results. Only the weight matrices al(kl-1,v, kl) and

bl(kl) are updated during training; the cl-1(v) weights and the

dl(v) weights are not, they remain constant once initialized.

This concludes the mathematics needed for implementing

the s-layer.

For every s-layer, there is a matching c-layer which

contains the same number of planes. Each plane in the c-

layer receives inputs from only a single plane in the

previous s-layer. This differs from the s-planes which

receive their inputs from every plane in the preceding c-

layer.

 () [
 ∑ () ()

 ()
] (5)

 [] [

] (6)

Equations 5 and 6 show how the output of each c-cell in

a c-layer is mathematically determined. The output from the

previous s-layer, uSl(kl,n+v), is multiplied by a weight matrix

d. Each c-cell in a given plane receives an input only from

the s-cells in the previous layer in the same plane. As such,

there is no summation across multiple planes for a specific

position.

The weight matrix d(v), is only dependent on the window

contained in Dl, and not which plane the c-cell is in nor the

location within the specific c-plane. Therefore, there is a

single set of weights for each c-layer; compared to s-layers

which contain a different set of weights for plane of inputs

and outputs.

As with the s-cell, each c-cell receives an inhibitory input

from a matching v-cell. For each c-layer, there exists only

one v-plane. For every plane, there is a specific v-cell for

each location; the output of a v-cell is determined using

equation 7.

 ()

 ∑ ∑ () ()

(7)

The same weighting value is used for the v-cells in the c-

layer as for each c-cell, dl(v). As previously mentioned, the

initial values for each dl(v) will be discussed in the results

section, Section 3. Unlike the c-planes in the c-layer, the v-

plane within the c-layer receives inputs from each plane in

the preceding s-layer. This concludes the mathematics

needed to propagate a signal through the network.

In order for the network to learn certain patterns, and to

self-organize, it must be trained. The first version of the

neocognitron proposed by Fukushima uses unsupervised

training [1]. Only two weights are modified during training,

al(kl-1,v, kl) and bl(kl).

In order to train the network representative cells for each

layer must be determined each time an image is propagated.

This methodology of training is a “winner takes all”

approach. The cells with the highest output are reinforced,

while the other cells are left alone. This approach allows

each cell plane to self-organize so that it will recognize only

one specific feature from its inputs.

Since only the s-layer weights will be trained, the

representative cells will only be determined within each s-

layer. Each s-plane in the layer to be trained is stacked on

top of one another, like a deck of cards. A stack of s-cells

for each position now exist. By using a window around each

stack of s-cells, similar to that shown in Figure 2, an s-

column is created. As an example, if the window being used

is 3 pixels by 3 pixels and there are 8 planes, each s-column

“layer” will be 3 by 3 s-cells with a total of 8 “layers”.

This s-column is generated for every pixel location; as

such a given s-cell can be part of multiple s-columns.

Within each s-column, the plane and the location of the s-

cell with the largest output are chosen as representative.

Since there are multiple s-columns it is possible that more

than one representative cell is chosen within a given plane;

in this case, the one with the largest output is chosen so that

no more than one cell is chosen per plane.

For each plane which contains a representative cell, ̂ ,
the a and b weights are increased the amount dictated by

equations 8 and 9. The amount each cell is increased is

determined by using the input at position ̂. By increasing

these values, each plane will recognize a single feature.

 (̂) () (̂) (8)

 (̂)

 (̂) (9)

For every character which is propagated by the network

during training, every s-layer’s weights are updated using

the method described above. For both equation 8 and 9, the

constant ql dictates how quickly the network will become

trained. A different ql value is used for each s-layer. This

concludes the theoretical foundation needed to implement a

neocognitron.

3. RESULTS

Using Java, a neocognitron was built. This neocognitron can

receive an input image of 16 pixels by 16 pixels. There are

three total layers, as shown in Figure 1; each layer contains

the same number of planes. The first s-layer has a cell

resolution of 16 by 16 pixels and the first c-layer has a

resolution of 10 by 10 pixels. The second s-layer has a

resolution of 8 by 8 pixels and the second c-layer has a

resolution of 6 by 6 pixels. The final s-layer has a resolution

of 2 by 2 pixels, and the final c-layer contains only one pixel

per plane.

The weighting constants d, and c, were determined

using equations 10 and 11 [3]. It is important that both

weights be monotonically decreasing; by using values for

both δ and γ which are less than one, this requirement will

be met.

 ()
| |

 (10)

 () ̅
| |

 (11)

The number of planes per layer and all the constants

used for the final neocognitron were determined

experimentally by cycling through a range of possibilities in

order to determine the best values. The optimal values

which were determined using this approach are shown in

Figure 4.

All b weights are initialized to zero, regardless of layer;

and all a weights are initialized to a random value no greater

than 0.5. The constant α was set to .478 and the number of

planes in each layer is 16. Now that all the needed initial

values are determined, the neocognitron can be trained using

a set of test characters.

The characters shown in Figure 5 were used for testing

and verification of the neocognitron. Since the final

recognition rate is determined by the initial values of the

randomly generated al(kl-1,v, kl) weights, many neocognitron

are created, trained, and tested; the one containing the

highest recognition rate is saved for further use.

The fourth number of each sequence shown in Figure 5

is used to train the neocognitron; all of the numbers are used

for determining the error rate of the network. A

neocognitron created with the values shown in Figure 4 was

able to realize a 73.3% recognition rate. Out of the twenty

characters in figure 5, the network was unable to recognize

four characters. Three of the four unrecognized characters

was the number one; while the last unrecognized character

was the first number four shown in Figure 5.

Due to the fact that the number one is a very simple

character and that it does not have many features, explains

why it was not recognized by the neocognitron. Despite

many differences between the verification characters and the

training characters, the neocognitron performed very well.

Despite the additional pixels and changes to the size and

shape of each number, the neocognitron successfully

recognized a large percentage of the verification characters.

 Layer 1 Layer 2 Layer 3

rl 4.81 1.44 2.57

ql 0.20 9.60 13.94

γl 0.11 0.42 0.06

δl 0.49 0.87 0.52

 ̅ 0.12 .006 0.78

Figure 4: Constant values used for each layer

Figure 5: Characters used for training and verification

The values shown in Figure 4 match many of the values

used in Fukushima’s original network [1]. The first layer’s rl

value is the largest, the ql value increases in each layer, and

the constant α is approximately .5. Additionally, the number

of planes is at least twice as large as the number of

characters the network can recognize.

This neocognitron can be trained to recognize up to

sixteen different characters. If more than sixteen characters

must be recognized, the number of planes will need to also

be increased. Overall, the network was very successful in

recognize numbers zero through four despite the fact that

the characters were scaled and shifted spatially.

4. CONCLUSIONS

Intuitively, the neocognitron is perfectly designed for visual

pattern recognition. The structure and theory behind the

network implies a robust method for character recognition.

Despite this, the implementation of the neocognitron

proposed by Fukushima is not straight forward [1]. There

are many values which need to be set perfectly for pattern

recognition to be successful. By testing the network with

many variations on these values, an optimal set of

parameters have been found. Once such values were found,

the trained network was able to recognize a set of test

characters, which was different from the training set, with a

73.3% success rate. Further studies could analyze the

networks ability to recognize the entire English alphabet. To

conclude, the neocognitron can be successfully trained to

recognize characters despite shifts in position.

5. REFERENCES

[1] K. Fukushima, "Neocognitron: A self-organizing neural

network model for a mechanism of pattern recognition

unaffected by shift in position," Biological Cybernetics, vol.

36, pp. 193-202, 1980.

[2] C. N. S. Ganesh Murthy and Y. V. Venkatesh,

"Modified neocognitron for improved 2-D pattern

recognition," Vision, Image and Signal Processing, IEE

Proceedings -, vol. 143, pp. 31-40, 1996.

[3] Zhengjun Pan; Sabisch, T.; Adams, R.; Bolouri, H.; ,

"Staged training of Neocognitron by evolutionary

algorithms," Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on , vol.3, no., pp.3 vol.

(xxxvii+2348), 1999

