
olap4j Specification

Table of Contents
olap4j Specification...1

Contents...1
1. Introduction..3

1.1. A brief history of OLAP standards...3
1.2. Overview of olap4j...3
1.3. Relationship to other standards..4
1.4. Benefits of a standard Java API for OLAP..5
1.5. Architecture of olap4j...5
1.6. Compatibility..7
1.7. Compliance levels..7

2. Components of the API..8
2.1. Driver management..9
2.2. Connections..10
2.3. Statements..13
2.4. MDX object model...17
2.5. MDX parser..18
2.6. MDX type model..19
2.7. Metadata...20
2.8. Transform...43
2.9. Layout...46
2.10. Scenarios..46
2.11. Notifications...47
2.12. Drill through...49

3. Other topics..49
3.1. Internationalization...49
3.2. Concurrency and thread-safety...50
3.3. Canceling statements..50

4. Other components..50
4.1. Test suite...50
4.2. XML/A provider...50

5. Non-functionality...50
6. Related projects..51

6.1. Mondrian provider..51
6.2. XML for Analysis provider..51
6.3. Other data sources..51
6.4 xmla4js..51

Appendix A. Opportunities for specification...51
A.1. Date and Time types..51
A.2. Schema notification...51

Appendix B. Feedback...51
Richard Emberson, email, 2006/8/15..52

Appendix C. Open issues...52
Appendix D. Miscellaneous...52

D.1. To be specified..52
D.2. Design notes..52

Appendix E. References...53
Appendix F. Change log..53

olap4j Specification

i

olap4j Specification
Authors: Julian Hyde, Barry Klawans
Version: 1.0
Revision: $Id: olap4j_fs.html 442 2011-04-11 01:05:26Z lucboudreau $ (log)
Last modified: April 9th, 2011.

Contents

Introduction
A brief history of OLAP standards1.
Overview of olap4j2.
Relationship to other standards

olap4j and XML/A1.
olap4j is built on other standards2.

3.

Benefits of a standard Java API for OLAP4.
Architecture of olap4j5.
Compatibility6.
Compliance levels7.

1.

Components of the API
Driver management

The Driver class1.
The DriverManager class2.
The DataSource interface3.
The OlapDataSource interface4.
The OlapException class5.

1.

Connections
Connection pooling1.
The OlapConnection interface2.
The OlapWrapper interface3.
The OlapDatabaseMetaData interface4.

2.

Statements
The OlapStatement interface1.
The PreparedOlapStatement interface2.
The OlapParameterMetaData interface3.
The CellSet interface4.
The CellSetAxis interface5.
The Axis enum6.
The CellSetAxisMetaData interface7.
The Position interface8.
The Cell interface9.
The CellSetMetaData interface10.

3.

MDX parse tree model
The ParseTreeWriter class1.

4.

MDX parser5.
MDX type model6.
Metadata

Access control1.
Metadata objects2.

7.

2.

olap4j Specification 1

http://olap4j.svn.sourceforge.net/viewvc/olap4j/trunk/doc/olap4j_fs.html?view=log

The MetadataElement interface1.
The Database interface2.
The Catalog interface3.
The Schema interface4.
The Cube interface5.
The Dimension interface6.
The Hierarchy interface7.
The Level interface8.
The Member interface9.
The Measure interface10.
The Property interface11.
The NamedSet interface12.
The Datatype enum13.

The OlapDatabaseMetaData interface, and schema result sets
The getDatabases method1.
The getDatabaseProperties method2.
The getLiterals method3.
The getCubes method4.
The getDimensions method5.
The getFunctions method6.
The getHierarchies method7.
The getLevels method8.
The getMeasures method9.
The getMembers method10.
The getProperties method11.
The getSets method12.

3.

Other methods4.
Transform

Query model details1.
Navigation actions

Slicing navigations1.
Restructuring navigations2.
Drilling navigations3.
Scoping navigations4.

2.

Open issues3.

8.

Layout9.
Scenarios10.
Notifications11.
Drill through12.

Other topics
Internationalization1.
Concurrency and thread-safety2.
Canceling statements3.

3.

Other components
Test suite1.
XML/A provider2.

4.

Non-functionality5.
Related projects

Mondrian provider1.
XML for Analysis provider2.
Other data sources3.

6.

olap4j Specification

Contents 2

Appendix A. Opportunities for specification7.
Appendix B. Feedback8.
Appendix C. Open issues9.
Appendix D. Miscellaneous10.
Appendix E. References11.
Appendix F. Change log12.

1. Introduction

olap4j is an open Java API for building OLAP applications.

In essence, olap4j is to multidimensional data what JDBC is for relational data. olap4j has a similar
programming model to JDBC, shares some of its core classes, and has many of the same advantages. You can
write an OLAP application in Java for one server (say Mondrian) and easily switch it to another (say
Microsoft Analysis Services, accessed via XML for Analysis).

However, creating a standard OLAP API for Java is a contentious issue. To understand why, it helps to
understand the history of OLAP standards.

1.1. A brief history of OLAP standards

History is strewn with attempts to create a standard OLAP API. First, the OLAP council's MDAPI (in two
versions), then the JOLAP API emerged from Sun's Java Community Process. These all failed, it seems,
because at some point during the committee stages, all of the OLAP server vendors concerned lost interest in
releasing an implementation of the standard. The standards were large and complex, and no user-interface
provider stepped forward with a UI which worked with multiple back-ends.

Meanwhile, Microsoft introduced OLE DB for OLAP (which works only between Windows clients and
servers), and then XML/A (XML for Analysis, a web-services API). These standards were more successful,
for a variety of reasons. First, since the standards (OLE DB for OLAP in particular) were mainly driven by
one vendor, they were not a compromise attempting to encompass the functionality of several products.
Second, there was a ready reference implementation, and Microsoft saw to it that there were sufficient OLAP
clients to make these standards viable forums for competition and innovation. Third, there was the MDX
query language. A query language is easier to explain than an API. It leaves unsolved the problem of how to
construct queries to answer business questions, but application developers could solve that problem by
embedding one of the off-the-shelf OLAP clients.

The Open Source community has been developing a taste for OLAP. First there was Mondrian, an
open-source OLAP server; then there was JPivot, a client which first spoke to Mondrian, then also to XML/A;
then there were more OLAP clients, and applications which wanted to use a particular client, but wanted to
talk to a variety of servers; and companies using a particular OLAP server that wanted to get at it from several
clients. It became clear the open-source OLAP tools needed a standard, and that standard would probably be
suitable for other Java-based OLAP tools.

1.2. Overview of olap4j

An OLAP application interacts with an OLAP server by means of MDX statements belonging to connections.
The statements are defined in terms of metadata and validated according to a type system, and some
applications are built at a higher level, manipulating MDX parse trees, and defining complex queries in terms
that a business user can understand. The olap4j API provides all of these facilities.

olap4j Specification

1. Introduction 3

At the lowest level, olap4j has a framework for registering drivers, and managing the lifecycle of
connections and statements. olap4j provides this support by extending the JDBC framework.

A key decision in the design of an OLAP API is whether to include a query language. Historically, it has
been a contentious one. The previous standards fell into two camps: MDAPI and JOLAP had an API for
building queries, while OLE DB for OLAP and XML/A had the MDX query language. The SQL query
language is an essential component of relational database APIs such as ODBC and JDBC, and it makes
similar sense to base an OLAP API on a query language such as MDX. But OLAP applications also need to
build and transform queries as the end-user explores the data. So, olap4j embraces both approaches: you
can create a query by parsing an MDX statement, you can build a query by manipulating an MDX parse tree,
and an MDX parser library allows you to easily convert an MDX string to and from a parse tree.

Metadata is at the heart of olap4j. You can browse the cubes, dimensions, hierarchies, members in an OLAP
schema, and an MDX parse tree and query result are tied back to the same metadata objects. There is also a
type system for describing expressions.

olap4j makes it possible to write an OLAP client without starting from scratch. In addition to the MDX parser,
and operations on the MDX parse tree, there is a higher-level query model, which includes operations to
transform queries (also called 'navigations'), and facilities to layout multidimensional results as HTML
tables.

There are experimental modules in olap4j for scenarios (also called 'what-if' analysis, or 'writeback') and
notifications, pushed from the server to the client when the data set on the server changes.

1.3. Relationship to other standards

1.3.1. olap4j and XML/A

At this point, you may be saying: what about XML/A? XML/A was here first, is an open standard, and is
supported by a number of servers. Is olap4j an attempt to replace XML/A? Isn't XML/A good enough for
everyone?

olap4j certainly has some similarities with XML/A. Both APIs allow an application to execute OLAP queries,
and to browse the metadata of an OLAP schema. But XML/A is a low-level web-services API which leaves a
lot of work to the application writer. (Witness the fact that the majority of successful XML/A applications run
only on Windows, where the ADOMD.NET is a high-level interface to XML/A servers.) The APIs are mostly
complementary, because olap4j can be easily added to an XML/A back-end, and provides features which
would be difficult or impossible to provide via a web-services API. These are functions for parsing MDX,
building and transforming MDX query models, and mapping result sets into graphical layouts such as pivot
tables.

If a web-services based application needs these functions, it can use the XML/A provider to connect to the
underlying data source, execute queries, and browse metadata, but can still use olap4j's features for MDX
parsing, query models and layout.

The metamodels of olap4j and XML/A are similar. Both contain schemas, cubes, dimensions, et cetera. Where
possible, olap4j uses the same terminology for entity and attribute names. This simplifies the job of creating
an XML/A driver for olap4j, and also makes possible an XML/A -to-olap4j bridge (a server that answers
XML/A requests by querying an underlying olap4j data source).

olap4j Specification

1.2. Overview of olap4j 4

1.3.2. olap4j is built on other standards

Where possible, olap4j leverages existing standards. This has several advantages. First, an end-user familiar
with the existing standards can come up to speed with olap4j quickly. For instance, creating a connection and
executing a statement should be straightforward to anyone familiar with JDBC connections, statements and
result sets work.

If an OLAP server implementor has already implemented a driver for one standard, then it should be less
work to implement an olap4j driver. This clearly applies to the MDX language (borrowed from XML/A and
OLE DB for OLAP). Implementation schema result sets should be straightforward if the server already
supports XML/A schema rowsets.

If olap4j is sufficiently similar to an existing standard, tools designed for use with that standard may be
applicable to olap4j also. For instance, one goal of olap4j is that people will be able to use connection-pooling
libraries such as Jakarta Commons DBCP, C3P0. (This presents some challenges because olap4j extends
some of the JDBC interfaces, but we hope to solve them.)

Lastly, reusing an existing standard is less work for the authors of the new standard!

Sometimes the standards conflict. ADOMD exposes its metadata through an object model, whereas JDBC and
XML/A expose metadata relationally, via what XML/A calls rowsets and what we and JDBC call result sets.
In this case, we chose to do both, because of the diversity of needs of olap4j clients. Metadata objects allow
you to integrate query results with metadata using much fewer code: positions can reference members, and
you can navigate from a member to its hierarchy, and so forth. Likewise, metadata objects can be used in
building MDX parse trees. But if a client tool wants to maintain its own metadata cache, schema rowsets are
more flexible and efficient.

1.4. Benefits of a standard Java API for OLAP

Once the olap4j standard is in place, we can expect that the familiar benefits of an open standard will emerge:
a larger variety of tools, better tools, and more price/feature competition between OLAP servers. These
benefits follow because if a developer of OLAP tool can reach a larger audience, there is greater incentive to
build new tools.

Eventually there will be olap4j providers for most OLAP servers. The server vendors will initially have little
incentive to embrace a standard which will introduce competition into their market, but eventually the wealth
of tools will compel them to write a provider; or, more likely, will tempt third-party or open-source efforts to
build providers for their servers.

1.5. Architecture of olap4j

The following diagram shows how olap4j fits into an enterprise architecture.

olap4j Specification

1.3. Relationship to other standards 5

http://jakarta.apache.org/commons/dbcp/
http://sourceforge.net/projects/c3p0

olap4j Specification

1.5. Architecture of olap4j 6

1.6. Compatibility

olap4j requires JDK 1.5 or higher, in particular because it uses the generics and enum features introduced in
JDK 1.5.0.

olap4j works best against JDK 1.6 or higher, because it makes use of the java.sql.Wrapper interface. In earlier
Java versions, the same functionality is available by casting objects to the built-in OlapWrapper interface.

JDK 1.4 compatibility will be available on demand, using the Retroweaver utility. This will consist of a
retrowoven JAR file, olap4j-jdk1.4.jar and retroweaver's runtime library
retroweaver-rt-1.2.4.jar. (See design note.)

olap4j's JDBC support is consistent with JDBC version 3.0 (which was introduced in JDK 1.4 and is also in
JDK 1.5) and also with JDBC version 4.0 (introduced in JDK 1.6).

1.7. Compliance levels

There are two compliance levels to which a driver can support olap4j. olap4j is a rich specification, and it
takes a considerable effort to implement it fully, but applications can still be built on a driver which only
implements the core parts of the specification. The lower level allows a vendor to a subset of the specification
without the significant investment of a fully-compliant driver.

The compliance levels are as follows:

olap4j Core Compliance. To comply with the olap4j core specification, it must implement all classes
in the org.olap4j package, with the exception of the getXxxxs() methods in
OlapDatabaseMetaData that return result sets, and all classes in the org.olap4j.metadata
package. The OLAP server must also implement the fundamental features of the MDX language (see
below).

•

olap4j Full Compliance. To fully comply with the olap4j specification, a driver must comply with
the core requirements, plus implement the OlapDatabaseMetaData.getXxxxs() methods, plus
implements an MDX parser and validator (org.olap4j.mdx.parser package).

•

MDX language compliance

All olap4j drivers must implement the fundamental features of the MDX language, but olap4j compliance
levels do not imply a particular degree of support for the MDX language.

The fundamental features of MDX are:

Queries of the form "SELECT ... FROM ... WHERE".•
The set constructor operator { ... }.•
Set functions CrossJoin(<Set>, <Set>), Filter(<Set>, <Condition>), Order(<Set>, <Expression>),
Hierarchize(<Set>).

•

Navigation operators <Member>.Children, <Level>.Members <Hierarchy>.Members,
<Member>.Parent, Level, Hierarchy, Dimension

•

Aggregation functions Aggregate•
Basic arithmetic and logical operators•

olap4j Specification

1.6. Compatibility 7

http://download.oracle.com/javase/6/docs/api/java/sql/Wrapper.html
http://retroweaver.sourceforge.net/

Of course, a provider may implement a larger subset of MDX, and most do. A provider can describe its MDX
compliance level by describing the additional features it supports (e.g. WITH MEMBER, WITH SET, NON
EMPTY, and HAVING clauses in queries; virtual cubes; and calculated members and sets defined against
cubes) and additional functions and operators implemented.

2. Components of the API

We now describe the olap4j API in more detail, by breaking it down into a set of functional areas.

olap4j Specification

1.7. Compliance levels 8

2.1. Driver management

olap4j shares JDBC's driver management facilities. This allows olap4j clients to leverage the support for
JDBC such as connection pooling, driver registration.

Classes:

java.sql.Driver•
java.sql.DriverManager•
javax.sql.DataSource•

2.1.1. The Driver class

Same functionality as JDBC.

Here is an example of registering an olap4j driver:

Class.forName("mondrian.olap4j.MondrianOlap4jDriver");
Note that this is the same as you would write for any JDBC driver. From JDBC 4.0 (JDK 1.6) onwards,
compliant JDBC drivers register themselves automatically by creating an entry in their JAR file's
META-INF/services/java.sql.Driver file. Compliant olap4j drivers register themselves in the
same way.

2.1.2. The DriverManager class

Same functionality as JDBC.

2.1.3. The DataSource interface

Same functionality as JDBC.

See also: Database.

2.1.4. The OlapDataSource interface

Extension to DataSource that returns OlapConnection objects rather than mere
java.sql.Connection objects.

2.1.5. The OlapException class

OlapException (extends java.sql.SQLException) describes an error which occurred while accessing an OLAP
server.

Since olap4j extends JDBC, it is natural that OlapException should extend JDBC's SQLException. The
implementation by an olap4j driver of a JDBC method which is declared to throw a SQLException may, if the
driver chooses, throw instead an OlapException.

OlapException provides some additional information to help an OLAP client identify the location of the error.
The context is the Cell or Position object where the error occurred. The region is an object representing
the textual region in the MDX statement.

olap4j Specification

2.1. Driver management 9

http://download.oracle.com/javase/6/docs/api/java/sql/Driver.html
http://download.oracle.com/javase/6/docs/api/java/sql/DriverManager.html
http://download.oracle.com/javase/6/docs/api/javax/sql/DataSource.html
http://download.oracle.com/javase/6/docs/api/java/sql/SQLException.html
http://download.oracle.com/javase/6/docs/api/java/sql/SQLException.html

Methods:

Region getRegion()•
void setRegion(Region region)•
Object getContext()•
void setContext(Object context)•

2.2. Connections

olap4j's connection management component manages connections to the OLAP server, statements.

Where possible, olap4j uses JDBC's session management facility. olap4j defines extensions to JDBC
interfaces Connection and Statement.

For example, the following code registers a driver, connects to Mondrian and executes a statement:

import java.sql.*;
import org.olap4j.*;

Class.forName("mondrian.olap4j.MondrianOlap4jDriver");
Connection connection =
 DriverManager.getConnection(
 "jdbc:mondrian:Jdbc=jdbc:odbc:MondrianFoodMart;"
 + "Catalog=/WEB-INF/queries/FoodMart.xml;"
 + "Role='California manager'");
OlapWrapper wrapper = (OlapWrapper) connection;
OlapConnection olapConnection = wrapper.unwrap(OlapConnection.class);
OlapStatement statement = olapConnection.createStatement();

CellSet cellSet =
 statement.executeOlapQuery(
 "SELECT {[Measures].[Unit Sales]} ON COLUMNS,\n"
 + " {[Product].Members} ON ROWS\n"
 + "FROM [Sales]");
Here's a piece of code to connect to Microsoft SQL Server Analysis Services™ (MSAS) via XML/A. Note
that except for the driver class and connect string, the code is identical.

import java.sql.*;
import org.olap4j.*;

Class.forName("org.olap4j.driver.xmla.XmlaOlap4jDriver");
Connection connection =
 DriverManager.getConnection(
 "jdbc:xmla:Server=http://localhost/xmla/msxisapi.dll"
OlapWrapper wrapper = (OlapWrapper) connection;
OlapConnection olapConnection = wrapper.unwrap(OlapConnection.class);
OlapStatement statement = connection.createStatement();

CellSet cellSet =
 statement.executeOlapQuery(

olap4j Specification

2.2. Connections 10

 "SELECT {[Measures].[Unit Sales]} ON COLUMNS,\n"
 + " {[Product].Members} ON ROWS\n"
 + "FROM [Sales]");
In the above examples, a statement was created from a string. As we shall see, a statement can also be created
from an MDX parse tree.

2.2.1. Connection pooling

Look again at the code samples in the previous section. One would expect that it would be safe to downcast
the result of a factory method to the desired result. For example, if you invoke an OlapConnection's
createStatement() method, the result should be an OlapStatement.

But if you you are using a connection-pooling library (common examples of which include Jakarta Commons
DBCP and C3P0), this is not so. Every connection-pooling library tracks connections by wrapping them in
another class, and this class will implement java.sql.Connection but not OlapConnection. To
access methods of the OlapConnection, the client application must first strip away the wrapper object.

If you are using a connection-pooling library, olap4j provides the OlapWrapper interface with the method
method unwrap(Class) to access the object underneath the wrapped connection. For instance, if you were
using DBCP, you could define and use a pooling olap4j data source as follows:

import java.sql.*;
import org.olap4j.*;
import org.apache.commons.dbcp.*;

GenericObjectPool connectionPool =
 new GenericObjectPool(null);
ConnectionFactory connectionFactory =
 new DriverManagerConnectionFactory(
 "jdbc:mondrian:Jdbc=jdbc:odbc:MondrianFoodMart;"
 + "Catalog=/WEB-INF/queries/FoodMart.xml;"
 + "Role='California manager'",
 new Properties());
PoolableConnectionFactory poolableConnectionFactory =
 new PoolableConnectionFactory(
 connectionFactory, connectionPool, null, null, false, true);
DataSource dataSource =
 new PoolingDataSource(connectionPool);

// and some time later...

Connection connection = dataSource.getConnection();
OlapWrapper wrapper = (OlapWrapper) connection;
OlapConnection olapConnection = wrapper.unwrap(OlapConnection.class);
OlapStatement statement = olapConnection.createStatement();
The OlapStatement, PreparedOlapStatement, and CellSet interfaces also extend OlapWrapper, and can be
accessed similarly.

If connection pooling is not being used, then the object returned by the driver will be an OlapConnection
and will therefore trivially implement OlapWrapper (because the OlapConnection interface extends
OlapWrapper). If connection pooling is being used, the code will work provided that the implementer of

olap4j Specification

2.2. Connections 11

http://jakarta.apache.org/commons/dbcp/
http://jakarta.apache.org/commons/dbcp/
http://sourceforge.net/projects/c3p0

the connection pool has ensured that the pooled connection object implements the OlapWrapper interface.
This is a minor change to the connection pool, and we hope that popular connection pools will utilize this
method in the near future.

If you are using JDBC 4.0 (which is part of JDK 1.6 and later), the java.sql.Connection class implements the
java.sql.Wrapper interface introduced in JDBC 4.0, so the code can be simplified:

Connection connection = DriverManager.getConnection();
OlapConnection olapConnection = connection.unwrap(OlapConnection.class);
OlapStatement statement = olapConnection.createStatement();
Note that the OlapWrapper interface is not needed. This code will work with any JDBC 4.0-compliant
connection pool.

Package name: org.olap4j

2.2.2. The OlapConnection interface

OlapConnection (extends java.sql.Connection) is a connection to an OLAP data source.

Methods:

String getDatabase() // returns the name of the current database•
void setDatabase(String databaseName) // sets this connection's current database•
Database getOlapDatabase() // returns the current database•
NamedList<Database> getOlapDatabases() // returns a list of all databases•
String getCatalog() // returns the name of the current catalog (inherited from Connection)•
void setCatalog(String catalogName) // sets this connection's current catalog•
Catalog getOlapCatalog() // returns the current catalog object•
NamedList<Catalog> getOlapCatalogs() // returns a list of all catalogs•
String getSchema() // returns the name of the current schema•
void setSchema(String schemaName) // sets this connection's current schema•
Schema getOlapSchema() // returns the current schema object•
NamedList<Schema> getOlapSchemas() // returns a list of all schemas•
OlapDatabaseMetaData getMetaData() // returns an object that contains metadata about
the database

•

Locale getLocale() // returns this connection's locale•
void setLocale(Locale locale) // sets this connection's locale•
void setRoleName(String roleName) // sets the name of the role in which access-control
context this connection will execute queries

•

String getRoleName() // returns the name of the role in which access-control context this
connection will execute queries

•

List<String> getAvailableRoleNames() // returns a list of role names available in this
connection

•

PreparedOlapStatement prepareOlapStatement(String mdx) // prepares a
statement

•

createStatement createStatement(String mdx) // creates a statement (overrides
Connection method)

•

Scenario createScenario() // creates a scenario•
void setScenario(Scenario scenario) // sets the current scenario for this connection•
Scenario getScenario() // returns the current scenario for this connection•
MdxParserFactory getParserFactory() // returns a factory to create MDX parsers•

olap4j Specification

2.2. Connections 12

http://download.oracle.com/javase/6/docs/api/java/sql/Connection.html
http://download.oracle.com/javase/6/docs/api/java/sql/Wrapper.html
http://download.oracle.com/javase/6/docs/api/java/sql/Connection.html

2.2.3. The OlapWrapper interface

OlapWrapper provides the ability to retrieve a delegate instance when the instance in question is in fact a
proxy class.

OlapWrapper duplicates the functionality of the java.sql.Wrapper interface (introduced in JDBC 4.0),
making this functionality available to olap4j clients running in a JDBC 3.0 environment. For code which will
run only on JDBC 4.0 and later, Wrapper can be used, and OlapWrapper can be ignored.

Methods:

boolean isWrapperFor(Class<?> iface) // returns true if this either implements the
interface argument or is directly or indirectly a wrapper for an object that does

•

<T> T unwrap(Class<T>) // returns an object that implements the given interface•

2.2.4. The OlapDatabaseMetaData interface

OlapDatabaseMetaData (extends java.sql.DatabaseMetaData) provides information about an OLAP database.

Just as DatabaseMetaData provides a method to query the each kind of metadata element in a relational
database (tables, columns, and so forth), returning the rows as a ResultSet, OlapDatabaseMetaData
provides methods for OLAP metadata elements (cubes, dimensions, hierarchies, levels, members, measures).

These methods are described in the section "The OlapDatabaseMetaData interface and methods which
return schema rowsets".

2.3. Statements

2.3.1. The OlapStatement interface

OlapStatement (extends java.sql.Statement) is an object used to execute a static MDX statement and return
the result it produces.

It has methods to execute an MDX query represented both as a string and as a parse tree.

Methods:

CellSet executeOlapQuery(String mdx) // executes an MDX statement•
CellSet executeOlapQuery(SelectNode selectNode) // executes an MDX statement
expressed as a parse tree

•

OlapConnection getConnection() // returns the current connection (overrides Statement
method)

•

addListener(Granularity, CellSetListener) // adds a listener to be notified of events
to CellSets created by this statement

•

2.3.2. The PreparedOlapStatement interface

PreparedOlapStatement (extends java.sql.PreparedStatement) represents a precompiled MDX statement.

An MDX statement is precompiled and stored in a PreparedOlapStatement object. This object can

olap4j Specification

2.2. Connections 13

http://download.oracle.com/javase/6/docs/api/java/sql/Wrapper.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html
http://download.oracle.com/javase/6/docs/api/java/sql/Statement.html
http://download.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html

then be used to efficiently execute this statement multiple times.

The method PreparedStatement.getParameterMetaData() returns a description of the parameters, as in JDBC.
The result is an OlapParameterMetaData.

To set values of parameters, use the setType(int, type) methods. If a parameter is a member, use the
setObject(int, Object) method; throws an exception if the object is not a member, or is a member
of the wrong hierarchy.

Unlike JDBC, it is not necessary to assign a value to every parameter. This is because OLAP parameters have
a default value. Parameters have their default value until they are set, and then retain their new values for each
subsequent execution of this PreparedOlapStatement.

The getCube() method returns the cube (or virtual cube) the prepared statement relates to.

Methods:

CellSet executeQuery()•
Cube getCube()•
CellSetMetaData getMetaData()•
OlapParameterMetaData getParameterMetaData()•

2.3.3. The OlapParameterMetaData interface

OlapParameterMetaData (extends java.sql.ParameterMetaData) describes parameters of a
PreparedOlapStatement. Note that regular JDBC parameters (bind variables) have ordinals but not
names; olap4j parameters have both ordinals and names.

Additional methods:

String getParameterName(int param) // returns the designated parameter's name•
getParameterOlapType(int param) // returns the designated parameter's OLAP type•

2.3.4. The CellSet interface

CellSet (extends java.sql.ResultSet) is the result of executing an OlapStatement or PreparedOlapStatement.

It extends ResultSet, but since most of these methods are concerned with rows and columns, only a few of
the base class's methods are applicable. The following methods are applicable:

clearWarnings()•
close()•
getConcurrency()•
getStatement()•
getType()•
getWarnings()•

Additional methods to retrieve the axes of the multidimensional result:

List<CellSetAxis> getAxes()•
CellSetAxis getFilterAxis()•

olap4j Specification

2.3. Statements 14

http://download.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html#getParameterMetaData%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/ParameterMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html#clearWarnings%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html#close%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html#getConcurrency%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html#getStatement%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html#getType%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.html#getWarnings%28%29

Cell getCell(List<Integer> coordinates)•

An OlapStatement can have no more than one CellSet open. Closing an OlapStatement, or preparing or
executing a new query, implicitly closes any previous CellSet.

2.3.5. The CellSetAxis interface

A CellSetAxis is an axis belonging to a CellSet.

A cell set has the same number of axes as the MDX statement which was executed to produce it. For example,
a typical cell set, resulting from an MDX query with COLUMNS and ROWS expressions is two-dimensional,
and therefore has two axes.

Each axis is an ordered collection of members or tuples. Each member or tuple on an axis is called a Position.

The positions on the cell set axis can be accessed sequentially or random-access. Use the List<Position>
getPositions() method to return a list for random access, or the Iterator<Position>
iterate() method to obtain an iterator for sequential access.

Methods:

Axis getOrdinal()•
CellSet getCellSet()•
CellSetAxisMetaData getAxisMetaData()•
List<Position> getPositions()•
int getPositionCount()•
ListIterator<Position> iterate()•

2.3.6. The Axis enum

Axis is an enumeration of axis types.

2.3.7. The CellSetAxisMetaData interface

A CellSetAxisMetaData is describes a CellSetAxis.

Methods:

Axis getAxis()•
List<Hierarchy> getHierarchies()•
List<Property> getProperties()•

2.3.8. The Position interface

Position is a position on a CellSetAxis.

An axis has a particular dimensionality, that is, a set of one or more dimensions which will appear on that
axis, and every position on that axis will have a member of each of those dimensions. For example, in the
MDX query

olap4j Specification

2.3. Statements 15

SELECT {[Measures].[Unit Sales], [Measures].[Store Sales]} ON COLUMNS,
 CrossJoin(
 {[Gender].Members},
 {[Product].[Food], [Product].[Drink]}) ON ROWS
FROM [Sales]
the COLUMNS axis has dimensionality {[Measures]} and the ROWS axis has dimensionality
{[Gender], [Product]}. In the result of this query,

Gender Product Unit Sales Store Sales

All Gender Food 191,940 409,035.59

All Gender Drink 24,597 48,836.21

F Food 94,814 203,094.17

F Drink 12,202 24,457.37

M Food 97,126 205,941.42

M Drink 12,395 24,378.84

each of the 5 positions on the ROWS axis has two members, consistent with its dimensionality of 2. The
COLUMNS axis has two positions, each with one member.

Methods:

List<Member> getMembers()•
int getOrdinal()•

2.3.9. The Cell interface

A Cell is a cell returned from an CellSet.

Methods:

CellSet getCellSet()•
int getOrdinal()•
List<Integer> getCoordinateList()•
Object getPropertyValue(Property)•
boolean isError()•
boolean isNull()•
boolean isEmpty()•
double getDoubleValue()•
String getErrorText()•
Object getValue()•
String getFormattedValue()•

2.3.10. The CellSetMetaData interface

CellSetMetaData (extends java.sql.ResultSetMetaData) describes a CellSet.

Methods:

olap4j Specification

2.3. Statements 16

http://download.oracle.com/javase/6/docs/api/java/sql/ResultSetMetaData.html

NamedList<Property> getCellProperties()•
Cube getCube()•
NamedList<CellSetAxisMetaData> getAxesMetaData()•
CellSetAxisMetaData getSlicerAxisMetaData()•

2.4. MDX object model

The MDX object model represents a parsed MDX statement.

An MDX object model can be created in three ways:

The MDX parser parses an MDX string to create an MDX object model;•
Client code programmatically builds a model by calling API methods;•
Code in the transform package manipulates the model in response to graphical operations.•

An MDX object model can exist in an un-validated and validated state. In the un-validated state, identifiers
and function calls exist as raw strings, and no type information has been assigned. During validation,
identifiers are resolved to specific MDX objects (members, etc.), type information is assigned, and if a
function exists in several overloaded forms, a specific instance is chosen based upon the types of its
arguments.

Any MDX object model can be serialized to a string containing MDX text.

An MDX object model can be converted into a statement. For example,

import org.olap.*;
import org.olap4j.mdx.*;

// Create a query model.
OlapConnection connection;
SelectNode query = new SelectNode();
query.setFrom(
 new IdentifierNode(
 new IdentifierNode.NameSegment("Sales")));
query.getAxisList().add(
 new AxisNode(
 null,
 false,
 Axis.ROWS,
 new ArrayList<IdentifierNode>(),
 new CallNode(
 null,
 "{}",
 Syntax.Braces,
 new IdentifierNode(
 new IdentifierNode(IdentifierNode.ofNames("Measures").getSegmentList()),
 new IdentifierNode(IdentifierNode.ofNames("Unit Sales").getSegmentList()))));

// Create a statement based upon the object model.
OlapStatement stmt;

olap4j Specification

2.4. MDX object model 17

try {
 stmt = connection.createStatement();
} catch (OlapException e) {
 System.out.println("Validation failed: " + e);
 return;
}

// Execute the statement.
CellSet cset;
try {
 cset = stmt.executeOlapQuery(query);
} catch (OlapException e) {
 System.out.println("Execution failed: " + e);
}
Package name: org.olap4j.mdx

Parse tree classes:

ParseTreeNode is a node in a parse tree representing a parsed MDX statement.•
SelectNode represents a SELECT statement, including FROM and WHERE clauses if present.•
AxisNode represents an axis expression.•
CallNode represents a call to a function or operator.•
IdentifierNode represents an identifier, such as Sales or [Measures].[Unit Sales].•
LiteralNode represents a literal, such as 123 or "Hello, world!".•
MemberNode represents a use of a member name in an expression.•
LevelNode represents a use of a level name in an expression.•
HierarchyNode represents a use of a hierarchy name in an expression.•
DimensionNode represents a use of a dimension name in an expression.•
WithMemberNode represents a WITH MEMBER clause defining a calculated member.•
WithSetNode represents a WITH SET clause defining a calculated set.•
PropertyValueNode represents property = value pair as part of a the declaration of a calculated
member or set.

•

Other classes:

enum Syntax describes the possible syntaxes for functions and operators (infix, prefix, function call,
and so forth)

•

2.4.1 The ParseTreeWriter class

ParseTreeWriter is used in conjunction with the ParseTreeNode.unparse(ParseTreeWriter) method to convert
a parse tree into MDX code.

2.5. MDX parser

Package name: org.olap4j.mdx.parser

Provides an MDX parser and validator.

Parser and validator are both allocated via a parser factory, which is obtained from a connection:

olap4j Specification

2.4. MDX object model 18

OlapConnection connection;
MdxParserFactory parserFactory =
 connection.getParserFactory();
MdxParser parser =
 parserFactory.createMdxParser(connection);
SelectNode select =
 parser.parseSelect("SELECT FROM [Sales]");
MdxValidator validator =
 parserFactory.createMdxValidator(connection);
select = validator.validate(select);
Parser and validator are not thread-safe (they cannot be used by more than one thread simultaneously) but
they can be re-used for multiple statements.

One of the chief purposes of validation is to assign a type to every expression within the parse tree. Before
validation, any node's ParseTreeNode.getType() method may throw an exception, but after validation the
getType() method will return a type. Nodes which are not expressions do not have types, and will always
return null.

Classes:

MdxParserFactory•
MdxParser•
MdxValidator•

2.6. MDX type model

Package name: org.olap4j.type

Represents the MDX type system.

Here are some examples:

Expression Type
1 + 2 Integer
[Store] Dimension
[Store].[State] Level<dimension=[Store], hierarchy=[Store]>

[Store].[USA].[CA]
Member<dimension=[Store], hierarchy=[Store], level=[Store].[State],
member=[Store].[USA].[CA]>

[Store].[USA].Children(2) Member<dimension=[Store], hierarchy=[Store], level=[Store].[State]>
Since MDX is a late-binding language, some expressions will have unknown types, or only partial type
information. For example, the expression

[Store].Levels("Sta" + "te")
will have type Level<dimension=[Store], level=unknown>. The validator knows that the
<hierarchy>.Levels(<string expr>) function returns a level, but exactly which level is not
known until the expression is evaluated at runtime.

Type is the base class for all types.

olap4j Specification

2.5. MDX parser 19

Scalar types:

ScalarType represents the type of an expression which has a simple value such as a number or a
string.

•

BooleanType (extends ScalarType) represents an expression which can have values TRUE and
FALSE.

•

NumericType represents the type of a numeric expression.•
DecimalType (extends NumericType) represents a fixed-point numeric expression. It is a subclass
of NumericType, and has precision and scale. An integer expression would have scale 0.

•

StringType (extends ScalarType) represents the type of an expression which has a string value.•
SymbolType (extends ScalarType) represents the type of a symbol, or flag, argument to a built-in
function. For example, the ASC keyword in the expression Order(Gender.MEMBERS,
Measures.[Unit Sales], ASC) is a symbol. Symbol types are rarely used except if you are
manipulating a parse tree.

•

Metadata types:

CubeType represents the type of an expression whose value is a cube.•
DimensionType represents the type of an expression whose value is a dimension.•
HierarchyType represents the type of an expression whose value is a hierarchy.•
LevelType represents the type of an expression whose value is a level.•
MemberType represents the type of an expression whose value is a member.•

A metadata type may be constrained to a particular part of the schema. For example,
LevelType(hierarchy=[Time]) indicates that the expression must evaluate to one of the levels of the
[Time] hierarchy, that is, one of the values [Time].[Year], [Time].[Quarter], or
[Time].[Month].

Composite types:

SetType represents the type of an expression which is a set. It has a component type, for example, the
type of the expression {[Store].[USA].Children} is
Set(Member(level=[Store].[Store State]).

•

TupleType represents the type of an expression which consists of an n-tuple of members. It has a set
of component types, each of which is a member type. For example, the type of the expression
CrossJoin({[Gender].[F], [Gender].[M]}, [Store].Members) is
Set(Tuple(Member(level=[Gender].[Gender]),
Member(hierarchy=[Store])).

•

2.7. Metadata

Package name: org.olap4j.metadata

Metadata are the objects which describe the structure of an OLAP schema: cubes, dimensions, members,
properties and so forth.

olap4j exposes metadata in two very different ways:

A metadata object is a Java object which represents a particular metadata class. For example,
org.olap4j.metadata.Cube.

•

olap4j Specification

2.6. MDX type model 20

A schema result set is a JDBC ResultSet which returns a record for each instance of a particular
metadata class. There is a method in the OlapDatabaseMetaData interface to create a schema result
set for each metadata class. Some of these methods accept parameters to filter the rows returned. For
example, OlapDatabaseMetaData.getCubes(String catalog, String schemaNamePattern, String
cubeNamePattern).

•

2.7.1. Access control

A user's view of metadata may be subject to access control. The precise rules for access control depend on the
provider, and this specification does not say what those rules should be. But this specification requires that the
API methods must behave consistently with the server's access control policy.

For example, in mondrian, users belong to roles, and roles may be granted or denied access to cubes,
hierarchies, or members within hierarchies. Suppose that user Fred belongs to the "Sales Manager" role,
which does not have access to the [Nation] level of the [Store] hierarchy, and the current connection
has been opened in the "Sales Manager" role. Then the Member.getParentMember() method will return
null if applied to [Store].[USA].[CA], because the 'real' parent member [Store].[USA] is invisible
to him; also, the Hierarchy.getLevels() and OlapDatabaseMetaData.getLevels()
methods will omit the Nation level from the list of levels they return.

In olap4j, you can set a connection's role at connect time using the Role connect string property, or you can
call the OlapConnection.setRole(String roleName) method at any point during the lifecycle of
the connection. Setting the role name to null reverts to the default access-control context.

2.7.2. Metadata objects

The following diagram shows the metadata objects in an olap4j schema.

olap4j Specification

2.7. Metadata 21

In the diagram, each arrow represents a collection of objects in a parent object; for example, a database is a
collection of catalogs, each catalog is a collection of schemas, each schema is a collection of cubes, and so
forth. Each object has a corresponding class in the org.olap4j.metadata package.

Most metadata objects extend the MetadataElement interface, which gives them name and uniqueName
attributes, and localized caption and description.

When the API returns a list of metadata elements whose names must be unique (for example, the list of
dimensions in a cube), the return type is the NamedList extension to java.util.List.

Providers are at liberty to implement metadata objects using a cache, and therefore over the course of time,
different java objects may represent the same underlying metadata object. Always use equals(), not the ==
operator, when comparing metadata objects, and do not use IdentityHashMap.

2.7.2.1. The MetadataElement interface

A MetadataElement is an element which describes the structure of an OLAP schema.

olap4j Specification

2.7. Metadata 22

http://download.oracle.com/javase/6/docs/api/java/util/List.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://download.oracle.com/javase/6/docs/api/java/util/IdentityHashMap.html

Subtypes are Cube, Dimension, Hierarchy, Level, Member, Property. MetadataElement provides name and
unique-name properties (not localized), and localized caption and description (see Internationalization).

Methods:

String getName() // name of this metadata element•
String getUniqueName() // unique name of this metadata element•
String getCaption() // localized caption of this metadata element•
String getDescription() // localized description of this metadata element•

2.7.2.2. The Database interface

A Database is the highest level element in the hierarchy of metadata objects. A database contains one or more
catalogs.

Some OLAP servers may only have one database. Mondrian is one such OLAP server.

To obtain the collection of databases in the current server, call the
OlapConnection.getOlapDatabases() method.

Methods:

OlapConnection getOlapConnection() // returns the current connection•
String getName() // returns the name of this database•
String getDescription() // returns the description of this database•
String getURL() // returns the redirection URL, if this database is a proxy to another server•
String getDataSourceInfo() // returns provider-specific information•
String getProviderName() // returns the name of the underlying OLAP provider•
List<ProviderType> getProviderTypes() // returns the types of data that are supported
by this provider

•

List<AuthenticationMode> getAuthenticationModes() // returns the modes of
authentication that are supported by this provider

•

NamedList<Catalog> getCatalogs() // returns a list of catalogs in this database•

2.7.2.3. The Catalog interface

A Catalog is the second highest level element in the hierarchy of metadata objects. A catalog belongs to a
database and contains one or more schemas.

Some OLAP servers may only have one catalog. Mondrian is one such OLAP server; its sole catalog is
always called "LOCALDB".

To obtain the collection of catalogs in the current server, call the
OlapConnection.getOlapCatalogs() method.

Methods:

String getName() // returns the name of this catalog•
NamedList<Schema> getSchemas() // returns a list of schemas in this catalog•
OlapDatabaseMetaData getMetaData() // returns the metadata describing the OLAP
server that this catalog belongs to

•

olap4j Specification

2.7. Metadata 23

Database getDatabase() // returns this catalog's parent database•

2.7.2.4. The Schema interface

A Schema is a collection of database objects that contain structural information, or metadata, about a
database.

It belongs to a catalog and contains a number of cubes and shared dimensions.

Methods:

Catalog getCatalog() // returns this schema's parent catalog•
String getName() // returns the name of this catalog•
NamedList<Dimension> getSharedDimensions()•
NamedList<Cube> getCubes()•
Collection<Locale> getSupportedLocales() (see Internationalization)•

To obtain the collection of schemas in the current server, call the
OlapConnection.getOlapSchemas() method.

2.7.2.5. The Cube interface

A Cube is the central metadata object for representing multidimensional data.

It belongs to a schema, and is described by a list of dimensions and a list of measures. It may also have a
collection of named sets, each defined by a formula.

Methods:

NamedList<Dimension> getDimensions()•
NamedList<Hierarchy> getHierarchies()•
List<Measure> getMeasures()•
NamedList<NamedSet> getSets()•
Schema getSchema()•
String getName()•
List<Locale> getSupportedLocales() (see Internationalization)•
Member lookupMember(List<IdentifierSegment> nameParts)•
List<Member> lookupMembers(Set<TreeOp> treeOps,
List<IdentifierSegment> nameParts)

•

2.7.2.6. The Dimension interface

A Dimension (extends MetadataElement) is an organized hierarchy of categories, known as levels, that
describes data in a cube.

Dimensions typically describe a similar set of members upon which the user wants to base an analysis.

A dimension must have at least one hierarchy, and may have more than once, but most have exactly one
hierarchy.

String getName()•

olap4j Specification

2.7. Metadata 24

NamedList<Hierarchy> getHierarchies()•
Dimension.Type getDimensionType()•

2.7.2.7. The Hierarchy interface

A Hierarchy (extends MetadataElement) is an organization of the set of members in a dimension and their
positions relative to one another.

A hierarchy is a collection of levels, each of which is a category of similar members.

Methods:

Dimension getDimension()•
String getName()•
NamedList<Level> getLevels()•
boolean hasAll()•
Member getDefaultMember()•
NamedList<Member> getRootMembers()•

2.7.2.8. The Level interface

A Level (extends MetadataElement) is a group of members in a hierarchy, all with the same attributes and at
the same depth in the hierarchy.

Methods:

int getDepth()•
Hierarchy getHierarchy()•
Level.Type getLevelType()•
NamedList<Property> getProperties()•
List<Member> getMembers()•
int getCardinality()•

2.7.2.9. The Member interface

A Member (extends MetadataElement) is a data value in an OLAP dimension.

Methods:

String getName()•
NamedList<Member> getChildMembers()•
Member getParentMember()•
Level getLevel()•
Hierarchy getHierarchy()•
boolean isAll()•
boolean isChildOrEqualTo(Member member)•
boolean isCalculated()•
boolean isCalculatedInQuery()•
int solveOrder()•
List<Member> getAncestorMembers()•
Object getPropertyValue(Property property)•

olap4j Specification

2.7. Metadata 25

String getPropertyFormattedValue(Property property)•
void setProperty(Property property, Object value)•
NamedList<Property> getProperties()•
int getOrdinal()•
boolean isHidden()•
Member getDataMember()•
int getChildMemberCount()•

2.7.2.10. The Measure interface

A Measure (extends Member) is a data value of primary interest to the user browsing the cube. It provides the
value of each cell, and is usually numeric.

Every measure is a member of a special dimension called "Measures".

Methods:

boolean isVisible()•
Aggregator getAggregator()•
Datatype getDataType()•

2.7.2.11. The Property interface

Property (extends MetadataElement) is the definition of a property of a member or a cell.

Property contains two enumerated types StandardMemberProperty and StandardCellProperty whose
values are the built-in properties of members and cells. Because these types implement the Property interface,
you can use them as properties; for example:

Member member;
Object o = member.getPropertyValue(
 Property.StandardMemberProperty.CATALOG_NAME);
Members:

Datatype getDatatype()•
Set<TypeFlag> getType()•
ContentType getContentType()•
enum TypeFlag { MEMBER, CELL, SYSTEM, BLOB }•
enum StandardMemberProperty implements Property { CATALOG_NAME,
SCHEMA_NAME, CUBE_NAME, ... }

•

enum StandardCellProperty implements Property { BACK_COLOR,
CELL_EVALUATION_LIST, ... }

•

enum ContentType { REGULAR, ID, RELATION_TO_PARENT, ... }•

2.7.2.12. The NamedSet interface

A NamedSet (extends MetadataElement) describes a set whose value is determined by an MDX expression. It
belongs to a cube.

Methods:

olap4j Specification

2.7. Metadata 26

Cube getCube()•
Expression getExpression()•

2.7.2.13. The Datatype enum

The Datatype enum describes the type of property and measure values. Because olap4j drivers need to
interoperate with OLE DB for OLAP and XMLA systems, Datatype values have the same ordinals as in the
OLE DB specification, and we show here the name and description of the corresponding type in the OLE DB
specification. The table shows the analogous Java type, if there is one.

Datatype Java type OLE DB type Description
INTEGER int DBTYPE_I4 A four-byte, signed integer: INTEGER
DOUBLE double DBTYPE_R8 A double-precision floating-point value: Double

CURRENCY DBTYPE_CY

A currency value: LARGE_INTEGER, Currency
is a fixed-point number with four digits to the
right of the decimal point. It is stored in an
eight-byte signed integer, scaled by 10,000.

BOOLEAN boolean DBTYPE_BOOL

A Boolean value stored in the same way as in
Automation: VARIANT_BOOL; 0 means false
and ~0 (bitwise, the value is not 0; that is, all bits
are set to 1) means true.

VARIANT Object DBTYPE_VARIANT An Automation VARIANT
UNSIGNED_SHORT - DBTYPE_UI2 A two-byte, unsigned integer
UNSIGNED_INTEGER - DBTYPE_UI4 A four-byte, unsigned integer

LARGE_INTEGER long DBTYPE_I8 An eight-byte, signed integer:
LARGE_INTEGER

STRING String DBTYPE_WSTR

A null-terminated Unicode character string:
wchar_t[length]; If DBTYPE_WSTR is used by
itself, the number of bytes allocated for the string,
including the null-termination character, is
specified by cbMaxLen in the DBBINDING
structure. If DBTYPE_WSTR is combined with
DBTYPE_BYREF, the number of bytes allocated
for the string, including the null-termination
character, is at least the length of the string plus
two. In either case, the actual length of the string
is determined from the bound length value. The
maximum length of the string is the number of
allocated bytes divided by sizeof(wchar_t) and
truncated to the nearest integer.

2.7.3. The OlapDatabaseMetaData interface, and methods which return schema rowsets

OlapDatabaseMetaData (extends java.sql.DatabaseMetaData) contains methods which return schema result
sets.

Schema result sets are specified as in [XML for Analysis specification]. Here is a table of the XML/A
methods and the corresponding olap4j method and element type.

XML for Analysis schema rowset Schema result set method

olap4j Specification

2.7. Metadata 27

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

Metadata
element

DBSCHEMA_CATALOGS DatabaseMetaData.getCatalogs Catalog
not supported DatabaseMetaData.getSchemas Schema
DBSCHEMA_COLUMNS not supported not supported
DBSCHEMA_PROVIDER_TYPES not supported not supported
DBSCHEMA_TABLES not supported not supported
DBSCHEMA_TABLES_INFO not supported not supported
DISCOVER_DATASOURCES OlapDatabaseMetaData.getDatabases Database
DISCOVER_ENUMERATORS not supported not supported
DISCOVER_KEYWORDS OlapDatabaseMetaData.getMdxKeywords not supported
DISCOVER_LITERALS OlapDatabaseMetaData.getLiterals not supported
DISCOVER_PROPERTIES OlapDatabaseMetaData.getDatabaseProperties not supported
DISCOVER_SCHEMA_ROWSETS not supported not supported
MDSCHEMA_ACTIONS OlapDatabaseMetaData.getActions not supported
MDSCHEMA_CUBES OlapDatabaseMetaData.getCubes Cube
MDSCHEMA_DIMENSIONS OlapDatabaseMetaData.getDimensions Dimension
MDSCHEMA_FUNCTIONS OlapDatabaseMetaData.getFunctions not supported
MDSCHEMA_HIERARCHIES OlapDatabaseMetaData.getHierarchies Hierarchy
MDSCHEMA_INPUT_DATASOURCES not supported not supported
MDSCHEMA_KPIS not supported not supported
MDSCHEMA_LEVELS OlapDatabaseMetaData.getLevels Level
MDSCHEMA_MEASURES OlapDatabaseMetaData.getMeasures Measure
MDSCHEMA_MEMBERS OlapDatabaseMetaData.getMembers Member
MDSCHEMA_PROPERTIES OlapDatabaseMetaData.getProperties Property
MDSCHEMA_SETS OlapDatabaseMetaData.getSets NamedSet
The rows returned in the result set returned from the metadata methods are structured according to the result
set column layouts detailed in this section.

All columns noted in the following result sets are required, and they must be returned in the order shown.
However, additional columns (which should be ignored by clients not expecting them) can be added at the
end, and some columns can contain null data for info that does not apply.

The following sections describe the columns in each rowset. Each section includes a table that provides the
following information for each column.

Column heading Contents
Column name The name of the column in the output rowset.
Type A description of the data type for the column, and whether the column may be NULL.
Description A brief description of the purpose of the column.

olap4j Specification

2.7. Metadata 28

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html#getCatalogs%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html#getSchemas%28%29

2.7.3.1. getDatabases

Specified by the DISCOVER_DATASOURCES XML for Analysis method.

Note that we use the name 'database' rather than 'data source' because 'data source' has a well-established and
entirely different meaning (see interface javax.sql.DataSource) in the JDBC specification.

The returned result set contains the following columns.

Column name Type Description

DATA_SOURCE_NAME String The name of the data source, such as FoodMart
2000. Never null.

DATA_SOURCE_DESCRIPTION String A description of the data source, as entered by the
publisher.

URL String The unique path that shows where to invoke the
XML for Analysis methods for that data source.

DATA_SOURCE_INFO String

A string containing any additional information
required to connect to the data source. This can
include the Initial Catalog property or other
information for the provider.

Example: "Provider=MSOLAP;Data
Source=Local;"

PROVIDER_NAME String
The name of the provider behind the data source.

Example: "MSDASQL"

PROVIDER_TYPE String

Comma-separated list of the types of data supported
by the provider. May include one or more of the
following types. Example follows this table.

TDP: tabular data provider.•
MDP: multidimensional data provider.•
DMP: data mining provider. A DMP
provider implements the OLE DB for Data
Mining specification.

•

AUTHENTICATION_MODE String

Specification of what type of security mode the data
source uses. Values can be one of the following,
never null:

Unauthenticated: no user ID or password
needs to be sent.

•

Authenticated: User ID and Password must
be included in the information required for
the connection.

•

Integrated: the data source uses the
underlying security to determine
authorization, such as Integrated Security
provided by Microsoft Internet Information
Services (IIS).

•

olap4j Specification

2.7. Metadata 29

http://download.oracle.com/javase/6/docs/api/javax/sql/DataSource.html

2.7.3.2. getDatabaseProperties

Returns information about the standard and provider-specific properties supported by an olap4j provider.
Properties that are not supported by a provider are not listed in the return result set.

Specified by the DISCOVER_PROPERTIES XML for Analysis method, except that we rename the VALUE
property to PROPERTY_VALUE because "VALUE" is a SQL:2003 reserved word.

The returned result set contains the following columns.

Column name Type Description
PROPERTY_NAME String The name of the property. Never null.
PROPERTY_DESCRIPTION String A localizable text description of the property.
PROPERTY_TYPE String The XML data type of the property.

PROPERTY_ACCESS_TYPE String Access for the property. The value can be Read,
Write, or ReadWrite. Never null.

IS_REQUIRED boolean True if a property is required, false if it is not
required.

PROPERTY_VALUE String
The current value of the property.

This property is named VALUE in XMLA.
2.7.3.3 getLiterals

Retrieves a list of information on supported literals, including data types and values.

Specified by the DISCOVER_LITERALS XML for Analysis method.

The returned result set contains the following columns.

Column name Type Description

LITERAL_NAME String

The name of the literal described in the row. Never
null.

Example: DBLITERAL_LIKE_PERCENT.

LITERAL_VALUE String

Contains the actual literal value.

Example, if LITERAL_NAME is
DBLITERAL_LIKE_PERCENT and the percent
character (%) is used to match zero or more
characters in a LIKE clause, this column's value
would be "%".

LITERAL_INVALID_CHARS String

The characters, in the literal, that are not valid.

For example, if table names can contain anything
other than a numeric character, this string would be
"0123456789".

LITERAL_INVALID_
STARTING_CHARS

String The characters that are not valid as the first character
of the literal. If the literal can start with any valid

olap4j Specification

2.7. Metadata 30

character, this is null.

LITERAL_MAX_LENGTH int
The maximum number of characters in the literal. If
there is no maximum or the maximum is unknown,
the value is -1.

2.7.3.4. getCubes

Describes the structure of cubes within a database.

Specified by the MDSCHEMA_CUBES XML for Analysis method.

The returned result set contains the following columns.

Column name Type Description
CATALOG_NAME String The name of the database.
SCHEMA_NAME String Not supported.

CUBE_NAME String The name of the cube or dimension. Dimension
names are prefaced by a dollar sign ($) symbol.

CUBE_TYPE String

The type of the cube. Valid values are:

CUBE•
DIMENSION•

CUBE_GUID String Not supported.
CREATED_ON Timestamp Not supported.
LAST_SCHEMA_UPDATE Timestamp The time that the cube was last processed.
SCHEMA_UPDATED_BY String Not supported.
LAST_DATA_UPDATE Timestamp The time that the cube was last processed.
DATA_UPDATED_BY String Not supported.
DESCRIPTION String A user-friendly description of the cube.
IS_DRILLTHROUGH_ENABLED boolean A Boolean that always returns true.

IS_LINKABLE boolean A Boolean that indicates whether a cube can be used
in a linked cube.

IS_WRITE_ENABLED boolean A Boolean that indicates whether a cube is
write-enabled.

IS_SQL_ENABLED boolean A Boolean that indicates whether SQL can be used
on the cube.

CUBE_CAPTION String The caption of the cube.

BASE_CUBE_NAME String The name of the source cube if this cube is a
perspective cube.

ANNOTATIONS String (Optional) A set of notes, in XML format.
The rowset is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME.

2.7.3.5. getDimensions

Retrieves a result set describing the shared and private dimensions within a database.

Specified by the MDSCHEMA_DIMENSIONS XML for Analysis method.

olap4j Specification

2.7. Metadata 31

The returned result set contains the following columns.

Column name Type Description
CATALOG_NAME String The name of the database.
SCHEMA_NAME String Not supported.
CUBE_NAME String The name of the cube.

DIMENSION_NAME String

The name of the dimension. If a dimension is part of
more than one cube or measure group, then there is
one row for each unique combination of dimension,
measure group, and cube.

DIMENSION_UNIQUE_NAME String The unique name of the dimension.
DIMENSION_GUID String Not supported.

DIMENSION_CAPTION String
The caption of the dimension. This should be used
when displaying the name of the dimension to the
user, such as in the user interface or reports.

DIMENSION_ORDINAL int The position of the dimension within the cube.

DIMENSION_TYPE int
The type of the dimension. Valid values include the
values of the xmlaOrdinal attribute of the
org.olap4j.Dimension.Type enum.

DIMENSION_CARDINALITY int The number of members in the key attribute.

DEFAULT_HIERARCHY String A hierarchy from the dimension. Preserved for
backwards compatibility.

DESCRIPTION String A user-friendly description of the dimension.
IS_VIRTUAL boolean Always false.

IS_READWRITE boolean

A Boolean that indicates whether the dimension is
write-enabled.

true if the dimension is write-enabled.

DIMENSION_UNIQUE_SETTINGS int

A bitmap that specifies which columns contain
unique values if the dimension contains only
members with unique names. The following bit
value constants are defined for this bitmap:

MDDIMENSIONS_MEMBER_KEY_UNIQUE
(1)

•

DIMENSION_MASTER_
UNIQUE_NAME String Always null.

DIMENSION_IS_VISIBLE boolean Always true.
The result set is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME,
DIMENSION_NAME.

2.7.3.6. getFunctions

Retrieves a result set describing the functions available to client applications connected to the database.

Specified by the MDSCHEMA_FUNCTIONS XML for Analysis method.

olap4j Specification

2.7. Metadata 32

The returned result set contains the following columns.

Column name Type Description
FUNCTION_NAME String The name of the function.
DESCRIPTION String A description of the function.

PARAMETER_LIST String
A comma delimited list of parameters formatted as
in Microsoft Visual Basic. For example, a parameter
might be Name as String.

RETURN_TYPE int The VARTYPE of the return data type of the
function.

ORIGIN int

The origin of the function:

1 for MDX functions.•
2 for user-defined functions.•

INTERFACE_NAME String

The name of the interface for user-defined functions

The group name for Multidimensional Expressions
(MDX) functions.

LIBRARY_NAME String The name of the type library for user-defined
functions. null for MDX functions.

DLL_NAME String

(Optional) The name of the assembly that
implements the user-defined function.

Returns null for MDX functions.

HELP_FILE String

(Optional) The name of the file that contains the
help documentation for the user-defined function.

Returns null for MDX functions.

HELP_CONTEXT int (Optional) Returns the Help context ID for this
function.

OBJECT String

(Optional) The generic name of the object class to
which a property applies. For example, the rowset
corresponding to the <level_name>.Members
function returns "Level".

Returns null for user-defined functions, or
non-property MDX functions.

CAPTION String The display caption for the function.
The rowset is sorted on ORIGIN, INTERFACE_NAME, FUNCTION_NAME.

2.7.3.7. getHierarchies

Retrieves a result set describing each hierarchy within a particular dimension.

Specified by the MDSCHEMA_HIERARCHIES XML for Analysis method.

The returned result set contains the following columns.

olap4j Specification

2.7. Metadata 33

Column name Type Description

CATALOG_NAME String The name of the catalog to which this hierarchy belongs.
null if the provider does not support catalogs.

SCHEMA_NAME String Not supported

CUBE_NAME String (Required) The name of the cube to which this hierarchy
belongs.

DIMENSION_UNIQUE_NAME String
The unique name of the dimension to which this hierarchy
belongs. For providers that generate unique names by
qualification, each component of this name is delimited.

HIERARCHY_NAME String
The name of the hierarchy. Blank if there is only a single
hierarchy in the dimension. This will always have a value in
Microsoft SQL Server 2005 Analysis Services (SSAS).

HIERARCHY_UNIQUE_NAME String The unique name of the hierarchy.
HIERARCHY_GUID String Not supported

HIERARCHY_CAPTION String

A label or a caption associated with the hierarchy. Used
primarily for display purposes. If a caption does not exist,
HIERARCHY_NAME is returned. If the dimension either
does not contain a hierarchy or has just one hierarchy, this
column will contain the name of the dimension.

DIMENSION_TYPE int The type of the dimension. Valid values include the values of
the xmlaOrdinal attribute of .

HIERARCHY_CARDINALITY int The number of members in the hierarchy.

DEFAULT_MEMBER String The default member for this hierarchy. This is a unique
name. Every hierarchy must have a default member.

ALL_MEMBER String The member at the highest level of the rollup.

DESCRIPTION String A human-readable description of the hierarchy. null if no
description exists.

STRUCTURE int

The structure of the hierarchy. Valid values include the
following values:

MD_STRUCTURE_FULLYBALANCED (0)•
MD_STRUCTURE_RAGGEDBALANCED (1)•
MD_STRUCTURE_UNBALANCED (2)•
MD_STRUCTURE_NETWORK (3)•

IS_VIRTUAL boolean Always returns false.

IS_READWRITE boolean

A Boolean that indicates whether the Write Back to
dimension column is enabled.

Returns true if the Write Back to dimension column that
represents this hierarchy is enabled.

DIMENSION_UNIQUE_SETTINGS int Always returns
MDDIMENSIONS_MEMBER_KEY_UNIQUE (1).

DIMENSION_MASTER_
UNIQUE_NAME String Always returns null.

DIMENSION_IS_VISIBLE boolean Always returns true. If the dimension is not visible, it will
not appear in the schema rowset.

olap4j Specification

2.7. Metadata 34

HIERARCHY_ORDINAL int The ordinal number of the hierarchy across all hierarchies of
the cube.

DIMENSION_IS_SHARED boolean Always returns true.

HIERARCHY_IS_VISIBLE boolean
A Boolean that indicates whether the hieararchy is visible.

Returns true if the hierarchy is visible; otherwise, false.

HIERARCHY_ORIGIN int

A bit mask that determines the source of the hierarchy:

MD_USER_DEFINED identifies user defined
hierarchies, and has a value of 0x0000001.

•

MD_SYSTEM_ENABLED identifies attribute
hierarchies, and has a value of 0x0000002.

•

MD_SYSTEM_INTERNAL identifies attributes
with no attribute hierarchies, and has a value of
0x0000004.

•

A parent/child attribute hierarchy is both
MD_USER_DEFINED and MD_SYSTEM_ENABLED.

HIERARCHY_DISPLAY_FOLDER String
The path to be used when displaying the hierarchy in the user
interface. Folder names will be separated by a semicolon (;).
Nested folders are indicated by a backslash (\).

INSTANCE_SELECTION int

A hint to the client application on how to show the hierarchy.
Valid values include the following values:

MD_INSTANCE_SELECTION_NONE•
MD_INSTANCE_SELECTION_DROPDOWN•
MD_INSTANCE_SELECTION_LIST•
MD_INSTANCE_SELECTION_FILTEREDLIST•
MD_INSTANCE_SELECTION_MANDATORYFILTER•

The rowset is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME,
DIMENSION_UNIQUE_NAME, HIERARCHY_NAME.

2.7.3.8. getLevels

Retrieves a result set describing each level within a particular hierarchy.

Specified by the MDSCHEMA_LEVELS XML for Analysis method.

The returned result set contains the following columns.

Column name Type Description

CATALOG_NAME String The name of the catalog to which this level belongs.
null if the provider does not support catalogs.

SCHEMA_NAME String The name of the schema to which this level belongs.
null if the provider does not support schemas.

CUBE_NAME String The name of the cube to which this level belongs.

DIMENSION_UNIQUE_NAME String
The unique name of the dimension to which this level
belongs. For providers that generate unique names by
qualification, each component of this name is delimited.

olap4j Specification

2.7. Metadata 35

HIERARCHY_UNIQUE_NAME String

The unique name of the hierarchy. If the level belongs
to more than one hierarchy, there is one row for each
hierarchy to which it belongs. For providers that
generate unique names by qualification, each
component of this name is delimited.

LEVEL_NAME String The name of the level.
LEVEL_UNIQUE_NAME String The properly escaped unique name of the level.
LEVEL_GUID String Not supported.

LEVEL_CAPTION String
A label or caption associated with the hierarchy. Used
primarily for display purposes. If a caption does not
exist, LEVEL_NAME is returned.

LEVEL_NUMBER int The distance of the level from the root of the hierarchy.
Root level is zero (0).

LEVEL_CARDINALITY int The number of members in the level.

LEVEL_TYPE int
Type of the level. Values are as allowed by the
xmlaOrdinal field of the org.olap4j.Level.Type
enum.

DESCRIPTION String A human-readable description of the level. null if no
description exists.

CUSTOM_ROLLUP_SETTINGS int

A bitmap that specifies the custom rollup options:

MDLEVELS_CUSTOM_ROLLUP_EXPRESSION
(0x01) indicates an expression exists for this
level. (Deprecated)

•

MDLEVELS_CUSTOM_ROLLUP_COLUMN
(0x02) indicates that there is a custom rollup
column for this level.

•

MDLEVELS_SKIPPED_LEVELS (0x04)
indicates that there is a skipped level associated
with members of this level.

•

MDLEVELS_CUSTOM_MEMBER_PROPERTIES
(0x08) indicates that members of the level have
custom member properties.

•

MDLEVELS_UNARY_OPERATOR (0x10)
indicates that members on the level have unary
operators.

•

LEVEL_UNIQUE_SETTINGS int A bitmap that specifies which columns contain unique
values, if the level only has members with unique
names or keys. The Msmd.h file defines the following
bit value constants for this bitmap:

MDDIMENSIONS_MEMBER_KEY_UNIQUE
(1)

•

MDDIMENSIONS_MEMBER_NAME_UNIQUE
(2)

•

The key is always unique in Microsoft SQL Server
2005 Analysis Services (SSAS). The name will be

olap4j Specification

2.7. Metadata 36

unique if the setting on the attribute is
UniqueInDimension or UniqueInAttribute

LEVEL_IS_VISIBLE boolean

A Boolean that indicates whether the level is visible.

Always returns True. If the level is not visible, it will
not be included in the schema rowset.

LEVEL_ORDERING_PROPERTY String The ID of the attribute that the level is sorted on.

LEVEL_DBTYPE int

The DBTYPE enumeration of the member key column
that is used for the level attribute.

Null if concatenated keys are used as the member key
column.

LEVEL_MASTER_
UNIQUE_NAME String Always returns null.

LEVEL_NAME_
SQL_COLUMN_NAME String The SQL representation of the level member names.

LEVEL_KEY_
SQL_COLUMN_NAME String The SQL representation of the level member key

values.
LEVEL_UNIQUE_NAME_
SQL_COLUMN_NAME String The SQL representation of the member unique names.

LEVEL_ATTRIBUTE_
HIERARCHY_NAME String The name of the attribute hierarchy providing the

source of the level.
LEVEL_KEY_CARDINALITY int The number of columns in the level key.

LEVEL_ORIGIN int

A bit map that defines how the level was sourced:

MD_ORIGIN_USER_DEFINED identifies
levels in a user defined hierarchy.

•

MD_ORIGIN_ATTRIBUTE identifies levels
in an attribute hierarchy.

•

MD_ORIGIN_KEY_ATTRIBUTE identifies
levels in a key attribute hierarchy.

•

MD_ORIGIN_INTERNAL identifies levels
in attribute hierarchies that are not enabled.

•

The rowset is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME,
DIMENSION_UNIQUE_NAME, HIERARCHY_UNIQUE_NAME, LEVEL_NUMBER.

2.7.3.9. getMeasures

Retrieves a result set describing each measure within a cube.

Specified by the MDSCHEMA_MEASURES XML for Analysis method.

The returned result set contains the following columns.

Column name Type Description

CATALOG_NAME String
The name of the catalog to which this measure
belongs. null if the provider does not support
catalogs.

olap4j Specification

2.7. Metadata 37

SCHEMA_NAME String
The name of the schema to which this measure
belongs. null if the provider does not support
schemas.

CUBE_NAME String The name of the cube to which this measure
belongs.

MEASURE_NAME String The name of the measure.

MEASURE_UNIQUE_NAME String
The Unique name of the measure. For providers that
generate unique names by qualification, each
component of this name is delimited.

MEASURE_CAPTION String
A label or caption associated with the measure. Used
primarily for display purposes. If a caption does not
exist, MEASURE_NAME is returned.

MEASURE_GUID String Not supported.

MEASURE_AGGREGATOR int

An enumeration that identifies how a measure was
derived. Can be one of the values allowed by the
xmlaOrdinal field of the
org.olap4j.Measure.Aggregator enum.

DATA_TYPE int The data type of the measure.

NUMERIC_PRECISION int
The maximum precision of the property if the
measure object's data type is exact numeric. null
for all other property types.

NUMERIC_SCALE int

The number of digits to the right of the decimal
point if the measure object's type indicator is
DBTYPE_NUMERIC or DBTYPE_DECIMAL.
Otherwise, this value is null.

MEASURE_UNITS String Not supported

DESCRIPTION String A human-readable description of the measure. null
if no description exists.

EXPRESSION String An expression for the member.

MEASURE_IS_VISIBLE boolean
A Boolean that always returns True. If the measure
is not visible, it will not be included in the schema
rowset.

LEVELS_LIST String A string that always returns null.
MEASURE_NAME_
SQL_COLUMN_NAME String The name of the column in the SQL query that

corresponds to the measure's name.
MEASURE_UNQUALIFIED_
CAPTION String The name of the measure, not qualified with the

measure group name.

MEASUREGROUP_NAME String The name of the measure group to which the
measure belongs.

MEASURE_DISPLAY_FOLDER String

The path to be used when displaying the measure in
the user interface. Folder names will be separated by
a semicolon. Nested folders are indicated by a
backslash (\).

DEFAULT_FORMAT_STRING String The default format string for the measure.
The rowset is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME, MEASURE_NAME.

olap4j Specification

2.7. Metadata 38

2.7.3.10. getMembers

Retrieves a result set describing the members within a database.

Specified by the MDSCHEMA_MEMBERS XML for Analysis method.

The returned result set contains the following columns.

Column name Type Description

CATALOG_NAME String The name of the database to which this member
belongs.

SCHEMA_NAME String The name of the schema to which this member
belongs.

CUBE_NAME String The name of the cube to which this member belongs.

DIMENSION_UNIQUE_NAME String The unique name of the dimension to which this
member belongs.

HIERARCHY_UNIQUE_NAME String The unique name of the hierarchy to which this
member belongs.

LEVEL_UNIQUE_NAME String The unique name of the level to which this member
belongs.

LEVEL_NUMBER int The distance of the member from the root of the
hierarchy. The root level is zero (0).

MEMBER_ORDINAL int (Deprecated) Always returns 0.
MEMBER_NAME String The name of the member.
MEMBER_UNIQUE_NAME String The unique name of the member.

MEMBER_TYPE int

The type of the member, one of the values of the
ordinal field of the org.olap4j.Member.Type
enum.

FORMULA takes precedence over MEASURE.
For example, if there is a formula (calculated)
member on the Measures dimension, it is listed as
FORMULA.

MEMBER_GUID String The GUID of the member. null if no GUID exists.

MEMBER_CAPTION String
A label or caption associated with the member. Used
primarily for display purposes. If a caption does not
exist, MEMBER_NAME is returned.

CHILDREN_CARDINALITY int

The number of children that the member has. This
can be an estimate, so consumers should not rely on
this to be the exact count. Providers should return
the best estimate possible.

PARENT_LEVEL int The distance of the member's parent from the root
level of the hierarchy. The root level is zero (0).

PARENT_UNIQUE_NAME String The unique name of the member's parent. null is
returned for any members at the root level.

PARENT_COUNT int The number of parents that this member has.
DESCRIPTION String Always returns null.

olap4j Specification

2.7. Metadata 39

EXPRESSION String The expression for calculations, if the member is of
type MDMEMBER_TYPE_FORMULA.

MEMBER_KEY String The value of the member's key column. Returns null
if the member has a composite key.

IS_PLACEHOLDERMEMBER boolean

A Boolean that indicates whether a member is a
placeholder member for an empty position in a
dimension hierarchy.

It is valid only if the MDX Compatibility property
has been set to 1.

IS_DATAMEMBER boolean

A Boolean that indicates whether the member is a
data member.

Returns True if the member is a data member.

Zero or more additional columns int

No properties are returned if the members could be
returned from multiple levels. For example, if the
Tree operator is PARENT and SELF for a
non-parent child hierarchy, no member properties
are returned.

This applies to ragged hierarchies where tree
operators could return members from different levels
(for example, if the prior level contains holes and
parent on members is requested).

The rowset is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME,
DIMENSION_UNIQUE_NAME, HIERARCHY_UNIQUE_NAME, LEVEL_UNIQUE_NAME,
LEVEL_NUMBER, MEMBER_ORDINAL.

2.7.3.11. getProperties

Retrieves a list of descriptions of member and cell Properties.

Specified by the MDSCHEMA_PROPERTIES XML for Analysis method.

The returned result set contains the following columns.

Column name Type Description
CATALOG_NAME String The name of the database.

SCHEMA_NAME String
The name of the schema to which this property
belongs. null if the provider does not support
schemas.

CUBE_NAME String The name of the cube.

DIMENSION_UNIQUE_NAME String
The unique name of the dimension. For providers
that generate unique names by qualification, each
component of this name is delimited.

HIERARCHY_UNIQUE_NAME String
The unique name of the hierarchy. For providers that
generate unique names by qualification, each
component of this name is delimited.

olap4j Specification

2.7. Metadata 40

LEVEL_UNIQUE_NAME String

The unique name of the level to which this property
belongs. If the provider does not support named
levels, it should return the
DIMENSION_UNIQUE_NAME value for this
field. For providers that generate unique names by
qualification, each component of this name is
delimited.

MEMBER_UNIQUE_NAME String

The unique name of the member to which the
property belongs. Used for data stores that do not
support named levels or have properties on a
member-by-member basis. If the property applies to
all members in a level, this column is null. For
providers that generate unique names by
qualification, each component of this name is
delimited.

PROPERTY_TYPE int

A bitmap that specifies the type of the property:

MDPROP_MEMBER (1) identifies a
property of a member. This property can be
used in the DIMENSION PROPERTIES
clause of the SELECT statement.

•

MDPROP_CELL (2) identifies a property
of a cell. This property can be used in the
CELL PROPERTIES clause that occurs at
the end of the SELECT statement.

•

MDPROP_SYSTEM (4) identifies an
internal property.

•

MDPROP_BLOB (8) identifies a property
which contains a binary large object (blob).

•

PROPERTY_NAME String
The name of the property. If the key for the property
is the same as the name for the property,
PROPERTY_NAME will be blank.

PROPERTY_CAPTION String
A label or caption associated with the property, used
primarily for display purposes. Returns
PROPERTY_NAME if a caption does not exist.

DATA_TYPE int The data type of the property.

CHARACTER_
MAXIMUM_LENGTH int

The maximum possible length of the property, if it is
a character, binary, or bit type.

Zero indicates there is no defined maximum length.

Returns null for all other data types.

CHARACTER_OCTET_LENGTH int

The maximum possible length (in bytes) of the
property, if it is a character or binary type.

Zero indicates there is no defined maximum length.

Returns null for all other data types.
NUMERIC_PRECISION int

olap4j Specification

2.7. Metadata 41

The maximum precision of the property, if it is a
numeric data type.

Returns null for all other data types.

NUMERIC_SCALE int

The number of digits to the right of the decimal
point, if it is a DBTYPE_NUMERIC or
DBTYPE_DECIMAL type.

Returns null for all other data types.

DESCRIPTION String A human readable description of the property. null
if no description exists.

PROPERTY_CONTENT_TYPE int
The type of the property. Can be one of the values of
the xmlaOrdinal field of the
org.olap4j.Property.ContentType enum.

SQL_COLUMN_NAME String The name of the property used in SQL queries from
the cube dimension or database dimension.

LANGUAGE int The translation expressed as an LCID. Only valid
for property translations.

PROPERTY_ORIGIN int

Identifies the type of hierarchy that the property
applies to:

MD_USER_DEFINED (1) indicates the
property is on a user defined hierarchy

•

MD_SYSTEM_ENABLED (2) indicates
the property is on an attribute hierarchy

•

MD_SYSTEM_DISABLED (4) indicates
the property is on an attribute hierarchy that
is not enabled.

•

PROPERTY_ATTRIBUTE_
HIERARCHY_NAME String The name of the attribute hierarchy sourcing this

property.

PROPERTY_CARDINALITY String

The cardinality of the property. Possible values
include the following strings:

ONE•
MANY•

MIME_TYPE String The mime type for binary large objects (BLOBs).

PROPERTY_IS_VISIBLE boolean

A Boolean that indicates whether the property is
visible.

true if the property is visible; otherwise, false.
This schema rowset is not sorted.

2.7.3.12. getSets

Retrieves a result set describing any sets that are currently defined in a database, including session-scoped
sets.

Specified by the MDSCHEMA_SETS XML for Analysis method.

olap4j Specification

2.7. Metadata 42

The returned result set contains the following columns.

Column name Type Description
CATALOG_NAME String The name of the database.
SCHEMA_NAME String Not supported.
CUBE_NAME String The name of the cube.

SET_NAME String The name of the set, as specified in the CREATE
SET statement.

SCOPE int

The scope of the set:

MDSET_SCOPE_GLOBAL (1)•
MDSET_SCOPE_SESSION (2)•

DESCRIPTION String Not supported.
EXPRESSION String The expression for the set.

DIMENSIONS String A comma delimited list of hierarchies included in
the set.

SET_CAPTION String A label or caption associated with the set. The label
or caption is used primarily for display purposes.

SET_DISPLAY_FOLDER String

The path to be used by the user interface when
displaying the set. Folder names are separated by a
backslash (\), folders are separated by a semicolon
(;).

The rowset is sorted on CATALOG_NAME, SCHEMA_NAME, CUBE_NAME.

2.7.4. Other methods

Method Description

getConnection()
Returns the connection (overrides
DatabaseMetaData method).

getMdxKeywords()
Returns the keywords of this dialect of MDX,
as a comma-separated string.

getSupportedCellSetListenerGranularities()
Returns the granularity of changes to cell sets
that the database is capable of providing.

2.8. Transform

NOTE: As of olap4j 1.0, this package is experimental and is subject to change in future releases.

A transform is an operation which maps a query model to a new query model. It is usually triggered by a
gesture within the user-interface. For example, clicking on the Unit Sales column transforms the query

SELECT {[Measures].[Store Sales], [Measures].[Unit Sales]} ON COLUMNS,
 {[Product].Members} ON ROWS
FROM [Sales]
into one with sorting:

SELECT {[Measures].[Store Sales], [Measures].[Unit Sales]} ON COLUMNS,
 Order({[Product].Members}, [Measures].[Unit Sales], ASC) ON ROWS

olap4j Specification

2.7. Metadata 43

FROM [Sales]
Transformations can only modify a query within a cube - it cannot be used to change the cube that the query is
against or to join two cubes. Similarly, the transform package only supports modifying a MDX query model.
For example, a "drill" transform can not be used to produce a SQL query that returns data outside of the cube.

Package name: org.olap4j.transform

Classes: (incomplete)

Tuple•
Set•
CalculatedMember•
NamedSet•
Axis•
Slicer•

2.8.1. Query Model Details

This section should probably be moved into Section 2.4.

The MDX query language uses a data model based on cubes, dimensions, tuples and sets. The transformation
package allows direct manipulation of a query exploring a cube.

A tuple is a multidimensional member. It is a combination of members from one or more dimensions, with the
limitation that only one member can be used from each dimension. A set is an ordered collection of tuples. An
MDX query selects zero or more axes using a data slicer. (The axes loosely correspond to the "SELECT"
clause in a SQL query, and the slicer to the "WHERE".)

2.8.2. Navigation Actions

The defined set of navigations can be divided into four categories: Slicing, Restructuring, Drilling, Scoping.

2.8.2.1. Slicing Navigations

setSlicer
Secifies the slicer to use, replacing any current one.

getSlicer
Retrieve the current slicer.

excludeEmpty
Removes empty slices from the results.

setLimit
Limits the results to the top/bottom n results for a specified measure.

2.8.2.2. Restructuring Navigations

Restructuring navigations change the axes of the returned cube.

getAxis
setAxis

Specifies the Set to use for an Axis. Can be used to add or replace a axis.
deleteAxis

olap4j Specification

2.8. Transform 44

Removes the specified Axis from the results.
addToAxis

Appends a new Tuple or Set to an Axis.
moveTuple

Moves a tuple from one Axis to another. If the tuple is not contained in the first axis this method
behaves like addToAxis on the second axis.

reorderAxis
Reorders the tuples in the axis.

addTotal
Adds an aggregation (total, min, max, count, distinct) to the specified member. More than one
aggregation can be added to a single member.

deleteTotal
Deletes an aggregation from the specified member.

2.8.2.3. Drilling Navigations

Navigations that allow a user to move through the levels in a hierarchy. All drill navigations operate on a
single Axis.

drill
Moves the specified member up/down one level in the hierarchy. All members of the hierarchy are
replaced by this action.

2.8.2.4. Scoping Navigations

Navigations that allow a user to expand/collapse sections of a result set. All scoping navigations operate on
single Axis.

expand
Expand the given measure to include both the current level and all the members one level down the
hierarchy. Optionally expands a single measure or all measures at the level.

collapse
Removes members at a given level of a hierarchy. Optionally collapses a single measure or all
measures at the level.

2.8.2.5. Supporting Actions

Axis Operations

getSet•
setSet•
addToAxis•
removeFromAxis•

Set Operations

getTuple•
setTuple•
addToSet - includes Tuples, ranges of Tuples, functions, properties•
removeFromSet•

olap4j Specification

2.8. Transform 45

Tuple Operations

addMember•
deleteMember•
getMembers•

Open Issues

Is this API at the right level, or is it too close to MDX?•
Do we want to include support for adding highlighting conditions?•
What about result formatting as part of the query?•
Should common operators such as CrossJoin(), Order() and Filter() be baked into the API as methods,
or just treated as functions?

•

How should we handle functions that return or modify Sets? We want to make it easy to wrap an
entire axis in a function.

•

Should we limit the Slicer to a Tuple or allow a Set? I believe the MDX spec allows a Set, but I don't
know if anybody supports it.

•

I think we should add some explicit time based functions, since time based analysis is so common,
and so frequently done wrong. ie if the Axis is using a time based dimension you can use
"setCompareToPreviousTimePeriod()" instead of having to add the previous time period as a member
and calculate the change.

•

2.9. Layout

NOTE: As of olap4j 1.0, this package is experimental and is subject to change in future releases.

The layout package provides data models for graphical OLAP applications. In particular, the GridModel class
provides, for OLAP data, what Swing's TableModel provides for SQL data.

Package name: org.olap4j.layout

Classes: TBD

2.10. Scenarios

NOTE: As of olap4j 1.0, this functionality is experimental and is subject to change in future releases.

Scenarios allow an application to change values of cells. When the value of a cell changes, values of related
cells also change (parent cells, child and descendant cells, and calculated cells).

Scenarios can therefore be used to perform 'what-if' analysis, useful in budgeting or forecasting applications.
This functionality is commonly called 'write-back' (or sometimes 'writeback' or 'writethrough'; see for instance
the wikipedia article "Comparison of OLAP Servers"), but we avoid that term because this specification does
not stipulate that a provider implements scenarios by writing the changed values to disk.

Each scenario has a different set of modifications. There is a base scenario where the values are unchanged
from the star schema; in this scenario, cells cannot be modified.

A provider may provide a [Scenario] dimension for each cube for which scenarios are enabled. This
dimension contains a member for each scenario that is visible in the current access-control context; the name

olap4j Specification

2.8. Transform 46

http://download.oracle.com/j2se/1.4.2/docs/api/javax/swing/table/TableModel.html
http://en.wikipedia.org/wiki/Comparison_of_OLAP_Servers

of each member is the value returned by the getId() method. The default member of the Scenario
dimension is the current scenario for the current connection (as set by the
OlapConnection.setScenario() method).

The Scenario dimension behaves in the way you would expect. For example, if a query contains a slicer
WHERE [Scenario].[1] then the cell values returned by that query will reflect their values under that
scenario. Also, you can define cross-dimensional calculations, such as WITH MEMBER [Gain] AS
([Time].[2011], [Scenario].[1] - [Scenario].[Default Scenario]), to compare
values under two or more scenarios.

A particular provider may provide a means to save a scenario. (Say, to modify the fact table, or save the
scenario to disk in some other format.)

A particular provider may support access control to scenarios. (For example, a particular scenario is invisible
to role A, visible but read-only to role B, and read-write to role C.)

Methods of the Scenario class:

String getId() // returns the unique identifier of this scenario•

Other methods relating to scenarios:

Scenario OlapConnection.createScenario() // creates a scenario•
void OlapConnection.setScenario(Scenario) // sets the current scenario for this
connection

•

Scenario OlapConnection.getScenario() // returns this connection's current scenario•
void Cell.setValue(Object value, AllocationPolicy allocationPolicy,
Object... allocationArgs) // sets the value of a cell

•

2.11. Notifications

NOTE: As of olap4j 1.0, this functionality is experimental and is subject to change in future releases.

The CellSetListener interface allows an application to receive events when the contents of a CellSet
have changed.

The client can ask the server to provide the listener with a specific granularity of events, but the server can
decline to provide that granularity.

Fine granularity deals with changes such as cell values changing (and reports the before and after value,
before and after formatted value), positions being deleted, positions being changed.

When an atomic change happens on the server (say a cache flush, if the server is mondrian) then an event will
arrive on the client containing all of those changes. Although
CellSetListener.CellSetChange.getCellChanges() and
CellSetListener.CellSetChange.getAxisChanges() return lists, the client should assume that
all of the events in these lists occur simultaneously.

At any point, the server is free to throw up its hands and say 'there are too many changes' by sending null
values for getCellChanges or getAxisChanges. This prevents situations where there are huge

olap4j Specification

2.10. Scenarios 47

numbers of changes that might overwhelm the server, the network link, or the client, such as might happen if a
large axis is re-sorted.

The client should always be ready for that to happen (even for providers that claim to provide fine granularity
events), and should re-execute the query to get the cell set. In fact, we recommend that clients re-execute the
query to get a new cellset whenever they get an event. Then the client can use the details in the event to
highlight cells that have changed.

Methods on interface CellSetListener:

cellSetChanged(CellSetChange) // invoked when a cell set has changed•
cellSetClosed(CellSet) // invoked when a cell set is closed•
cellSetOpened(CellSet) // invoked when a cell set is opened•

Methods on interface CellSetChange:

CellSet getCellSet() // returns the cell set affected by this change•
List<CellChange> getCellChanges() // returns a list of cells that have changed, or null if
the server cannot provide detailed changes

•

List<AxisChange> getAxisChanges() // returns a list of axis changes, or null if the server
cannot provide detailed changes

•

Methods on interface AxisChange:

CellSetAxis getAxis() // returns the axis affected by this change•
Position getBeforePosition() // returns the position before the change; null if the change
created a new position

•

Position getAfterPosition() // returns the position after the change; null if the change
deleted a new position

•

Methods on interface CellChange:

Cell getBeforeCell() // returns the cell before the change•
Cell getAfterCell() // returns the cell after the change•

Other methods:

OlapDatabaseMetaData.getSupportedCellSetListenerGranularities() //
returns the granularity of changes to cell sets that the database is capable of providing

•

OlapStatement.addListener(Granularity, CellSetListener) // adds a listener to
be notified of events to CellSets created by this statement

•

Notes for implementors

The purpose of registering a listener before creating a cell set is to ensure that no events "leak out" between
creating a cell set and registering a listener, or while a statement is being re-executed to produce a new cell
set.

The cellSetOpened(CellSet) and cellSetClosed(CellSet) methods are provided so that the
listener knows what is going on when a statement is re-executed. In particular, suppose a statement receives
an change event decides to re-execute. The listener is attached to the statement, so receives notifications about

olap4j Specification

2.11. Notifications 48

both old and new cell sets. The driver implicitls closes the previous cell set and calls cellSetClosed, then calls
cellSetOpened with the new cell set.

If changes are occurring regularly on the server, there will soon be a call to
cellSetChanged(CellSetChange). It is important to note that this event contains only changes that
have occurred since the new cell set was opened.

The granularity parameter is provided to OlapStatement.addListener(Granularity,
CellSetListener) for the server's benefit. If granularity is only Granularity.COARSE, the server
may be able to store less information in order to track the cell set.

2.12. Drill through

olap4j provides two ways of drilling through to get the collection of atomic rows underlying a given cell.

The Cell.drillThrough() method drills through a given cell in the cell set returned by a
previously executed statement.

•

Execute the DRILLTHROUGH MDX statement using the
OlapStatement.executeStatement(String sql) method.

•

The DRILLTHROUGH statement is a more powerful approach, because it offers options MAXROWS to limit the
number of rows returned, and RETURN to choose which attributes and measures are projected, but not all
OLAP servers implement it.

Note that we call the ResultSet Statement.executeStatement(String sql) method, not
CellSet OlapStatement.executeOlapStatement(String mdx), because the result of
drillthrough is relational (rows and columns), not a dimensional (axes and cells). A statement can be created
by calling OlapConnection.createStatement(); even though this returns an OlapStatement,
the OlapStatement is required to implement applicable methods of its Statement base class.

3. Other topics

In this section we discuss aspects of the design and usage of olap4j which pervade all of the components.

3.1. Internationalization

Metadata elements in olap4j can be localized. Unlike the tables and columns model of relational databases and
JDBC, elements of an OLAP data model appear on the screen of the end-user, and the user expects these
elements to appear in his or her own language.

A connection has a locale. For most drivers, this can be initialized using a connection parameter called
Locale. The locale can be overridden by calling OlapConnection.setLocale(Locale).

Metadata elements Cube, Dimension, Hierarchy, Level, Member and so forth have methods getCaption
and getDescription (inherited from MetadataElement). The values returned from these methods depend
on the locale of the connection.

Suppose one cube is available in English and French, and in French and Spanish, and both are shown in same
portal. Clients typically say that seeing reports in a mixture of languages is confusing; the portal would figure
out the best common language, in this case French. The Cube and Schema objects have

olap4j Specification

2.12. Drill through 49

getSupportedLocales() methods for this purpose.

3.2. Concurrency and thread-safety

The JDBC 4.0 specification describes the thread-safety requirements for drivers, and what modes of
concurrency JDBC applications can assume that their drivers will support. Since the olap4j specification is an
extension to the JDBC specification, an olap4j driver must comply with the JDBC specification in this regard.

3.3. Canceling statements

The JDBC specification provides the Statement.cancel() method, so that a statement which is executing in one
thread may be safely terminated by another thread; and Statement.setQueryTimeout(int seconds), to request
that a statement aborts itself after executing for a certain period of time.

4. Other components

The API described above is a set of interfaces which must be implemented by any compliant provider. The
olap4j project also contains some components which are not part of the API.

4.1. Test suite

The olap4j project contains a TCK (Test Compatibility Kit). The TCK is a suite of tests which can be used to
verify the compliance of an implementation of the API.

4.2. XML/A provider

The XML/A provider is an implementation of the olap4j API which talks to a generic XML/A provider.

Since there are many XML/A providers, and some of them require requests in a particular format and/or
produce idiosyncratic responses, the XML/A provider will come in several flavors.

The XML/A provider is being developed in the same source-code repository as olap4j, in a Java package
org.olap4j.driver.xmla, but is not part of the olap4j specification or release.

5. Non-functionality

Here are some of the areas of functionality which will not be part of olap4j:

Schema reader parses an XML file to create a schema•
Cache management functions•
Ability to create/modify schema dynamically•
Definitions of MDX functions (such as the number and types of parameters)•
SPI to extend the system by creating user-defined functions and so forth•
XML/A bridge (to make an olap4j data source appear as an XML/A server)•
SchemaReader•

olap4j Specification

3.1. Internationalization 50

http://download.oracle.com/javase/6/docs/api/java/sql/Statement.html#cancel%28%29
http://download.oracle.com/javase/6/docs/api/java/sql/Statement.html#setQueryTimeout%28int%29

6. Related projects

6.1. Mondrian provider

The Mondrian project contains an implementation of the olap4j API based on the Mondrian OLAP engine,
namely the mondrian.olap4j.MondrianOlap4jDriver driver. It is the reference implementation of olap4j.

6.2. XML for Analysis provider

We intend to create an a driver which implements the olap4j API on top of any XML/A data source.

This code is currently being developed in the same source-code repository as olap4j, but will be spun off as a
separate project at some point.

6.3. Other data sources

In principle, providers could be created to other OLAP data sources. This would be particularly
straightforward for servers which already have a native Java API.

6.4 xmla4js

xmla4js is a JavaScript front-end to XML/A.

Appendix A. Opportunities for specification

The following are features which have been suggested for inclusion in the olap4j specification, but which are
not part of the current version. They may be included in future revisions of the specification.

A.1. Date and Time types

Include support for Date and Time values. The package org.olap4j.type could have additional classes
DateType and TimeType.

(Richard Emberson, 2006/8/14)

A.2. Schema notification

Add a mechanism for the client to detect that the schema has been modified (for instance, that a cube has been
added). Not necessarily to find out what those changes are.

(Richard Emberson, 2006/8/15)

Appendix B. Feedback

olap4j Specification

6. Related projects 51

http://mondrian.pentaho.com/api/mondrian/olap4j/MondrianOlap4jDriver.html
http://code.google.com/p/xmla4js/

Richard Emberson, email, 2006/8/15

"One thing we found about XMLA was that our users wanted all roles to be defined, stored, modified, and
accessed though the same mechanism. With a large application with many areas that can be permissioned, it is
important that olap4j let an application builder manage roles externally and apply them as part of an
individual's execution context."

Appendix C. Open issues

These issues will be voted upon at the next meeting. If they are accepted, they will generally be put into the
spec.

(No issues are currently open.)

Appendix D. Miscellaneous

D.1. To be specified

[2006/10/20#3. Need to allow clients to access the members on a ResultAxis via a list (for convenience) and
via an iterator. Iterators need to be restartable, but not bidirectional. Need to know the size of the axes, even if
using the iterator interface.]

[2006/10/20#6. We discussed session support. It is necessary for write-back. JDBC's 'stateful session' is
difficult to implement over a stateless protocol like HTTP. Michael suggested adding 'session name' as a
parameter to 'execute' methods. Julian disagreed. No conclusion reached.]

[2006/10/20#7. We discussed the goals and intended audience of olap4j. The audience spans from a beginner's
audience (only 2 hours experience with the API) who don't want to write a lot of code, to writers of clients (2
yrs experience with the API) who want performance and don't care how much code they need to write.
Distributed clients (e.g. olap4j provider for XMLA) have bandwidth constraints. Mobile clients also have
memory constraints.

ADOMD addressed beginners audience well, but used a lot of memory. Challenge is to support an object
model (hence easy programming model) without increasing memory. No specific change to the specification,
but decided to add memory efficiency as a design goal.]

D.2. Design notes

JDK

We are targeting JDK 1.5, and running retroweaver for backward compatibility for JDK 1.4. See forum
thread: olap4j, JDK 1.5 and generics.

We also support JDK 1.6, and with it JDBC 4.0.

Result sets, random access, and memory usage

Should result sets return their axes as cursors or collections? Cursors require less memory, but collections
provide an easier programming model.

olap4j Specification

Richard Emberson, email, 2006/8/15 52

http://sourceforge.net/forum/forum.php?thread_id=1560764&forum_id=577988

Also on the subject of memory, how to represent the metadata? Schema result sets require less memory, are
more flexible, and have better defined semantics in the presence of transactions and offline working; but an
object model (Cube, Dimension, Level) provides an easier programming model.

Accessing cells

It would be possible to access cells in a result set (a) by ordinal; (b) by coordinates; (c) by the 'etchasketch'
model determined by the position of the iterator along each axis, as used by JOLAP. We decided to support
(a) and (b) but not (c). There are methods on CellSet to convert from ordinal to coordinates and vice versa.

If there is a huge number of cells, the client has limited memory, and bandwidth to the server is limited,
random access to cells is costly. Michael suggested that we add a method List<Cell> getCells(int
startOrdinal, int endOrdinal), which matches XML/A behavior, but we declined to add it to the
spec for now. John drew the analogy of a modern file system, implementing a serial access interface (streams)
on top of random-access primitives. For now, we support only random access, but suggest that the provider
looks for patterns of access.

Appendix E. References

1. XMLA: XML for Analysis Specification, version 1.1.

Appendix F. Change log

Version 1.0.•

olap4j Specification

D.2. Design notes 53

http://www.xmla.org/spec/1.1/xmla1.1.doc

	Table of Contents
	olap4j Specification
	Contents
	1. Introduction
	1.1. A brief history of OLAP standards
	1.2. Overview of olap4j
	1.3. Relationship to other standards
	1.4. Benefits of a standard Java API for OLAP
	1.5. Architecture of olap4j
	1.6. Compatibility
	1.7. Compliance levels

	2. Components of the API
	2.1. Driver management
	2.2. Connections
	2.3. Statements
	2.4. MDX object model
	2.5. MDX parser
	2.6. MDX type model
	2.7. Metadata
	2.8. Transform
	2.9. Layout
	2.10. Scenarios
	2.11. Notifications
	2.12. Drill through

	3. Other topics
	3.1. Internationalization
	3.2. Concurrency and thread-safety
	3.3. Canceling statements

	4. Other components
	4.1. Test suite
	4.2. XML/A provider

	5. Non-functionality
	6. Related projects
	6.1. Mondrian provider
	6.2. XML for Analysis provider
	6.3. Other data sources
	6.4 xmla4js

	Appendix A. Opportunities for specification
	A.1. Date and Time types
	A.2. Schema notification

	Appendix B. Feedback
	Richard Emberson, email, 2006/8/15

	Appendix C. Open issues
	Appendix D. Miscellaneous
	D.1. To be specified
	D.2. Design notes

	Appendix E. References
	Appendix F. Change log

