
1

Programming to the OWL API:
Introduction

Sean Bechhofer

University of Manchester
sean.bechhofer@manchester.ac.uk

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 2

Overview

• Motivation
– Why?

• Details
– What? Where?

• Samples/Examples
– How?

• Wrap Up
– What next?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 3

Assumptions

• Familiarity with Java

• (Some) Familiarity with Semantic Web Technologies:
– RDF

– RDF Schema

– OWL

• Being at least aware of the existence of:
– Description Logics

“The least questioned assumptions
are often the most questionable”

Paul Broca

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 4

The Semantic Web
Vision

• The Web made possible through established standards
– TCP/IP for transporting bits down a wire
– HTTP & HTML for transporting and rendering hyperlinked

text

• Applications able to exploit this common infrastructure
– Result is the WWW as we know it

• Evolution
– 1st generation web mostly handwritten HTML pages
– 2nd generation (current) web often machine generated/active

• In the next generation web, resources should be more
accessible to automated processes
– To be achieved via semantic markup: metadata annotations that

describe content/function
– Coincides with vision of a Semantic Web

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 5

Need to Add
“Semantics”

• External agreement on meaning of annotations
– E.g., Dublin Core for annotation of library/bibliographic information

• Agree on the meaning of a set of annotation tags

– Problems with this approach
• Inflexible
• Limited number of things can be expressed

• Use Ontologies to specify meaning of annotations
– Ontologies provide a vocabulary of terms
– New terms can be formed by combining existing ones

• “Conceptual Lego”

– Meaning (semantics) of such terms is formally specified
– Can also specify relationships between terms in multiple

ontologies

Machine Processable
not

Machine Understandable

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 6

Ontology in Computer
Science

• An ontology is an engineering artifact:
– It is constituted by a specific vocabulary used to describe a certain

reality, plus
– a set of explicit assumptions regarding the intended meaning of

the vocabulary.
• Almost always including how concepts should be classified

• Thus, an ontology describes a formal specification of a
certain domain:
– Shared understanding of a domain of interest
– Formal and machine manipulable model of a domain of interest

2

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 7

Building a Semantic Web

• Annotation
– Associating metadata with resources

• Integration
– Integrating information sources

• Inference
– Reasoning over the information we have.

– Could be light-weight (taxonomy)

– Could be heavy-weight (logic-style)

• Interoperation and Sharing are key goals

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 8

Languages

• Work on Semantic Web has concentrated on the
definition of a collection or “stack” of languages.
– These languages are then used to support the representation and

use of metadata.

• The languages provide basic machinery that we can use to
represent the extra semantic information needed for the
Semantic Web
– XML
– RDF
– RDF(S)
– OWL
– …

OWL

Integration

RDF(S)

RDF

XML

A
nnotation

Integration

Inference

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 9

Why (Formal) Semantics?

• Increased formality makes languages more amenable to
machine processing (e.g. automated reasoning).

• The formal semantics provides an unambiguous
interpretation of the descriptions.
– What does an expression in an ontology language mean?

– The semantics of a language tell us precisely how to interpret a
complex expression.

• Well defined semantics are vital if we are to support
machine interpretability
– They remove ambiguities in the interpretation of the descriptions.

BlackTelephone

? © University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 10

OWL

• OWL is a language for representing Ontologies in a Web
context
– Web Ontology Language

• A W3C Recommendation
– Since February 2004

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 11

Joint EU/US Committee

DAML

OntoKnowledge+Others

The OWL Family Tree

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL
W3C

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 12

A Brief History of OWL

• OIL
– Developed by group of (largely) European researchers (several

from EU OntoKnowledge project)
– Based on frame-based language
– Strong emphasis on formal rigour.
– Semantics in terms of Description Logics
– RDFS based syntax

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

3

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 13

A Brief History of OWL

• DAML-ONT
– Developed by DAML Programme.

• Largely US based researchers

– Extended RDFS with constructors from OO and frame-based
languages

– Rather weak semantic specification
• Problems with machine interpretation

• Problems with human interpretation

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 14

A Brief History of OWL

• DAML+OIL
– Merging of DAML-ONT and OIL
– Basically a DL with an RDFS-based syntax.

– Development was carried out by “Joint EU/US Committee on
Agent Markup Languages”

– Extends (“DL subset” of) RDF

• DAML+OIL submitted to W3C as basis for
standardisation
– Web-Ontology (WebOnt)

Working Group formed

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 15

A Brief History of OWL

• OWL
– W3C Recommendation (February 2004)

– Based largely on the DAML+OIL specification from March 2001.

– Well defined RDF/XML serializations

– Formal semantics
• First Order

• Relationship with RDF

– Comprehensive test cases for
tools/implementations

– Growing industrial takeup.

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 16

Points from History

• Influence of frame based modelling approaches
– Classes, slots, fillers

• Influence of logical foundations
– Well-formed semantics

– Inference

• Influence of Web Languages
– RDF, RDF(S)

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 17

History

• OilEd
– One of the first ontology editors to employ description logic

reasoning

– Targeted at OIL (then DAML+OIL)

– ~10,000 registrations for download

– Used for teaching in both academia
and industry

• Data model independent of the
underlying concrete syntax
– But without decent abstractions

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 18

History/Provenance

• WonderWeb
– http://wonderweb.semanticweb.org/

– An EU STREP targeted at producing Ontology Infrastucture for the
Semantic Web

– Produced the initial implementations of the API

• CO-ODE
– http://www.co-ode.org/

– UK JISC funded project to provide support for communities
developing OWL

• Protégé tool development and OWL support

– Supporting current development.

4

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 19

OWL

OWL allows us to describe a domain in
terms of:
• Individuals

– Particular objects in our domain

• Classes
– Collections of objects (usually sharing some common

characteristics)

• Properties
– Binary relationships between

individuals.

• Plus a collection of axioms describing how these classes,
individuals, properties etc. should be interpreted

Note: This talk will not
be discussing whether
this is the “right” way
to do things….

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 20

OWL

• OWL has a number of operators that allow us to describe
the classes and the characteristics that they have

• Boolean operators
– and, or, not

• Quantification over properties/relationships
– universal, existential.

• A clear and unambiguous semantics for the operators and
composite class expressions

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 21

OWL and RDF

• The normative presentation for OWL is based on RDF
• XML-RDF is one of a number of possible syntactic

presentations of OWL.
• Working solely at the RDF triple level can introduce both

mechanical and conceptual difficulties.
– Round tripping. The mapping rules between OWL abstract syntax

and triples are not 1:1.
– Containment. Assertions that statements belong to a particular

ontology.

• Alternative syntaxes can be useful
– OIL‘s original text format was popular with users – you can write

XML-RDF in emacs, but I wouldn‘t recommend it.....

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 22

OWL != RDF

OWL and RDF

• Sometimes an uneasy relationship between the two

• Syntactic Layering
– Additional baggage/hoops to jump through

• Semantic Layering
– Complicated

• One of our key motivators was to provide infrastructure
that helped insulate applications from these issues

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 23

OWL Layering

Full

DL

Lite

• Three species of OWL
– OWL Full is the union of OWL syntax and RDF
– OWL DL restricted to FOL fragment (¼ DAML+OIL)

• Corresponds to SHOIN(Dn) Description Logic

– OWL Lite is “simpler” subset of OWL DL

• Syntactic & Semantic Layering
– OWL DL semantics = OWL Full semantics

(within DL fragment)
– OWL Lite semantics = OWL DL semantics

(within Lite fragment)

• DL semantics are definitive
– In principle: correspondence proof
– But: if Full disagrees with DL (in DL fragment), then Full is wrong

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 24

Full

OWL Full

• No restriction on use of OWL vocabulary
(as long as legal RDF)
– Classes as instances (and much more)

• RDF style model theory
– Reasoning using FOL engines

• via axiomatisation

– Semantics should correspond with OWL DL
for suitably restricted KBs

5

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 25

OWL DL

• Use of OWL vocabulary restricted
– Can’t be used to do “nasty things” (i.e., modify OWL)
– No classes as instances
– Defined by abstract syntax + mapping to RDF

• Standard DL/FOL model theory (definitive)
– Direct correspondence with (first order) logic

• Benefits from underlying logic research
– Well defined semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms
– Implemented systems (highly optimised)

DL

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 26

OWL Lite

• Like DL, but fewer constructs
– No explicit negation or union

– Restricted cardinality (zero or one)

– No nominals (oneOf)

• Semantics as per DL
– Reasoning via standard DL engines (+datatypes)

• E.g., FaCT, RACER, Cerebra, Pellet

• In practice, not really used.
– Alternative “tractable fragments” approach for OWL 1.1

Lite

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 27

OWL 1.1

• Some limitations have already been identified in the
original OWL specifications
– Qualified cardinality restrictions
– Lack of support for richer property axioms (e.g. interaction

between partonomies and locations)
– Metamodelling
– Annotations

• “OWL 1.1” aims to extend the language in order to
address these issues
– The latest version of the OWL API has support for this additional

expressivity
– W3C Member Submission
– http://webont.org/owl/1.1/

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 28

Why build an OWL API?

• The use of a higher level data model can help to
– insulate us from the vagaries of concrete syntax.

– make it clear what is happening in terms of functionality.

– increase the likelyhood of interoperating applications.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 29

Experiences

• An early example application built using the API was a
web service that performed validation and translation to
alternative syntaxes.
– See OWL DL: Trees or Triples, WWW2004

• Ontology level objects made it easy to write code
spotting “internal errors”

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 30

How thick is your
infrastructure?

• A lightweight infrastructure (e.g. RDF) means that
clients/apps have to do more. And may do it differently.

• Metadata can end up being locked away within the
applications where others can’t get at it. Is that sharing?
Are you exposing the semantics?

Thin Infrastructure

Thick Apps Thick Apps

6

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 31

How thick is your
infrastructure?

• Sharing is about interoperations. Ensuring that when you
look at or process my data, you do it in a consistent way.

• “Thick” infrastructure can help interoperability. Clients
don’t have to guess how to interpret things.
– But can be harder to build

Thick Infrastructure

Thin Apps Thin Apps

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 32

Assumptions

• Primarily targeted at OWL-DL
– This does not mean that we cannot handle OWL-Full ontologies,

but a number of design decisions reflect this assumption.

• Java based
– Interfaces

– Java reference implementation
• Main memory based

OWL Interfaces

ImplementationImplementation

Application

Implementation

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 33

What is an “OWL
Implementation”?

• Modelling
– Provide data structures that represent OWL

ontologies/documents.

• Parsing
– Taking some syntactic presentation, e.g. OWL-RDF and

converting it to some [useful] internal data structure.

• Serializing
– Producing a syntactic presentation, e.g. OWL-XML from a local

data structure.

• Manipulation/Change
– Being able to manipulate the underlying objects.

• Inference
– Providing a representation that implements/understands the

formal semantics of the language.
© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 34

OWL+Logic

OWL

RDF

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 35

Consistency Checking
Simple EditingFormat Translation

Implementation Aspects

Modelling

Parsing

Serializing Inference

Manipulation

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 36

OWL Abstract Syntax

• Provides a definition of the language in terms of the
constructs and assertions allowed.

• Semantics are then defined in terms of this abstract
syntax.

• Our OWL API data model is based largely on this abstract
syntax presentation.
– Conceptually cleaner.

– Syntax doesn’t get in the way

7

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 37

Considerations

• Clear identification of
functionalities and a
separation of concerns

• Representation
– Syntax vs. Data Model

– Interface vs. Implementation

– Locality of Information

• Parsing/Serialization
– Insulation from underlying concrete presentations

– Insulation from triples

Modelling

Parsing

Serializing Inference

Manipulation

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 38

Modelling

Parsing

Serializing Inference

Manipulation

Considerations

• Manipulation/Change
– Granularity

– Dependency

– User Intention

– Strategies

• Inference
– Separation of explicit assertions from inferred consequences

– External reasoning implementations

Programming to the OWL API:
The API

Sean Bechhofer

University of Manchester
sean.bechhofer@manchester.ac.uk

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 40

What is an Ontology?

o A particular syntactic presentation

o The facts represented by that syntactic presentation

o The information that can be inferred from those facts
o E.g. consequences of the assertions plus the underlying semantics

of the language.

• The difference between these becomes important with
languages like OWL.

• What answers will I expect when interrogating the
structure?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 41

What is an Ontology?
<owl:Class rdf:about="#Man">
 <rdf:subClassOf>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Class rdf:about="#Male"/>
 </owl:intersectionOf>
 </rdf:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Person">
 <rdf:subClassOf>
 <owl:Class rdf:about="#Animal"/>
 </rdf:subClassOf>
</owl:Class>

Man Person

AnimalPerson Male

and

Man

Animal

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 42

Overall Philosophy

• The OWL API is targeted primarily at representing OWL-
DL

• An Ontology is represented as a collection of axioms that
assert information about the classes, properties and
individuals that are in the ontology
– This is a change from the original approach
– Fits better with current thinking surrounding OWL 1.1
– Provides a uniform view on the ontology

• When is a class or property “in” an Ontology?
– This isn’t explicitly captured in the OWL specs
– Somewhat application dependent

8

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 43

Basic Data Structures

• At its heart, the OWL API provides data structures
representing OWL ontologies

• Plus classes to help
– Create;

– Manipul ate;

– Parse;

– Render; and

– Reason about those structures

• The basic data structure represents the objects in the
ontology and corresponds roughly to the abstract syntax
of OWL.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 44

OWLOntology

• An OWLOntology represents an ontology

• It consists of a collection of OWLAxioms

• Note that the OWLOntology object doesn’t explicitly
contain classes, properties etc.
– The classes “in” the ontology are those that are referenced by the

axioms that are in the ontology

– We believe this provides a clean and consistent story as regards
the objects that make up the ontology

• The OWLOntology provides an explicit context within
which we can assert information about classes and
properties.
– Locality of information

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 45

Names and URIs

• Ontologies in OWL are named using URIs

• Ontologies can also be retrieved from URLs.

• This can cause some confusion!
– There’s no explicit requirement that the location you retrieve the

ontology from is the same as the name that it’s given.

• The situation isn’t made any easier by OWL’s import
mechanism.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 46

OWL Import

• OWL provides a mechanism for importing one ontology
into another

• The intuition is that the axioms in the imported ontology
will be added to the theory defined by the importing
ontology

• Note that the recommendation doesn’t really say much
about how this will be achieved

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 47

Imports

Importing another ontology brings the entire set of assertions provided by that
ontology into the current ontology. In order to make best use of this imported
ontology it would normally be coordinated with a namespace declaration.
Notice the distinction between these two mechanisms. The namespace
declarations provide a convenient means to reference names defined in other
OWL ontologies. Conceptually, owl:imports is provided to indicate your
intention to include the assertions of the target ontology. Importing another
ontology, O2, will also import all of the ontologies that O2 imports.

OWL Guide

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 48

Imports

An owl:imports statement references another OWL ontology containing
definitions, whose meaning is considered to be part of the meaning of the
importing ontology. Each reference consists of a URI specifying from where
the ontology is to be imported. Syntactically, owl:imports is a property with the
class owl:Ontology as its domain and range.

The owl:imports statements are transitive, that is, if ontology A imports B,
and B imports C, then A imports both B and C.
Importing an ontology into itself is considered a null action, so if ontology A
imports B and B imports A, then they are considered to be equivalent.

Note that whether or not an OWL tool must load an imported ontology
depends on the purpose of the tool. If the tool is a complete reasoner
(including complete consistency checkers) then it must load all of the
imported ontologies. Other tools, such as simple editors and incomplete
reasoners, may choose to load only some or even none of the imported
ontologies.

OWL Reference

9

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 49

Imports

Imports annotations, in effect, are directives to retrieve a Web document and
treat it as an OWL ontology. However, most aspects of the Web, including
missing, unavailable, and time-varying documents, reside outside the OWL
specification; all that is carried here is that a URI can be “dereferenced” into
an OWL ontology. In several places in this document, therefore, idealizations
of this operational meaning for imports are used.

…an owl:imports annotation also imports the contents of another OWL
ontology into the current ontology. The imported ontology is the one, if any,
that has as name the argument of the imports construct. (This treatment of
imports is divorced from Web issues. The intended use of names for OWL
ontologies is to make the name be the location of the ontology on the Web,
but this is outside of this formal treatment.)

OWL Semantics

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 50

Imports

• In essence, an owl:imports statement means:

– Dereference the URI that’s given, and make sure that any
time you do some reasoning, you take into account the
axioms in the imported ontology

• Questions like “which classes are in this ontology” can be
answered in an application specific way.
– If Ontology A imports Ontology B and Class X is “in” ontology B

is it also “in” Ontology A?

• To complicate matters further, OWL-DL requires that
owl:imports only applies to things that are explicitly typed
as owl:Ontology.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 51

Logical and Physical

• To get round these problems, we define the notion of
logical and physical URIs
– Logical: the URI used to name the ontology

– Physical: the location where the ontology was retrieved from

• An OntologyURIMapper is then used to map between
physical and logical URIs
– Allows for local copies or repositories of ontologies

• We are in some way playing “fast and loose” with the
spec here, but there is no real practical alternative.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 52

OWLEntity

• OWLEntity is the fundamental building block of the
ontology
– Classes

‒ Properties

– Individuals

– Datatypes

• Named using URIs
– But be aware of punning

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 53

OWLClass

• Represents an OWL Class.

• The Class itself is a relatively lightweight object
– A Class doesn’t hold information about definitions that may apply

to it.

• Axioms relating to the class are held by an OWLOntology
object
– E.g. a superclass axiom must be stated within the context of an

OWLOntology

– Thus alternative characterisations/perspectives can be asserted
and represented for the same class.

• Axioms do not relate only to a class, but to a class within
the context of an ontology

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 54

OWLClass

• Methods are available on OWLClass that give access to
the information within a particular ontology

• But these are simply convenience methods.

java.util.Set<OWLDescription> getDisjointClasses(OWLOntology ontology)
java.util.Set<OWLDescription> getEquivalentClasses(OWLOntology ontology)

10

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 55

OWLProperty

• OWL makes a distinction between
– Object Properties: those that relate two individuals

• E.g. hasBrother

– Data Properties: those that relate an individual to a concrete data
value

• E.g. hasName

• There is a strict separation between the two and two
explicit classes representing them
– OWLObjectProperty

– OWLDataProperty

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 56

OWLProperty

• Properties can have associated domains and ranges

• There is also a property hierarchy
– Super properties

– Property equivalences

– Disjoint Properties (OWL1.1)

• In OWL1.1, we also have the option of using property
expressions (e.g. property chains).

• Again, as with classes, the property objects are lightweight
and all assertions about properties are made in the
context of an Ontology.
– E.g functional properties

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 57

OWLObjectProperty

• Represents an Object Property that can be used to relate
two individuals

• Object properties can have additional characteristics
– Transitivity

– Inverses

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 58

OWLDataProperty

• Represents an Object Property that can be used to relate
two individuals

• Data properties can also have additional characteristics
– Functional

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 59

OWLDescription

• OWLDescription represents an OWL class expression

• Atomic classes

• Boolean expressions
– Intersection (and)

– Union (or)

– Complement (not)

• Restrictions
– Explicit quantification (some, all)

– Cardinality restrictions (atmost, atleast)

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 60

OWLAxiom

• An ontology contains a collection of OWLAxioms

• Each axiom represents some fact that is explicitly asserted
in the ontology

• There are a number of different kinds of axiom
– Annotation Axioms

– Declaration Axioms

– Import Axioms

– Logical Axioms

11

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 61

Annotation Axioms

• An OWLAnnotationAxiom is used to associate arbitrary
pieces of information with an object in the ontology
– Labels or natural language strings

– Dublin core style metadata, e.g. author or creator information

• Annotation Axioms have no logical significance
– They do not affect the underlying semantics of the ontology

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 62

Declaration Axioms

• An OWLDeclarationAxiom simple declares or introduces
an entity into an ontology

• Declaration axioms have no logical significance

• Such axioms can be useful for integrity checks, e.g. tools
may require that every entity used in the ontology is
explicitly declared
– This can help detect issues or problems with mis-spelling

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 63

Import Axioms

• An OWLImportsDeclaration annotates an ontology in
order to describe the ontologies it imports.
– In the OWL specification, owl:import is a kind of

owl:OntologyProperty which is treated in a special way.

• As discussed earlier, we need to be careful about the way
in which we treat ontology import structures.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 64

Logical Axioms

• The subclasses of OWLLogicalAxiom represent the logical
assertions contained in the ontology
– Supers (of classes and properties)

– Equivalences (of classes and properties)

– Property Characteristics
• Functionality, transitivity etc.

– Facts about particular individuals
• Types

• Relationships
• Values

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 65

Equality

• Equality on objects in the API is defined structurally.

• In general, two objects are equal if they have the same
structure

• E.g. for boolean class descriptions, the operands are
compared as a Set.
– If the two sets of operands are equal, the descriptions are equal.

• Note that this is syntactic. Logical equivalences that may
follow from axioms or assertions in the ontology do not
impact on the equality of the objects.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 66

Visitors

• The API makes extensive use of the Visitor Pattern
– Represents an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates

Design Patterns (Gamm et al)

• The use of the Visitor pattern allows us to define many
different operations over the data structure without
“polluting” it with application specifics.

• Visitor is good when the data structure is static, but costly
if the structure changes
– As our data structures are based on the language, the structure is

likely to remain static here.

12

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 67

Visitors

• Visitors are primarily used when rendering or serializing
ontologies into different concrete formats.

• There are Visitors for each of the main classes
– OWLEntityVisitor

– OWLAxiomVisitor

– OWLDescriptionVisitor

• Visitors are also used to enact changes to the Ontology
– OWLOntologyChangeVisitor

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 68

The times they are a
changing…

• The data structures provide read-only access to the
information held in the ontology

• Changes to the ontology are effected through the use of
the Command Pattern.
– Encapsulate a request as an object, thereby letting you parameterize

clients with different requests, queue or log requests, and support
undoable operations

Design Patterns (Gamma et al)

• Objects explicitly represent the changes

• The change objects are passed to a visitor which then
enacts the changes

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 69

Changes as Objects

• Undo operations
• Metadata representing the provenance of the change
• Explicit dependencies between changes
• Representing change sets

– History
– Checkpoints

• Use of the Strategy Pattern to enact changes
– Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

Design Patterns (Gamma et al)

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 70

Changes

• The API takes an “axiom-centric” view

• There are a limited number of change objects
– Add an Axiom

– Remove an Axiom

– Set the Ontology URI

• Trade off between simplicity and power
– Change from original API, which had a number of different change

objects encapsulating different changes.

– Change object describes what happened, e.g. add/remove

– Wrapped axiom describes the change

• Changes then enacted by a Change Visitor.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 71

Inference

• As we’ve already discussed, OWL’s semantics allows the
possibility to perform inference or reasoning over an
ontology

• A reasoner may be able to determine additional facts that
follow from the information in the ontology

• How best do we expose this information?
– Add it into the structure?

– Provide alternative interfaces?

a subClassOf b
b subClassOf c

a subClassOf c

a subClassOf (b and (some r x))
c equivalentClass (some r Thing)

a subClassOf c

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 72

Inference

• This is particularly important when users get involved
– What do we do when the user tries to remove some inferred

information?

a subClassOf (b and (some r x))
c equivalentClass (some r Thing)

?

• Separating the inferred
information from the asserted
information doesn’t necessarily
answer that question
– But does mean that we have

enough to be able to make a
choice.

• Offering separate inference interfaces
also allows applications to be clear
about the services they may (or may
not) supply.

a

b c

Inferred Hierarchy

13

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 73

Inference

• The API includes a collection of interfaces that provide
access to inference services operating over the model

• OWLClassReasoner
– Hierarchy information, class satisfiability

• OWLConsistencyChecker
– Ontology consistency

• OWLIndividualReasoner
– Reasoning about individuals

• OWLPropertyReasoner
– Reasoning about properties

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 74

Reasoner
Implementations

• Generic DIG Reasoners
– Via DIG 1.1

• Pellet
– Pure Java implementation
– Implements OWL API reasoner interfaces

• FaCT++
– C++ Implementation
– Java wrapper
– OWLAPI wrapper implementating OWL API interfaces

• Debuggers etc. then sit on whichever reasoner you have.
• Syntactic/Told Reasoners

– Should these be here?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 75

Putting things together

• So far, what we’ve seen are a collection of interfaces
providing access to the various aspects of functionality
that we can associate with OWL ontologies

• How do we bring this all together in order to actually use
the code and make use of a particular implementation?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 76

Managing Ontologies

• The model data structures provide representations of the
basic building blocks.

• Management and creation of ontologies is controlled by
an OWLOntologyManager
– This replaces OWLConnection/OWLManager in the original

implementation

• The Manager is responsible for keeping track of the
ontologies and concrete formats for storage of the
ontologies.

• Handles Ontology changes

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 77

Manager desiderata

• This is still somewhat experimental.

• Flexibility
– Allowing loading/storage from a variety of form

• Decoupling of formats

• Mix/match implementations?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 78

One Ring to Bind Them

• The apibinding module provides a utility class
OWLManager that brings together common parsers and
renderers along with the in-memory implementation

• We can use this as a point of entry into the
implementation.
– Provides basic infrastructure that takes care of standard

– If we’re doing “standard” things, then the basic OWLManager
setup is enough.

– We can extend this, by, for example adding new concrete
syntaxes (along with parsers and renderers that will handle those
formats).

• See examples later

14

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 79

URI Mapping

• A URIMapper allows us to maintain a separation between
logical URIs and physical URIs

• Useful for
– Offline working

– Caching ontologies

– Solving the name/location problems identified with imports

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 80

Factory and Storer

• OWLOntologyFactory and OWLOntologyStorer are
used for loading and saving ontologies

• They provide an extra level of abstraction above parsers
and serialisers/renderers
– Allows the potential for retrieving ontologies from data sources

other than files/streams, e.g. DBMS/repository/RMI etc.

Factory

Parser

Repository

DBMS

Storer

Renderer

Repository

DBMS

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 81

Parsing and Rendering

• Parsers and Renderers allow creation of ontologies from
concrete serialisations and storage of ontologies using
those serialisations.

• A Parser returns information about the format that the
ontology was parsed in.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 82

Loading an Ontology

• Map the logical URI to a physical URI

• Query available Factories for one that can handle the URI

• For the basic factories in our implementation, the selected
Factory will then use a parser to parse the given URI
– Selection of parsers could be via MIME-types or extension

mappings

– Currently simple approach

– Could do something other than parsing….

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 83

Ontology Formats

• The OWLOntologyFormat class represents a format used
for concrete serialisation
– E.g OWL RDF/XML

• The format may also contain information about the
particular serialisation
– E.g. namespace declarations

– Ordering

– Structural information

– Helps in addressing problems with round-tripping

• If an ontology was parsed, the Manager maintains
information about the original format of the ontology

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 84

Manager

• The default Manager provides support for a number of
basic formats

• Parsing:
– RDF/XML; OWL XML; KRSS; OBO; Functional Syntax

– ParserFactoryRegistry knows about available parsers.

• Rendering
– RDF/XML; OWL XML; Functional Syntax

– Most renderers effectively involve writing a Visitor that walks the
data structure

– See later example

• You could do it all yourself with bespoke parser factories
etc….

15

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 85

Recap

• Basic interfaces providing data structures
– Visitors

• Manipulation via Change objects

• Inference via parallel interfaces

• I/O through Factory and Storer classes, wrapping Parsers
and Renderers

• Manager object pulling together standard components.

Programming to the OWL API:
Examples

Sean Bechhofer

University of Manchester
sean.bechhofer@manchester.ac.uk

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 87

Nuts and Bolts

• OWL API code is available from sourceforge:

http://sourceforge.net/projects/owlapi

• Latest versions are in the SVN repository.

• There are two versions of the API
– The latest version is updated to use features like generics and

support extensions to OWL.

– We are focusing largely on the updated version

– The basic philosophy in both is the same

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 88

Modules

• The distribution is split into a number of different
modules
– Each module has some identified functionality.

– There may be dependencies between modules.

• The distribution uses Apache’s maven to control the build
process
– Known to work with maven version 2.0.5

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 89

Modules

• api
– Core interfaces covering ontology data structures, parsing and

rendering, inference etc.

• impl
– Basic “reference” implementation

• xxxparser
– Parser for concrete syntax xxx (e.g. rdfxml, krss, owlxml, obo

etc)

• xxxrenderer
– Renderer for concrete syntax xxx (e.g. rdfxml, krss, owlxml etc)

• debugging
– Inference debugger

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 90

Modules

• dig1_1
– Classes supporting interaction with DIG reasoners

• rdfapi
– RDF parser (from KAON)

• apibinding
– Provides a point of convenience for creating an

OWLOntologyManager with commonly required features (e.g.
rdfxmlparser).

16

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 91

Examples

• The following examples serve to illustrate various aspects
of the API and how we might use it.
1. Producing a basic hierarchy

2. Adding Closure Axioms

3. Rendering Alternative Concrete Syntaxes

4. Black Box Debugging

• We won’t go into all the details of how these are done
– Source for the examples will be available on line.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 92

1. Hierarchy Example

• Our first example will read an ontology, use a reasoner to
calculate the inferred subsumption hierarchy, and then
display this hierarchy.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 93

Details

1. Creating/reading ontologies

2. Basic reasoner interfaces

3. Instantiating a reasoner

4. Printing out the results

• Uses the basic apibinding
– Standard parsers.

• Interrogation of the data structures
– Visitor for simple display of entities.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 94

2. Closure Axioms

• OWL allows us to provide definitions of classes using
composite expressions to assert necessary and sufficient
conditions.

• However, it’s not always easy to capture exactly what we
want.

• Closure axioms are an example where additional tool
support can help to achieve the “right” model.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 95

Pizzas

• Tomato is a Vegetable

• Basil is a Herb (which is a Vegetable)

• Cheese, Vegetables and Herbs are disjoint from Meat and
Fish

• Mozarella, Provolone, Romano and Parmesan are all kinds
of Cheese.

• A FourCheesePizza has Tomato, Mozarella, Provolone,
Romano and Parmesan and Basil.

• A VegetarianPizza is one that has no Meat or Fish toppings

• Is a FourCheesePizza a VegetarianPizza?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 96

An example Model

17

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 97

Pizzas

• The problem is that, although we have given conditions
that describe what toppings a FourCheesePizza must have,
the possible world semantics that OWL has means that
we can’t preclude situations where a FourCheesePizza has
other things on it.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 98

Closure Axioms

• A standard pattern to deal with this situation is to add a
“Closure axiom” that states that, in addition to the
existential restrictions, there is a universal restriction
stating that the only possible fillers are those named.

X subClass ((some p A) and (some p B) and (some p C))

X subClass (all p (A or B or C))

add

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 99

Adding Closure axioms

1. Find the axioms that define C
2. Filter subclass axioms
3. Pull out any existential restrictions
4. Create a new axiom with a universal restriction and a

filler formed by the union of the definitions
5. Add the axiom to the ontology

• We can do this via a combination of
– OWLOntology methods
– Specialised visitor to collect information

about axioms
– Change objects

Working with
axiom objects

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 100

3. Concrete Syntax

• There are a variety of concrete syntaxes available for
OWL
– XML/RDF, XML Schema, Concrete Abstract Syntax

• Here we’ll show how we can add a serialisers for a new
syntax.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 101

Details

1. Defining renderer for objects

2. Defining renderer for ontology

3. Plugging it into the manager infrastructure

• Definition of some Visitors

• Format object and associated storage helpers

• Registration with the manager.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 102

4. Black Box Debugging

• Constructing OWL ontologies can be a difficult task.

• Unexpected inferences may be derived

• Debugging can help to track down the reasons for any
subsumptions or inconcsistencies.

• The API includes interfaces to support debugging of
ontologies
– Based on work from Maryland’s Mindswap Lab.

• We can use this to provide an explanation service

18

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 103

Details

1. Read ontology
2. Determine Unsatisfiable Classes
3. Provide explanation for the unsatisfiability

– Minimal sets of axioms causing unsatisfiability
– Possibly multiple sets

4. Report sets of axioms
– Rendering again

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 104

Protégé and the API

• Protégé is an ontology editor.
– One of the most used ontology editing tools (for OWL at least)

• Originally built on top of a frame-based model

• OWL support added through a layered approach.
– Somewhat problematic

• A reimplementation (Protégé 4) is targeted specifically at
OWL and is built on top of the OWL API

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 105

Protégé and the API

• Load/Store Abstractions
– Allows much cleaner client code.

– In the past, the tool had to worry about a lot of the details
regarding input/output formats

• E.g. what do you do when the user hits “Save”.

• Change
– Recording history/checkpoints

– Tracking ontology changes

– Undo!

– Event notification

• Can still support a frame-based presentation on top of the
axiom-centric model.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 106

SWOOP and the API

• SWOOP is an OWL editor, originally from the University
of Maryland.

• It’s a “hypermedia inspired” lightweight editor for OWL
ontologies
– Web browser look & feel

– Inline Editing

– Integration with a reasoner

• SWOOP uses the OWL API to represent OWL Models.

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 107

SWOOP and the API

“…Swoop uses the OWL API to model ontologies and their associated
entities, benefiting from its extensive and clean support for changes.
The OWL API separates the representation of changes from the
application of changes. Each possible change type has a corresponding
Java class in the API, which is subsequently applied to the ontology
(essentially, the Command design pattern). These classes allow for the
rich representation of changes, including metadata about the changes.”

Programming to the OWL API:
Wrap Up

Sean Bechhofer

University of Manchester
sean.bechhofer@manchester.ac.uk

19

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 109

The OWL API

• OWL is a language for representing ontologies.

• Although it has a relationship with other representations
like RDF, it has particular characteristics

• An API allows tools to work at an appropriate level of
abstraction
– Working with the language objects

– Hiding issues of concrete syntax and representation

• Provides clear identification of functionalities
– Particularly important when we have inference

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 110

Highlights

• Basic data structures representing OWL Ontologies
– Influenced by the logical perspective

– Targeted at a particular level of expressivity
• OWL DL/OWL 1.1

• Parsing & Rendering
– Support for standard formats (e.g.XML/RDF)

• Manipulation
– Through explicit change objects

• Inference
– Explicit Reasoning interfaces

– Communication with reasoners through “standard” protocols

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 111

Where’s it used?

• Pellet
– OWL reasoner

• SWOOP
– OWL editor

• Protégé 4
– OWL editor

• ComparaGrid

• CLEF

• OntoTrack
– OWL Editor

• DIP Reasoner

• BT
– SNOMED-CT support

• BioPAX
– Lisp bindings (!!)

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 112

Caveats

• Primarily designed to support manipulation of T-
Box/schema level ontologies
– Large amounts of instance data may cause problems.

• Designed to support OWL (not RDF)

• This isn’t industrial production level quality code
– It’s not bad though :-)

• We can’t promise to answer all your questions

• We can’t promise to fix all your bugs

• But we’ll try……

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 113

The Future

• The API continues to be developed, primarily to support
the development of Protégé and OWL support within
Protégé.

• Additional Components to support UIs and general
manipulation
– Migrating Protégé code into the code base

• Handling Change History
• Alternative implementations

– DB backed storage?

• Query Interfaces
– Conjunctive Query Style?

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 114

Other, Related Work

• Jena
– Provides OWL Ontology interfaces, layered on the RDF

structures of Jena

• Protégé API
– Protégé 3 provided OWL API layered on Protégé model

– Mixture of frames, RDF and OWL

– Evolution to support a UI

• KAON2
– Support for OWL

– Not open source

20

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 115

References

• Cooking the Semantic Web with the OWL API, ISWC2003

• Parsing OWL DL: Trees or Triples?, WWW2004

• Patching Syntax in OWL Ontologies, ISWC 2004

• The Manchester OWL Syntax, OWLEd 2006

• Igniting the OWL 1.1 Touch Paper: The OWL API, OWLEd
2007

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 116

Thanks!

• Thank you for listening

• Thanks also to everybody who has contributed to the API
design and codebase
– Matthew Horridge

– Phil Lord

– Angus Roberts

– Raphael Volz

– Olaf Noppens

– Evren Sirin

– Any others I forgot to mention (sorry!)…

© University of Manchester, 2007 OWL API Tutorial, Semantic Technologies, San Jose CA, May 2007 117

More Information

http://sourceforge.net/projects/owlapi
http://owlapi.sourceforge.net/

http://www.co-ode.org/
http://owl.cs.manchester.ac.uk/2007/05/api/

