Runtime Instrumentation for Precise
Flow-Sensitive Type Analysis

Etienne Kneuss, Philippe Suter and Viktor Kuncak

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, SWITZERLAND

S

ECOLE POLYTECHNIQUE
FEDERALF DE LAUSANNF

S

ECOLE POLYTECHNIQUE
FEDERALF DE LAUSANNF

Our Starting Point

 PHP: The language of the WEB
— 2007: 20,917,850 domains, 1,224,183 IP addresses

d I g g The Free Encyclopedia @ WORD PRE S S

YaHoO!

Our Starting Point

e Characteristics of PHP

— Weakly and dynamically typed (= untyped)
* Implicit conversions for each basic type
* Versatile arrays/maps

— No static checks
— Very few dynamic checks

Many bugs go unnoticed

function bzfile(S$file) {
Sbz = bzopen(S$file, "r”);
$St]’_‘ — llll;
while (!feof(Sbz)) {
Sstr = Sstr . bzread($bz,8192);

}
bzclose($bz);
return $str; = Description
} resource bzopen (string $filename , string $mode)

bzopen() opens a bzip2 (.bz2) file for reading or writing.

Source: http://php.net/bzopen

Infinite loop due to unhandled return value

int strpos (string $haystack , mixed $needle [, int $offset =01])

Warning

This function may return Boolean FALSE, but may also
return a non-Boolean value which evaluates to FALSE, such

as 0 or "". Please read the section on Booleans for more
information. Use the === operator for testing the return
value of this function.

Source: http://php.net/strpos

Functions often have multiple return types

PHP Analyzer for Type Mismatch

* Precise static analyzer

— Type reconstruction using abstract interpretation
* Representation of nested data types
* Union types

— Flow sensitive
— Precise handling of conditionals (if, while, foreach)
— Interprocedural analysis

 Combines static and dynamic analysis

* Practical tool
— Reduction of false alarms
— supports latest PHP

Precise Abstract Domain

* Arrays in PHP

— Maps from strings and/or integers to any value

if (Spath != “") {
Sa = array(
‘file’ => fopen($path, “r"),
‘src’ => S$path,

) 7

} else { TString(“error”) U TArray (
Sa = “error”; ‘file” — TResource U TFalse,
} ‘src’ — TString,

sa ... else = TUndef)

Interprocedural Analysis

Type information for every built-in PHP
functions, constants, and classes (> 4'000)

— Automatically extracted from PHP’s C source code
In-code annotations

— Support for widespread PHPDoc format
Selective function inlining

— Function calls are analyzed in their context

Function prototypes inference

Practical Analysis

* Type refinement

— Prevent cascading alarms

function abs(Sv) { Error!
if (Sv < 0) {
return -Sv;
} else {
return S$v; OK!

}
}

* Error filtering heuristics

— Various verbosity levels to hide common false
positives

Challenges

Portability Configurability
if (PHP VERSION < %5.2.07) {
// defined in std 1ib $Config —
// as of PHP 5.2 parse ini file(“conf.ini”);
function foo () {
Persistent Storage Pluggable Components

Sr = mysgl query (

“SELECT * FROM users ..”);
Su = mysqgl fetch assoc($r);
Sage = Sul‘age’];)

foreach ($SmodulelList as Sm) {
include ‘inc/’. $m .’ .php’;

Challenges

 Few (configuration) variables control most of
the application:

foreach ($modulelist as S$module) {
include ‘inc/’' . Smodule . ’'.php’;

¥

}

Purely static analyses is insufficient in practice

Typical Web Application

-~ Loading configuration,
initializing global structures,
connecting to persistent
storage layer

Bootstrap

Dispatch control to specific
tasks, based on user input
(URL, forms, ...)

Dispatcher
~
N~

\ Specific, independent tasks

—

Our Approach

Bootstrap

Our Approach

1. Run the application in a
realistic environment
up to a point

Our Approach

2. Collect asnapshot of
the application state
at that point

Our Approach

Run static analysis
starting from that
point, using this
precise state

Benefits

 We actually know what code to analyze!

* Analysis starts with a “perfect” state

— PHP interpreter exposes nearly all its state
(including the heap)

— With that state, Phantm will:
* Represent each values precisely with singleton types
* Disambiguate function/class declarations

Experimental Results

Analyzed Software
DokuWiki

“.. a standards compliant, simple to use Wiki,
mainly aimed at creating documentation of any
kind.”

WebMail

“... a free webmail for reading and sending e-mail gall
while on the road from an Internet browser.”

SimplePie @ SimplePie
“.. avery fast and easy-to-use class, written in PHP,
that puts the 'simple’ back into 'really simple

17

syndication’.

Without Runtime Instrumentation

Lines Filtered Alarms Problems Time

WebMail 3621 59 43 11s
WebMail 3621 59 a3 11s

Total: 50110 656 203 276s

Quantifying Benefits of
Instrumentation

* |[nstrumenting affects the code analyzed

— Absolute number of alarms emitted is not a good
metric

 We compare the number of alarms, for
functions analyzed completely in both cases

Benefits of Instrumentation

* On Average: 12% improvement
e Selected functions that benefited the most:

Alarms 20 -
18 -
16 - :
|
14 - Without

12 - With

Bugs Found

function encrypt pass(Spassword, S$key) {
Sres = “";
foreach(str split($password) as $char) {
Sres .= substr($key, strpos(ALPHABET, S$Schar),
}

return S$res;

1);

Bugs Found

1if (!Sfile->success && ! ($file->method &
SIMPLEPIE FILE SOURCE REMOTE === 0)) {

// ..
}

_/

Bugs Found

1f (strtolower(trim(Sattribs['mode']) === 'base64’)) ({

)
/e t J

}

Project Information

$Scala

e Written in Scala

* Homepage
— http://lara.epfl.ch/dokuwiki/phantm

* Open source, available from github:
— http://github.com/colder/phantm

Related Work

* S.H.Jensen, A. Mgller, P. Thiemann: Type analysis for
Javascript. SAS 2009

M. Furr, J.-h. An, J. S. Foster: Profile-quided static

typing for dynamic scripting languages. OOPSLA
2009

* N.Jovanovic, C. Kruegel, E. Kirda: Pixy: A static
analysis tool for detecting web applications
vulnerabilities. IEEE Symp. Security and Privacy 2006

PHP Analyzer for Type Mismatch

* Precise static analyzer

— Type reconstruction using abstract interpretation
* Representation of nested data types
* Union types

— Flow sensitive
— Precise handling of conditionals (if, while, foreach)
— Interprocedural analysis

 Combines static and dynamic analysis

 Practical tool
— Reduction of false alarms
— supports latest PHP

Thank youl!

Code Example

include getFile();
$a = array(“foo” => “bar”);

10 oo

include ‘path/to/phantm/lib/phantm.php’;
phantm_collect_state(get_defined_vars());

10 oo

echo Sa[‘foo’];

Collected State at P

1. Heap
— Via serialization

2. Included files
— Relevant code base

3. Functions and classes defined

— Disambiguate dynamic definitions

Our Starting Point

 Characteristics of PHP

— Weakly and dynamically typed (= untyped)
* Implicit conversions for each basic type
* Versatile arrays/maps

Inexperienced

Programmers

No Static

Ubiquitous 1 Checks

Many Bugs

Sources of Imprecisions

* Models are limited by design
 Unknown environment

e User inputs that dictate
application behavior

Our Approach

1. Run the application in
a realistic environment

Real run

2. Collect a snapshot of
the application state at
. Application
point P

o =

3. Run static analysis
starting from P using
this precise state

> é

Static Analysis

B

Our Goal:

Useful analysis tool, able to help developers by

spotting errors in realistic, complete applications

Setting Instrumentation Point P

* Currently, P is manually placed

Bootstrap

Setting Instrumentation Point P

* Currently, P is manually placed

Bootstrap

