

Static Analysis for PHP

Semester Project
Fall 2009

Etienne Kneuss
EPFL

PHP

● Weak & Dynamic Typing
● Compiler optimized for speed, not safety
● Large internal API (> 2500 functions)
● All kinds of dynamic features

→ “If it can be done, it usually can be done
dynamically”

The problem

● Lot of room for run-time errors
● Nearly all possible errors happen at run-time

● Most of those errors will be non-fatal
● Until recently, PHP was shipped to ignore lots

of errors by default

→ Lots of broken or badly written scripts

Previous Work

● PHP-Sat
● Mostly (only?) structure based

● PHPMD (PHP Mess Detector)
● Program metrics
● Some semantic checks

● Pixy
● Taint-analysis, inter-procedural, for PHP4

http://www.program-transformation.org/PHP/PhpSat
http://phpmd.org/
http://pixybox.seclab.tuwien.ac.at/

This solution

● Structural checks
● Semantic checks
● Data/Type flow analysis
● Based on the grammar of PHP5.3

Why do types matter?

● PHP does type juggling
● switch
● What about ctype_digit ?

→ Relying on it is a problem waiting to happen:
#50696, #49057, #34772, #25763, #24905, ...

● Non-scalar types

<?php
switch(0) {
 case "true":
 ...

http://bugs.php.net/50696
http://bugs.php.net/49057
http://bugs.php.net/34772
http://bugs.php.net/25763
http://bugs.php.net/24905

Analysis phases
● Lexing (Jflex)

● Parsing (modified CUP)

● ST → AST

● AST Transformations

● Structural checks

● API

● Semantic analysis
● AST → CFG

● Flow analysis

AST Transformations

● Allows to freely transform the AST
● Used for:

● Include resolver
● Annotations

Include Resolver

● Link ASTs
● Support some expressions:

● dirname(), constants, string literals, concatenation

include dirname(__DIR__).'/path/to/file.php';

● One problem: include is an expression!

Annotations

● Comments preceding declarations
● Compatible with phpDocumentor

/**
 * My super concat function
 * @param string $foo
 * @param string $bar
 * @return string
 */
function concat ($foo, $bar) {
 return $foo.$bar;
}

Structural Checks

● Looks for common mistakes
● Conditional class/functions declarations
● Call-time pass by reference
● Variable variables ($$a)

function foo($a) {
 return ++$a;
}
$b = 2;
foo(&$b);
echo $b;

API

● Support for API importation
● e.g. defined(name: String): Boolean

 <function name="defined">
 <return><type name="bool"></type></return>
 <args>
 <arg opt="0"><type name="string"></type></arg>
 </args>
 </function>

Semantic analysis

● Attaches symbols to identifiers
● Double declarations
● Inheritance cycles

● Define variable scopes

Data types flow analysis

● Model the flow of types for each values in a
series of statements

● The result is a model of the possible types for
each values at each program point

→ We can typecheck the result

Examples

Multiple verbosities
<?php
$a = 2;

if ($a = 3) {
 $b = 2;
}

Branches
<?php

if (1 > 3) {
 $a = "asd";
 $a = $a."asd";
} else {
 $a = 2;
 $a = $a+2;
}

echo $a;

Loops

<?php
$a = 0;
while($a < 10) {
 $a = $a + 1;
 $b = $a;
}

Array types

<?php
$a = array();
$a[1] = 1;
$c = 3;
$a[$c] = "asd";

Object Types
<?php
class A {
 public $foo = 2;
}

$a = new A;
$b = $a;

Conditional types filtering

● “remembering” checks
● Every values have a boolean value:

● Lots of functions possibly return false on error
● We don't want false to pollute our results, if

properly checked!

TRUE FALSE

Arrays, integers, floats,
strings, resources,
objects, true

Arrays, integers, floats,
strings, false, null

Conditional type filtering

<?php
$a = strpos("fpp", "aaa");

if ($a) {
 echo $a+2;
}

Redundant tests

<?php
$a = mysql_connect();

if ($a) {
 if ($a) {
 $b = 2;
 }
}

Tests on real code

● Used to find 4 mistakes in 2 scripts written by
a colleague!

● Too many false positives in complex, modular,
OOP code.
● 134 false notices found in a 370 lines class

containing 9 methods

→ Increasing the signal-to-noise ratio is the next
challenge!

Future Work

● Stabilize the support for every PHP5.3
features

● Provide a decent model for references
● Improve annotations for complex arrays
● Add support for in-code annotations?
● ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

