

Phantm: PHP Analyzer for Type Mismatch

Continued as SAV project
Spring 2010

Etienne Kneuss

PHP

● Weak & Dynamic Typing
● Compiler optimized for speed, not safety
● Large internal API (> 2500 functions)
● All kinds of dynamic features

... $$var, $name(), new $class, $class::$property,
eval(), autoloaders, error handlers, ticks ...

The problem

● Implicit type conversions potentially hiding
bugs

● Most errors are non-fatal and happen at
runtime

● Until recently, PHP was shipped to not even
report those errors by default

→ Lots of broken or badly written scripts

Why do types matter?

● PHP does type juggling
● switch
● ctype_digit

→ Relying on it is a problem waiting to happen:
#50696, #49057, #34772, #25763, #24905, ...

● Non-scalar types

$a = 0;
switch($a) {
 case “foo”:
 echo “this”;
 Break;
 default:
 echo “that”;
 break;
}

http://bugs.php.net/50696
http://bugs.php.net/49057
http://bugs.php.net/34772
http://bugs.php.net/25763
http://bugs.php.net/24905

Phantm
● several implemented analyses and techniques:

● Structural checks
● Semantic checks
● Data-flow analysis

– Independent or context-sensitive / interprocedural
● Pure statements checks
● Runtime instrumentation

● ~10'000 lines of Scala code

Analysis phases
● Runtime dumps collection

● Lexing (Jflex) + Parsing (modified CUP)

● AST Pruning

● AST checks

● Pure statements checks

● API Importation

● Includes and Constants resolutions

● Semantic analysis

● Call graph generation and analysis

● CFG generations

● Type analysis

● API Exportation

Pure statement checks

<?php

if ($a == “foo”) {
 $mode = “this”;
} else {
 $mode == “that”;
}

● Detect pure statements, usually indicating
bugs:

Runtime Instrumentation

● Run the application, and collect its precise
state at some program point

● Analyze statically from that program point,
injecting the runtime state.

Context-sensitive analysis

● It is often not precise enough to specify
function prototypes, for instance:

<?php
function identityOrFalse($val) {
 If (is_int($val)) return $val; else return false;
}

IdentityOrFalse(2) + 2; // we don't expect any error
IdentityOrFalse(“foo”) + 2; // we expect an error

Short Demo

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

