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PHP

● Weak & Dynamic Typing
● Compiler optimized for speed, not safety
● Large internal API (> 2500 functions)
● All kinds of dynamic features

→ “If it can be done, it  usually can be done 
dynamically”



  

The problem

● Lot of room for run-time errors
● Nearly all possible errors happen at run-time

● Most of those errors will be non-fatal
● Until recently, PHP was shipped to ignore lots 

of errors by default

→ Lots of broken or badly written scripts



  

Previous Work

● PHP-Sat
● Mostly (only?) structure based

● PHPMD (PHP Mess Detector)
● Program metrics
● Some semantic checks

● Pixy
● Taint-analysis, inter-procedural, for PHP4

http://www.program-transformation.org/PHP/PhpSat
http://phpmd.org/
http://pixybox.seclab.tuwien.ac.at/


  

This solution

● Structural checks
● Semantic checks
● Data/Type flow analysis
● Based on the grammar of PHP5.3



  

Why do types matter?

● PHP does type juggling
● switch
● What about ctype_digit ?

→ Relying on it is a problem waiting to happen: 
#50696, #49057, #34772, #25763, #24905, ...

● Non-scalar types

<?php
switch(0) {
    case "true":
        ...

http://bugs.php.net/50696
http://bugs.php.net/49057
http://bugs.php.net/34772
http://bugs.php.net/25763
http://bugs.php.net/24905


  

Analysis phases
● Lexing (Jflex)

● Parsing (modified CUP)

● ST → AST

● AST Transformations

● Structural checks

● API

● Semantic analysis
● AST → CFG

● Flow analysis



  

AST Transformations

● Allows to freely transform the AST
● Used for:

● Include resolver
● Annotations



  

Include Resolver

● Link ASTs
● Support some expressions:

● dirname(), constants, string literals, concatenation

include dirname(__DIR__).'/path/to/file.php';

● One problem: include is an expression!



  

Annotations

● Comments preceding declarations
● Compatible with phpDocumentor

/**
 * My super concat function
 * @param string $foo
 * @param string $bar
 * @return string
 */
function concat ($foo, $bar) {
    return $foo.$bar;
}



  

Structural Checks

● Looks for common mistakes
● Conditional class/functions declarations
● Call-time pass by reference
● Variable variables ($$a)

function foo($a) { 
   return ++$a; 
}
$b = 2;
foo(&$b); 
echo $b;



  

API

● Support for API importation
● e.g. defined(name: String): Boolean

 <function name="defined">
   <return><type name="bool"></type></return>
   <args>
     <arg opt="0"><type name="string"></type></arg>
   </args>
 </function>



  

Semantic analysis

● Attaches symbols to identifiers
● Double declarations
● Inheritance cycles

● Define variable scopes



  

Data types flow analysis

● Model the flow of types for each values in a 
series of statements

● The result is a model of the possible types for 
each values at each program point 

→ We can typecheck the result



  

Examples



  

Multiple verbosities
<?php
$a = 2;

if ($a = 3) {
    $b = 2;
}



  

Branches
<?php

if (1 > 3) {
    $a = "asd";
    $a = $a."asd";
} else {
    $a = 2;
    $a = $a+2;
}

echo $a;



  

Loops

<?php
$a = 0;
while($a < 10) {
    $a = $a + 1;
    $b = $a;
}



  

Array types

<?php
$a = array();
$a[1] = 1;
$c = 3;
$a[$c] = "asd";



  

Object Types
<?php
class A {
    public $foo = 2;
}

$a = new A;
$b = $a;



  

Conditional types filtering

● “remembering” checks
● Every values have a boolean value:

● Lots of functions possibly return false on error
● We don't want false to pollute our results, if 

properly checked!

TRUE FALSE

Arrays, integers, floats, 
strings, resources, 
objects, true

Arrays, integers, floats, 
strings, false, null



  

Conditional type filtering

<?php
$a = strpos("fpp", "aaa");

if ($a) {
    echo $a+2;
}



  

Redundant tests

<?php
$a = mysql_connect();

if ($a) {
    if ($a) {
        $b = 2;
    }
}



  

Tests on real code

● Used to find 4 mistakes in 2 scripts written by 
a colleague!

● Too many false positives in complex, modular, 
OOP code.
● 134 false notices found in a 370 lines class 

containing 9 methods

→ Increasing the signal-to-noise ratio is the next 
challenge!



  

Future Work

● Stabilize the support for every PHP5.3 
features

● Provide a decent model for references
● Improve annotations for complex arrays
● Add support for in-code annotations?
● ...
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