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SENIOR PROJECT 2012 1 INTRODUCTION

1 Introduction

1.1 Overview

After procuring robots from MSU’s robotic department, we familiarized ourselves with the

IntelliBrain2 Micro Controller from Ridgesoft mounted atop the Ridgesoft Deluxe Educa-

tional Robot:

Figure 1: IntelliBrain2 Micro Controller on the standard Ridgesoft base

This small robot allowed us to learn the basics before moving onto a larger frame. This

robot ran with two independent continuous rotation servos (controlling each wheel inde-

pendently), a range finding sensor, and two light sensors pointed downwards to help it

follow a line.

Next, we moved onto a larger, faster robot mounted on an Axial Remote Control Rock

Crawling car base:

Figure 2: Axial RC car mounted with IntelliBrain2 Controller

We modified the base to include 4 wheel steering. We then mounted a GPS, 5 range

finding sensors and a single WheelWatcher Incremental Quadrature Encoder for navigation

and speed control.
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1.2 This Documentation

The purpose of this documentation is to explain the process and steps we took to learn,

build, and program our self-navigating robot. We will introduce the development environ-

ment, discuss the specific functions of the robot and describe the running process of the

robot, as the end user would see.

1.3 Project Goals

1. Grasp the concepts of introductory robotics.

2. Learn to translate a theoretical environment to a running physical machine.

3. Enhance our understanding of the Java Language.

4. Learn about external Java libraries.

5. Understand how Java can be compiled to a specific platform and handle physical

sensor input.

6. Learn advanced robotic algorithms - separate from theoretical Computer Science

algorithms.
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2 Development Environment

The IntelliBrain2 can be programmed in Java. A specific RoboJDE library is required at

compile to interface with the board. There are numerous options to turn Java code into

running code on the robot that we will explain here.

2.1 Requirements

First, download the development software from the Ridgesoft Website:

http://ridgesoft.com/robojde/robojde.htm

The software, API, required libraries, and physical wiring diagrams can be found on this

website.

There is an included development application, RoboJDE, that uses RoboJDE project

files (.rjp) to program the robot. This editor is great for getting started, but is quickly

outgrown. The software comes with many example files and as long as the host computer

has a Serial Port (We used an OptiPlex GX620), then there is no additional software

required to get the first programs loaded to the robot.

This environment, however, is all plain text with no syntax coloring or error detec-

tion. Moreover, We found Eclipse to be the best editor because it can be configured to

automatically compile to the robot using the rsload script.

2.2 RSLoad Script

Included in downloads for all platforms is a script called rsload. rsload is a command line

utility for loading code to the robot. The best documentation on it can be found here:

http://ridgesoft.com/robojde/2.0/docs/RoboJDEGuide.pdf

Some important arguments to know for rsload are:

-port Specifies the port the robot is connected to, typically COM1 on Windows or

/dev/ttys0 on Linux, but if using a USB adapter, this could be /dev/tty.usbserial

or COM5. Understanding particular drivers and the OS is important here.

-run If included, the robot will automatically run when load is complete.

-bank Specify to load to either Flash or Ram; we always loaded to Flash and in some

cases, it was required to use this argument.

-verbose Good for debugging purposes.
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The ultimate required argument is the name of the class that includes main. An

example call:

rsload -bank Flash -port /dev/tty.usbserial -run Controller

This command will load the Controller class to the robot over the USB to Serial adapter.

When load is complete, it will run the program. It should be noted that in this example,

Controller.class is located in the same directory as rsload.

2.3 Individual Load Scripts

For greater compatibility, we wrote a customizable load script that would compile and then

load a specific file, given the file path and the name of the file containing the function,

main.

#Instructions:

#Update both filePath and fileName variables to represent where the files are.

#These should all be relative to Dropbox. (Note in eclipse cases, compiled files

#may be found in the /bin/ directory of the project. However, these should be

#pointed to the java file for compiling.

#Don’t put a ’/’ on the end of the filePath:

#The fileName is the main controlling class.

#Warning! Every .java file in the path BETTER compile.

#This is an example:

#filePath=/home/robotics/Dropbox/Robo/Development/Forrest

#fileName=MusicTest

###############################################################

####################### WHAT YOU SHOULD EDIT ####################

filePath=/home/robotics/Dropbox/Robo/Development/Master/Robot/src

#Note, don’t end with /

fileName=Controller #Note, no .java or .class! This has ’main function’

######################## END WHAT YOU SHOULD EDIT ###############

###############################################################

clear

echo "Welcome to the CS 430 Load Script"

echo "This will fail if RoboJDE is running"

echo ""

echo "Copying to Temp Build Path to not upset Eclipse..."

rm -f /home/robotics/Dropbox/Robo/Development/TempLoadNoTouchie/*

cp $filePath/* /home/robotics/Dropbox/Robo/Development/TempLoadNoTouchie/
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echo "Files Copied To Temp Build Path:"

cd /home/robotics/Dropbox/Robo/Development/TempLoadNoTouchie

ls -al

echo "Press Enter to Compile"

read nothing

#Let’s compile it first:

echo "Compiling..."

javac -classpath "/home/robotics/RoboJDE/RoboJDE.jar" *.java

echo "Compilation Complete"

echo "Make sure Robot is in Bootstrap Mode, Turn ON then press STOP,

Then Press Enter"

read nothing

echo "Initiating Robot Loader:"

sh /home/robotics/RoboJDE/rsload -port /dev/ttyS0 -bank flash $fileName

echo ""

echo "Press Enter to Quit"

read nothing

This script was written for the robotics user account on an OptiPlex GX620 running Ubuntu

11.10 with the robot connected to the serial port. It will copy the required files to a temporary

directory, compile them and then load them to the robot.

The main purpose of a script like this is to abstract the robot development to simple java

files in a single directory. The script takes care of including the necessary files for interfacing

with the board, so the user can write simple Java code to feed this script.

Next, we take this concept one step further by integrating with Eclipse.

2.4 Integrating with Eclipse

Eclipse is a robust open source development environment that allows for much customization.

The two requirements for this project are:

1. Include the RoboJDE.jar archive in the compile path

2. Write an external build tool to automatically call the rsload script.

Once a project is created in Eclipse, preferences can be set by right-clicking on the project

root. Ensure here that the Java Build Path includes the RoboJDE.jar file. It is convenient to

put a copy of this file in the workspace directory so that it can be referenced locally.

There are explicit instructions for setting up an eclipse external tool in the read me, but I

have included a screen shot here for further description:
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Figure 3: Eclipse External Tool Configuration

This tool configuration differs from the suggested configuration with static references for

convenience. Note that the Working Directory references the bin directory, where Eclipse puts

the compiled class files. The name of the class with the function, main in it is Controller.

2.5 Source Version Control

The importance of a steadfast source version control method should not be over looked; unfor-

tunately, we did so for months until turning to git and github.com. We recommend to spend

the time in the beginning familiarizing yourself with the processes of branching, forking, and

merging with the github interface.

We found an open source utility, EGit installed through the Eclipse market place, that allowed

us to integrate the Eclipse environment with github. It should be known and user be warned

that github integration with Eclipse is very powerful and will overwrite the local workspace,

so one must be comfortable with the github commands and Egit interface before fetching or

pushing from the remote repository.

Originally, we used Dropbox, which worked as a great backup tool at the end of the day, but

hard for real-time development. This is because Dropbox is not true version control software.
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SVC Anecdote on Dropbox

While Dropbox is a simple, convenient, and magical application in today’s computing, it is not

a substitute for source version control. We initially used Dropbox to sync files across all of

our computers for team development. The problem here is that changes propagate immediately.

Backups are kept in the depths of Dropbox’s servers, but are tedious to scan through and recover.

However, the real kicker occurs when Dropbox meets DeepFreeze, the Enterprise software that

Carroll uses to fight malicious intentions. If Dropbox is installed on a user’s profile, it will by

default sync all files to a folder on the local hard drive. When the computer restarts, changes

to the C drive are erased and Dropbox is fooled into believing the user deleted all files in their

Dropbox directory. This change is then propagated to the rest of the team, so come Monday

morning, all code is erased across every team member’s computer. Thanks, Forrest.
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3 Physical Robot Design

Here we describe the physical attributes of the robot, after introducing each part, the next

section will cover the logic that governs each physical interface.

Figure 4: Final Robot Design

3.1 Description

The Robot is about 18” long, 10” tall, and 11” wide. It has 4 wheels of 5” diameter.

and runs off a 3000 mAh Ni-MH battery. The RC car body is designed by Axial Racing

(www.axialracing.com).

Borrowing the parts from a second RC car, we gave our robot 4-wheel steering by substituting

the rear axle with a second car’s front steering axle.

(a) Front Steering (b) Rear Steering

A central motor, controlled by an Axial AE-2 ESC drives all four wheels. This is mounted

8



SENIOR PROJECT 2012 3 PHYSICAL ROBOT DESIGN

in the center of the body and is directly linked to the WheelWatcher chip which records how

fast the motor is spinning.

Figure 5: Nubotics’ WheelWatcher Incremental Quadrature Encoder mounted next to
motor

As the motor turns, the black and white disk spins over light sensors on the WheelWatcher

chip. With each change in color, a counter is incremented. This counter can then be converted

to rotations per minute, or RPM .

On the top of the robot are 5 range finding sensors that operate by sonar:

Figure 6: Ping))) Sensors

These 5 sensors point directly ahead, 45° left, right, and 90° left, right. They operate via

sonar and require special attention to timing as the command tells it when to send a ‘ping’ and

when to read the ping. If not a enough or too much time elapses between the send and read

command, the data is corrupted.
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Ultimately, the main controlling board is the IntelliBrain2 by Ridgesoft:

Figure 7: The 14.7 MHz IntelliBrain2 MicroController

This is a Java programmable board that calls a specific API to interface with the physical

inputs. It connects to a computer via a serial port. In this figure, we have a USB adapter

plugged into the serial port.

3.2 Running the Robot

The battery attaches via Velcro straps under the back of the robot. It plugs into both the motor

and the MicroController. Once the battery is connected, the robot can be turned on by the

on/off switch on the MicroController.

Just press the START button to start the robot. A small calibration routine will automatically

run as the robot shifts the wheels back and forth.

10
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3.3 Wiring Diagram

Figure 8: Wiring Diagram for the Robot

This figure shows how and where each sensor and servo connects to the IntelliBrain2 Mi-

croController. Blue lines represent multiple wires that connect in a straightforward manner to

the board.
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4 Robot Logic

There are 2 main obstacles that we overcame in this project:

1. Difference between Theory and Application

2. CPU Clock Speed

The difference between theory and application deals with the inconsistencies in a physical envi-

ronment. On the white board and in the computer, issuing commands such as turnRight(35°)

then goForward(10 inches) would move the robot 10 inches at 35°from the current location.

In a physical environment, this is never the case, especially when working with a remote

control vehicle. The driving surface may be inconsistent, making the wheels only turn 30°and

the battery may be low, so the motor may not drive at the proper speed, making the car only

go 9 inches. A series of this mistakes and the robot will lose its heading completely.

Similarly, if a range finding sensor misfires and returns false data, decision making processes

are misinformed. On the white board, a command such as getDistance() can be trusted, but

in reality, these functions must be checked and double checked for errors before they can be

trusted by the robot.

In previous Computer Science courses, we were never limited by the speed of the CPU. Sure

it may take time to compute factorial(16984), but the impact of this time has never had high

consequences.

For this robot, we have become very aware of exactly how long it takes the CPU to complete

a cycle. This has two ramifications:

1. How long will a set of commands tie up the CPU? If it takes too long to interpret sensor

data, then the robot may hit the wall before it realizes the wall is there.

2. How fast is the CPU? If a particular sensor is running substantially faster than the CPU,

can the robot even interpret that data? 1

We have to consistently work to overcome the difference between theory and application in

robotics, but seem to have worked out a few tricks to function thus far. In terms of physical

CPU limitations, we separated sensors and logic into various threads with specific priorities.

1See the section on Remote Control
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4.1 Threads

The IntelliBrain2 MicroController has the ability to spawn multiple process threads. As such,

we have separated our robots sensory inputs and logic into different threads to optimize driving

abilities. These threads (in order of priority) are:

Remote Handles checking for the status of the remote (on or off) - wireless kill

switch.

Sonar Controls the 5 range finding sensors on the front.

Brain Governs all decision making

Engine Controls the motor servo.

Steering Controls the front and rear steering servos.

GPS Controls the Global Positioning System chip that is mounted on the top of

the robot.

Debugging Handles debugging data if requested - has minimum priority.

This design is based off the general principle of ranking importance as: 1) Sensory Input 2)

Decision-Making 3) Motor Control (Note, the GPS is excluded in this because it is rarely used).

Challenges with Threads

First, we had to learn how to properly implement threads in Java and set priorities. Under-

standing the difference between the running thread and the object instance that comprised the

thread was the next obstacle.

We ultimately followed this general protocol for declaring an object and then executing it as

a thread (note that each class implements Runnable so that it can be run as a thread.

1. Intelligence brain = new Intelligence(engine, wheel, headlight, remote);

2. Thread brainThr = new Thread(brain);

3. brainThr.setPriority(Thread.MAX_PRIORITY-1);

4. brainThr.start();

In this example of the intelligence thread, we pass the instance of the motor (engine),

Steering control (wheel), Sonar sensors (headlight), and remote to the Intelligence constructor.

Next we declare a new thread from the instance of Intelligence (brain), set the priority and

finally, we start the thread.

13



SENIOR PROJECT 2012 4 ROBOT LOGIC

4.2 Sonar & Range Finding

The Robot has 5 range finding sensors that operate via sonar. That is, they emit a sound wave

and measure the time it takes for the wave deflect off an object and return. Since the speed of

sound is constant, the distance it traveled in the measured time can be determined. In order to

get 5 sensors active, a relay had to be added to the circuit to overload the digital input ports

on the IntelliBrain2.

As a result, when sonar is running, there is a ticking noise as the relay switches back and

forth. The logical obstacles we overcame with the sonar sensors was timing. There is a window

of time between when the sensor has received the signal and the sensor trashes the signal. If

you ask for the distance too soon after telling the sensor to ping() (emit a sound wave), there

will be no data to receive. Too long and the data is no longer valid or trashed by the sensor.

Here is a diagram of the sensor we used and its function:2

Figure 9: Parallax Ping))) Sensor

The timing issue made us shy away from using Threads at first because we could not control

the timing very accurately if the processor was determining which processes got to run when;

however, we ultimately decided to run the sensors iteratively as a single thread with hard coded

200 millisecond delays between the ping and the retrieval of information from the sensor.

The two side sensors (East and West) are connected to the relay and take turns as active

distance sensors.

2Image from http://www.generationrobots.com/site/medias/Principe-fonctionnement-Sonar-Ping-
Parallax.JPG
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4.3 Engine & Motor

One of the more difficult parts of the robot to program was the motor. It is an Axial 27T electric

motor controlled by the Axial AE-1 ESC. These are the two parts:3

(a) 27T Electronic Motor (b) Axial AE-1 ESC

The AE-1 is connected to one of the MicroController’s servo ports and we initialize it as

a continuous rotation servo. This means that it takes integer arguments for the command

setPower(int n) between -16 and 16 (negative numbers represent reverse powers).

Additionally, active braking is available, so if the controller gets a command for the opposite

direction, it will apply the brake and bring the motor to a stop. The motor control is the ultimate

showcase of theoretical versus physical programming. The values passed to setPower() never

represent the same speed twice. There are too many altering factors such as battery level, how

long its been running, what speed it was going, driving surface, etc.

To remedy this, we wrote a separate driver called Engine that uses the Nubotic Wheel

Watcher chip4 to count the rotations of the motor. This is then converted to the number of

rotations-per-minute (RPM) so that we can receive active feedback on the current wheel speed.

From here, we can attempt the general motor control logic:

1. Set a desired velocity; if not 0, set the motor power to a specific range that somewhat

corresponds to that velocity.

2. Get the current RPM of the motor

3. If the RPMs are higher than desired, decrease motor power.

4. If the RPMS are too low, increase motor power if its not already at maximum level.

5. Return to step 2.

3Images from: http://axialracing.com/ftp/ax10rtr/
4Image in previous section
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To implement this motor logic, we used a proportional-integral-derivative (PID) Controller.

The PID is the most commonly used feedback controller. It works to minimize error by

adjusting input variables:5

Figure 10: PID Controller Diagram

The PID controller is initiated in the Engine class and then motor power is set based on

feedback from the PID given the inputs: (desired rpm, actual rpm). Using the PID controller

helped cut down on the overall ’juttiness’ of the robot’s movements.6

Motor Challenges

The AE-1 servo controller requires specific initialization commands to calibrate correctly. When

the MicroController first turns on, the servo does not respond to commands such as setPower().

However, if there is a varying signal on the control pin, then the controller will initialize with an

audible beep and then you can begin sending it commands.

After trying numerous combinations of commands and Thread.sleep() lengths, Nate found

a blog that gave us a major break.7 While our trial and error methods worked, there was a 50%

chance the motor would initialize backwards, so the robot would take positive power values as

reverse (obvious complications arise here).

The new calibration routine, based off the blog is:

motor.setPower(1);

motor.setPower(0);

motor.setPower(-1);

Thread.sleep(2000);

With this logic, we have had total success with proper calibration. The user sees this as a 2

second pause when the robot first turns on.

5Image and Description from Wikipedia: http://en.wikipedia.org/wiki/PID controller
6The robot still shakes as it constantly readjusts the servo power, but not nearly as bad.
7Calibration Routine found here: http://axialracing.com/wordpress/2011/08/18/axial-ae-2-esc-set-

up-and-programming/
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4.4 Wheels & Steering

The two steering servos (controlling front and rear wheels) are attached to separate servo ports

on the Micro Controller. Each servo is an Axial AS-2:8

Figure 11: Axial AS-2 Servo

They are initialized as standard servo instances of the com.ridgesoft.robotics.Servo class and

as such can take the argument setPosition(int n) where n is an integer between 0 and 100 where

50 is the midpoint.

For four wheel steering, the rear servo is set to the value: 100-(value of front servo). The

robot can now turn ‘on a dime’, but user beware, it will tip over if running too fast.9

Steering Servo Challenges

When the robot first turns on, the steering range must be calibrated. We found that the best

way to do this is to reset the range by turning the wheels all the way one direction and then all

the way to the other direction then back to the middle (50). After this, the 0-100 range for the

servo method, setPosition(int n) gives full range of motion for the wheels, fairly accurately.

If this is not done properly, then the steering range is incomplete and inconsistent. We

attempted putting a sensor on the steering servo to check the wheels were at the appropriate

spot, but found consistency after this calibration routine.

Additionally, the original steering mechanism was built to allow the wheels to slip dramati-

cally - this was a feature of this particular Remote Control vehicle that was made for crawling

over rocks. This slip lead to major complications in robot control because the logic had no way

to tell if the wheels were pointing the direction the servo said they were.10

To overcome this, we padded the slipping mechanism with paper towel to absorb the play.

This seems to fix all the complications. However, now if the robot hits a wall or bumps the

wheel too hard, the steering shaft and the steering motor take the brunt of the force, so one

must be very careful in operating the robot.

8Image from: http://www.rc-recycler.com/v/vspfiles/pictures/ 12/11656/11655177.jpg
9There is a governor in the Engine class to ensure this cannot happen.

10Provided the servo was in the position it claimed to be! (Before calibration)
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4.5 Remote Control

In a major addition to the robot, we incorporated the original RC car remote to override the

robot logic for motor control. This was done to serve two purposes: 1) act as a kill switch and

2) provide the ability to manually drive the robot to train a Neural Network. We played with

this idea early on, but abandoned it due to difficulty in obtaining clean data from the remote.

Upon revisiting the idea, we determined the original problem was a limitation in the physical

clock speed of the Micro Controller. The IntelliBrain2 has a clock speed of 14.7 MHz. The

frequency of the remote is 27 MHz. Therefore, no matter how many consecutive clock cycles

we gave the remote sensor, it was incapable of accurately sampling the change in signal.

To remedy this issue, our team member pursuing a Physics degree created an RC circuit

(a type of Low-Pass filter) for the remote sensor that cleaned up the signal and allows for

meaningful sampling of the analog input.

Figure 12: Nate’s Low-Pass Filter Circuit Diagram

We should note that this current circuit is an improvement on the first attempt which utilized

much larger capacitors that featured a multiple second delay on steering and throttle input.

Remote Input

Our first implementation was to average 3 consecutive sample points. The final implementation

uses a Smoother11 to ensure accurate data. We can obtain nearly real-time steering and throttle

input. Because we must wait for the capacitor to charge/discharge, there is some lag in control.12

The impact of this feature is a physical kill switch: Turn the remote on and the running

logic stops and the remote takes over.13; turn off the remote, and the running logic resumes.

11from com.ridgesoft.robotics.Smoother
12After all this, we’ve succeeded in building a simple RC car (worse than the one we started with)
13Also, the Mario theme song plays
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4.6 Global Positioning System

The robot does include a GPS chip on the body that interfaces with the board. This allows it

to track is position via satellites. Currently, we do not incorporate this data into our logic, but

the interface and control exist.

Challenges

The GPS required extra circuit configuration to be read by the MicroController. When we

received the robot from MSU, an example circuit was provided. We replicated the circuit as

follows:14

Figure 13: Circuit Diagram for connecting the GPS to the MicroController

14The blue box in the figure is a Max232 Integrated Circuit
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4.7 Neural Network

For the intelligence and control of the robot, we implemented a Neural Network.15 A Neural

Network looks like this:16

Figure 14: A Neural Network

A neural network is comprised by a system of neurons, resembling a brain. Each neuron’s

purpose is to take multiple inputs, apply a weight to each input (depending on the source) and

sum the result.

The sum in each neuron is then put into a Sigmoid function:

P (t) =
1

1 + e−t
(1)

Which looks like this:

Next, the data is pushed to the following layer of neurons.

15Or at least made an attempt... Nate made a valiant attempt.
16Image from : http://encefalus.com/wp-content/uploads/2010/07/neural network.png
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Neural networks have the ability to learn through backpropogation. The basic idea is a gra-

dient descent which is based off the derivative of the sigmoid function. Through this derivative

calculation, each node can effectively minimize its own error.17

Overall, the learning ability of an entire network is governed my a learning rate.

Challenges in Implementation

At one point, plans called or a neural network that was capable of learning. The ‘A’ for effort

goes to Nate who took on graduate level material to understand how neural networks operate.

Unfortunately, the network did not learn as hoped, but we found a way to implement a

‘dumb’ network that use the original principles, but without the ability to learn.

To illustrate why this is a good idea, understand that the following code comprises all of

the driving logic:

for (int i = 0; i < 6; i++) {

//if ( toAdd[i] > 0 ) { // exclude poor input

if ( i == 2 )

sum0 += toAdd[i] * weights[0][i];

else

sum0 += 1./toAdd[i] * weights[0][i];

sum1 += 1./toAdd[i] * weights[1][i];

sum2 += 1./toAdd[i] * weights[2][i];

//}

}

fsum0 = (int) negativeMultiply(capper(sum0, 4., -2.), 3);

fsum1 = (int) capper(sum1, 100., 0.);

fsum2 = (int) capper(sum2, 100, 0);

//Set Motor and Wheels:

motor.setSpeed( fsum0 );

steer.setFrontWheels( fsum1 );

steer.setBackWheels( fsum2 );

In this example, the toAdd[] array is simply the current distance values from each sensor.

The weghts[][] is a hard coded two-dimensional array to normalize data to a specific range.18

Should the weights[][] array be built with high quality training data, the robot would be capable

of improved driving and navigation.

17Explanation of Back Propagation: http://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf
18This is equivalent to using a linear function instead of the sigmoid function discussed on the previous

page.

21



SENIOR PROJECT 2012 5 OPERATION - DEBUG MODE

5 Operation - Debug Mode

The robot initializes a separate thread with minimum priority dedicated to debugging. It takes

input from the thumb wheel and STOP/START buttons to interface with the user and prints

running information to the LCD Display on the MicroController.

Options for debugging are as follows (as chosen with the thumbwheel):

0. Engine Debug

1. Steering Debug

2. Sonar Debug

3. Intelligence Debug

4. GPS Debug

5. Remote Debug

6. Engine PID

7. Listen to User Driving

8. Remote Started - Entertainment

If the user presses START on cases 0,1,4,6,7, or 8, then debug mode begins for that subject.

Press STOP to exit this deeper debug mode.

0 - Engine Debug

The thumb wheel turns into a power selector and sets the motor to the power shown on the

display. Turning the thumb wheel in this mode will power the wheels, be sure to lift the robot

off the ground or it will run away with no knowledge of how to stop!

1 - Steering Debug

The thumb wheel turns into a position selector for the wheels. Turning the thumb wheel in this

mode turns the wheels to the position displayed on the LCD.

4 - GPS Debug

The GPS status is displayed on the LCD.

6 - Engine PID

Entering this debug mode allows you to view the variables associated with the engine PID

Controller. These are the iGain, dGain, iCapp and pGain.
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7 - Listen to User Driving

In this mode, the robot will record driving data for training the Neural Network. It will store

the data and then wait for you to plug it back into the computer to download the results.

8 - Entertainment

Also known as ‘RoboBomb’ this operation mode plays the Mario theme song while driving

around.
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6 Conclusion

This project was quite the crash course in Robotics. It seemed to incorporate aspects from

every Computer Science course we’ve taken over the years: Finite States, Process Scheduling,

Physics, Algorithm design, and obviously knowledge of Java.

The project goals outlined earlier were all met; some more than others, but we can safely

say that we are walking away from the project with a deeper knowledge of Java, knowledge of

robotics and robotic algorithms.

Particular strengths and weaknesses of the project are:

6.1 Strengths

1. Our development environment is efficient, professional, and incredibly powerful. It took a

long time to set up, but is realistic to what a professional team environment would look

like with github and version control.

2. As such, the code and project may live on past this course.

3. The framework (sensor setup and robot architecture) we built is very powerful and incor-

porates robust, streamlined code that could be built upon in the future.

6.2 Weaknesses

1. While the robot body may be a $400 top of the line Remote Control vehicle, there are

many aspects of it that make it difficult to control with the IntelliBrain2.

2. According to some documentations, it appears that we made a very common beginner’s

mistake in the Neural Network training - this should be addressed further later, because

the framework is in place to fix it and try again.

3. As usual, we seem to be out of time and probably over budget at the end; there is more

we would like to do, but ran out of time. Only towards the very end did we streamline

our development methods.

Even though the robot would rather spin in circles on the floor, we still built a functioning

machine!
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7 Source Code

In the past, this is where we would include the 4500+ lines of code that were involved in this

project. Instead, we provide the link to the github repository where the code is still active and

well organized on their servers.

http://github.com/bign8/Robot

The master branch contains all of the code involved in the project. The src directory includes

active code while the archive directory features code that we no longer implement.

The code in the src directory is all commented and there are some sections that are not

implemented but should be or would be in future releases and are noted as such.

Future goals for this repository include cleaning up what is there and finishing the on line

read-me and wiki for the project to promote Carroll’s CS program among the github community

and to provide potential future classes the ability to pick up where we left off.
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