
RePoSE

Restful Proxy Service Engine
Jorge L. Williams
Grant Herbon

Monday, October 10, 2011

Team: Cloud Integration

2

Mission: Accelerate other cloud product lines by providing
them with common tools and services. To ensure
consistency between cloud products.

Monday, October 10, 2011

Common Challenges

• Multiple Service Teams
– Different Developers = Different Sets of Skills
– Different Programing Languages: Python, Ruby, Java

• All APIs must support common functionality in exactly the same way --
implementing some of these tasks is not trivial

– Versioning
– Rate Limiting
– Content Negotiation (JSON? XML?)
– Authentication / Authorization
– Caching
– Logging

• All APIs must interact with:
– Auth Service / IDM System
– Billing
– These interactions may be complex

3

Monday, October 10, 2011

Given this...

• How do we ensure consistency?
– Our APIs should look as though they are part of a suite.
– How do we make sure something like Rate Limiting works the exact same way between

services written by different devs, in different programing languages?
– Consistency from an operations perspective is also a concern: One team uses squid,

another varnish...different skill sets required to support caching.

4

Monday, October 10, 2011

Given this...

• How do we avoid duplicating effort?
– Rate Limiting, Versioning, Content Negotiation, Format Conversion, Caching these are:

• Difficult to implement and QA
• Take time to get right

– Why waste time implementing and QA-ing the same functionality more than once?

5

Monday, October 10, 2011

Given this...

• How do we simplify interactions with the service framework?
– Interactions with the service framework can be complicated. How can we allow service

teams to easily integrate with our enterprise?

• Also, how do we abstract away these interactions...
– OpenStack services may be deployed outside Rackspace.
– How do we build services that can be deployed on other enterprises where we can have

• Different authentication mechanisms
• Different integration points
• Different definition of a tenant
• Different chargeback schemes etc

6

Monday, October 10, 2011

The problem becomes more difficult as we develop
new products...

7

...

Monday, October 10, 2011

A Solution...
• We allow code reuse of API related code and services
• In other words, we write....

– Rate Limiting,
– Versioning,
– Caching,
– Logging,
– etc...

...once and allow service teams to use the
implementations directly.

• Take a cookie cutter approach to putting APIs together...
• Have Service teams focus on things that are different, the X in

XaaS.
• Get the hard API stuff for free

• Code and services are made available and implemented
as components.

8

Monday, October 10, 2011

Code Reuse is nice...

• ...but how?
– Different development environments
– Operating Systems
– Programming Languages
– Tools/Capabilities
– Etc

• This is actually a very common problem...

9

Monday, October 10, 2011

Integration

• It is actually an integration problem...
– Services integrating with the Service framework
– Clients integrating with Services
– Services integrating with other Services
– Repetitive functionality, ideal candidates for code reusability but services may be written in

different languages etc.
• Lots of Research on this Topic:

– Enterprise Integration Patterns
• by Gregor Hohpe and Bobby Woolf
• http://www.enterpriseintegrationpatterns.com/toc.html

– Common Integration Patterns exist for solving this very problem...

10

Monday, October 10, 2011

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html

Common Patterns: Pipes and Filters

• How can we perform complex processing on a message while maintaining
independence and flexibility?

11

Monday, October 10, 2011

Common Patterns: Message Router Pattern

• How can you decouple individual processing steps so that messages can
be passed to different filters depending on a set of conditions?

12

Monday, October 10, 2011

Common Patterns: Message Translator Pattern

• How can systems using different data formats communicate with each
other using messaging?

13

Monday, October 10, 2011

Common Patterns: Publish-Subscribe Pattern

• How can the sender broadcast an event to all interested receivers?

14

Monday, October 10, 2011

Common Patterns

• API functionality that we want to reuse can be described in terms of these
integration patterns.

– Versioning
– Rate Limiting
– Content Negotiation
– Authentication / Authorization
– Caching
– Logging

• Lots of software implement these patterns, very efficiently
– ESBs implement all of the patterns described in the text

• But they are very SOAP centric :-(
• Very inefficient for ReST services

– There are REST related services that implement some of these patterns
• apigee, mashery
• ...but none open or free

15

Monday, October 10, 2011

What is Repose?

• A platform for solving common integration problems, like a traditional ESB,
except:

– The interface is always REST
– The protocol is always HTTP
– Must operate at cloud scale

• Another way to think of it is that Repose is a programmable HTTP proxy
– AppServer is to an Origin HTTP Server as Repose in to a Reverse HTTP Proxy

• Developers can develop components that live within Repose that handle
common integration issues.

16

Monday, October 10, 2011

HTTP Proxy Approach

17

Repose (Example)

Service Boundary

Repose Proxy

Control Panel
API Endpoint

(VIP)
External

API Clients

Content
Negotiation Logging Rate Limit

Verification

Logs
Token/Policy

Validation

Reject Unauthorized Clients

Service
(API Impl)

IDM
Validate Token
Obtain Policies

Atom
PubSub

Events

Monday, October 10, 2011

The Repose Proxy

• Organizes the API components via configuration
• Provides services to components

– L1/L2 Cache
– Secondary Storage
– Config Update Notifications
– Etc..

18

Monday, October 10, 2011

19

Rate Limiting Example

Monday, October 10, 2011

Example: Rate Limiting

20

Rate Limit
Verification

• Keep track of requests reject after some limit has been reached
• Rate Limiting seems simple but it presents some challenges

Monday, October 10, 2011

Rate Limit
Verification

Rates
DB

Example: Rate Limiting

21

• You may want to rate limit per customer.
• That requires some state: How many requests per second so far?
• We could store the current count in a database...

Monday, October 10, 2011

• As we scale we begin to introduce a single point of failure.
• May be worth it...depending on how rigid your rate limits are
• May have to scale RatesDB

Rate Limit
Verification

Rates
DB

Rate Limit
Verification

Rate Limit
Verification

Rate Limit
Verification

Example: Rate Limiting

22

Monday, October 10, 2011

• Another approach is to have the rate limits negotiated between nodes
• A DHT may be used: more scalable and fault tolerant
• But you have to deal with eventual consistency?

Rate Limit
Verification

Rate Limit
Verification

Rate Limit
Verification

Rate Limit
Verification

Example: Rate Limiting

23

Monday, October 10, 2011

• What’s the right approach?
• Depends...
• Repose provides an L2 cache access to components. It’s pluggable, so

you can achieve both of these architectures...
• Built in simple fault tolerant O(1) DHT is the default...but it’s swappable
• You can use either approach without changing the Rate Limit code!

Rate Limit
Verification

Rate Limit
Verification

Rate Limit
Verification

Rate Limit
Verification

Example: Rate Limiting

24

Rate Limit
Verification

Rates
DB

Rate Limit
Verification

Rate Limit
Verification

Rate Limit
Verification

Monday, October 10, 2011

25

Another Example

Monday, October 10, 2011

Example

• Say validation of a token requires verifying a digital signature which is
computationally expensive.

26

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Monday, October 10, 2011

Example

• We could horizontally scale the entire configuration...

27

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Monday, October 10, 2011

Example

• We can support this, but it adds overhead

28

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Monday, October 10, 2011

Example

• We can, on the other hand, move token validation to a separate proxy...

29

Repose Proxy Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Monday, October 10, 2011

Example

• ...and horizontally scale that independently.
• A goal is to allow these type of configuration changes without downtime

– Similar to the way Zeus and Varnish operate today

30

Repose Proxy Repose Proxy

Repose Proxy

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification

Token/Policy
Validation

Token/Policy
Validation

Token/Policy
Validation

Monday, October 10, 2011

31

What’s Available Today?

Monday, October 10, 2011

A Quick Note on API Components
• Most components are custom to OpenStack

– Rate Limiting
– Versioning
– Authentication
– ...

• These components are written using existing standards
– Support for JEE6 servlet filters
– Support for standard JEE artifacts

32

Geared towards
optimized for OS.

Monday, October 10, 2011

API Components

• A number of components have already been written and are ready for use
– Normilization

• If a user ends a request with .json update the request so that it eliminates the .json and
sets the Accept header to application/json.

• This allows APIs to support extensions “for fee”
• Allows simplifying of Accept headers.

– Error Code/Response Management
• How do we ensure that the WADL isn’t violated when you send an error message.
• This is tough problem.
• Error code negotiation allows formatting of error messages so that they don’t violate the

contract.
– This involves some configuration

– Logging
• Fully customizable API logging a la Apache
• Supports same basic configuration settings and formats
• Can detect account number or really any regex from a URI and output it in the log.

33

Monday, October 10, 2011

API Components
• Versioning

– Given URIs for separate API versions. The component can route between them based on
the URI (/v1/, /v2/) an Accept header (application/widgetv1+xml, application/widgetv2+json)
or both.

– This allows the creation of perma-links for API resources
– Version information endpoints can automatically be populated so that users can keep up to

date with latest versions.
– Additionally, a multiple choice response be given if a user sends a request that doesn’t

match any one particular version.
• I know you want server 12345, but do you want it in API version 1? or 2?

– This component is not 100% complete, but we’re close

• Rate limiting
– Support for dynamic rate limits based on groups.
– Customizable back off response via error code negotiation
– Multiple groups, group types etc.
– Shared L2 persistent cache of current rates for multiple deployments.

• Auth Support
– Front end for Keystone / Rackspace Auth 1.1
– Supports full validation and token caching
– Allows services to integrate with Auth service “for free”.

34

Monday, October 10, 2011

API Components
• AuthZ

– Ensure that a request is allowed according to the EndPoint Catalog

• Root.WAR
– Deploy the Repose Proxy within a Java APP Server, rather than as an external proxy

35

Monday, October 10, 2011

Repose Proxy

• An initial version of the Repose proxy
– Provides config change updates
– Pluggable caching layer

• With a plugin for EH-Cache
– Fully dynamic configuration without downtime of individual components.

• An external proxy container based on Jetty.

36

Monday, October 10, 2011

37

What we have planned

Monday, October 10, 2011

What we have planned

• Components:
– Serialization Conversion

• JSON/XML
• Arbitrary conversions XSLT, E4X, etc.

– Others...
• R&D a more efficient external container

– Custom Netty / Mina
– Zeus?

38

Monday, October 10, 2011

What we have planned

• API Components
– Operation Filtering (Contract Scope)

• Introspect a WADL, allow only the ones in the contract.
• Can be used to will filter Admin calls from the public API.
• Can be used to compute API coverage

– Multiple Language Support
• Define API components in languages other than Java

• More work on Repose Proxy
– Efficient reconfiguration of changes between Nodes

39

Monday, October 10, 2011

What we have planned

• On GitHub soon...

40

Monday, October 10, 2011

Thanks!

41

Monday, October 10, 2011

