RePoSE

Restful Proxy Service Engine

Jorge L. Williams
Grant Herbon

A

rackspace.

OPENSTACK CLOUD HOSTING

Monday, October 10, 2011

openstack

Team: Cloud Integration

Mission: Accelerate other cloud product lines by providing
them with common tools and services. To ensure
consistency between cloud products.

&

xperience fanatical support fOCkSpOCQ

MOSTING

Monday, October 10, 2011

Common Challenges

» Multiple Service Teams
— Different Developers = Different Sets of Skills
— Different Programing Languages: Python, Ruby, Java
 All APIs must support common functionality in exactly the same way --
implementing some of these tasks is not trivial
— Versioning
— Rate Limiting
— Content Negotiation (JSON? XML?)
— Authentication / Authorization
— Caching
— Logging
 All APIs must interact with:
— Auth Service / IDM System
— Billing
— These interactions may be complex

MOSTING

A

perience fanatical support rOCkspace

Monday, October 10, 2011

Given this...

* How do we ensure consistency?

— Our APIs should look as though they are part of a suite.

— How do we make sure something like Rate Limiting works the exact same way between
services written by different devs, in different programing languages?

— Consistency from an operations perspective is also a concern: One team uses squid,
another varnish...different skill sets required to support caching.

&

rience fanatical support fOCkSpace

MOSTING

Monday, October 10, 2011

Given this...

* How do we avoid duplicating effort?
— Rate Limiting, Versioning, Content Negotiation, Format Conversion, Caching these are:
» Difficult to implement and QA
* Take time to get right
— Why waste time implementing and QA-ing the same functionality more than once?

o

xperience fanatical support fOCkSpOCQ

MOSTING

Monday, October 10, 2011

Given this...

* How do we simplify interactions with the service framework?
— Interactions with the service framework can be complicated. How can we allow service
teams to easily integrate with our enterprise?
 Also, how do we abstract away these interactions...
— OpenStack services may be deployed outside Rackspace.
— How do we build services that can be deployed on other enterprises where we can have
» Different authentication mechanisms
« Different integration points
» Different definition of a tenant
» Different chargeback schemes etc

Ay

experience fanatical support raCkspace

MOSTING

Monday, October 10, 2011

The problem becomes more difficult as we develop
new products...

O 0 6 O

o

experience fanatical support n Ce.
W RAGKEPAGE COM HOSTING

Monday, October 10, 2011

A Solution...

* We allow code reuse of API related code and services

* In other words, we write....
— Rate Limiting,
— Versioning,
— Caching,
— Logging,
— etc...
...once and allow service teams to use the R
implementations directly. 0 L
. . ‘S
« Take a cookie cutter approach to putting APIs together...

* Have Service teams focus on things that are different, the X in
XaaS.

» Get the hard API stuff for free

» Code and services are made available and implemented
as components.

o

experience fanatical support ri Ce,
W RAGKEPAGE COM HOSTING

Monday, October 10, 2011

Code Reuse is nice...

» ...but how?
— Different development environments
— Operating Systems
— Programming Languages
— Tools/Capabilities
— Etc

* This is actually a very common problem...

o

rackspace

xperience fanatical support
RAGKBPAGE HOSTING

Monday, October 10, 2011

Integration

« It is actually an integration problem...
— Services integrating with the Service framework
— Clients integrating with Services
— Services integrating with other Services

— Repetitive functionality, ideal candidates for code reusability but services may be written in
different languages etc.

* Lots of Research on this Topic:

— Enterprise Integration Patterns
* by Gregor Hohpe and Bobby Woolf

* http://www.enterpriseintegrationpatterns.com/toc.html

— Common Integration Patterns exist for solving this very problem...

A

perience fanatical support rOCkspace

MOSTING

Monday, October 10, 2011

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html

11

Common Patterns: Pipes and Filters

* How can we perform complex processing on a message while maintaining
independence and flexibility?

Pipe Pipe Pipe Pipe
1% —»| Decrypt Authenticate De-Dup t@

Incoming Fitter Fitter Fitter ‘Clean’
Order Order
wperience fanatical support rackspace

MOSTING

Monday, October 10, 2011

12

Common Patterns: Message Router Pattern

* How can you decouple individual processing steps so that messages can
be passed to different filters depending on a set of conditions?

outQueue 1

t%@

inQueue

A D

Message
Router

outQueue 2 |

o

experience fanatical support rackspace

MOSTING

Monday, October 10, 2011

13

Common Patterns: Message Translator Pattern

* How can systems using different data formats communicate with each
other using messaging?

Translator

—» || 3L ||—»

Incoming Message Translated Message

o

xperience fanatical support rackspace

MOSTING

Monday, October 10, 2011

Common Patterns: Publish-Subscribe Pattern

« How can the sender broadcast an event to all interested receivers?

Address
Changed

Subscriber

u—{@—@

Publisher Address
Changed

.t%_.

—%{_

Address
Changed

Subscriber

..fg..

Publish-Subscribe Address

Channel

experience fanatical support

Changed

Subscriber

rackspa

14

o

ce

MOSTING

Monday, October 10, 2011

Common Patterns

 API functionality that we want to reuse can be described in terms of these
integration patterns.
— Versioning
— Rate Limiting
— Content Negotiation
— Authentication / Authorization
— Caching
— Logging
* Lots of software implement these patterns, very efficiently
— ESBs implement all of the patterns described in the text
 But they are very SOAP centric :-(
* Very inefficient for ReST services
— There are REST related services that implement some of these patterns
* apigee, mashery
* ...but none open or free

A

perience fanatical support rOCkspace

MOSTING

Monday, October 10, 2011

What is Repose?

* A platform for solving common integration problems, like a traditional ESB,
except:
— The interface is always REST
— The protocol is always HTTP
— Must operate at cloud scale
» Another way to think of it is that Repose is a programmable HTTP proxy
— AppServer is to an Origin HTTP Server as Repose in to a Reverse HTTP Proxy
* Developers can develop components that live within Repose that handle
common integration issues.

Ay

experience fanatical support raCkspace

MOSTING

Monday, October 10, 2011

HTTP Proxy Approach

Reject Unauthorized Clients

17

<«
Control Panel —>
> APl Endpoint Service A
—— ¢ P ™ (APl Impi) | Events
xterna
> API Clients Repose Proxy \-‘_>
Service Boundary

experience fanatical support

Repose (Example)

Validate Token
Obtain Policies

o

rackspace

MOSTING

Monday, October 10, 2011

18

The Repose Proxy

» Organizes the APl components via configuration

* Provides services to components
— L1/L2 Cache

— Secondary Storage
— Config Update Notifications
— Etc..
xperience fanatical support fOCkSpOCGm

MOSTING

Monday, October 10, 2011

Rate Limiting Example

Monday, October 10, 2011

Example: Rate Limiting

» Keep track of requests reject after some limit has been reached
« Rate Limiting seems simple but it presents some challenges

R | -

&

experience fanatical support fOCkSpOCQ

MOSTING

Monday, October 10, 2011

Example: Rate Limiting

* You may want to rate limit per customer.
» That requires some state: How many requests per second so far?

* We could store the current count in a database...

= -

Rates
DB

&

rackspace

xperience fanatical support
PAC MOSTING

Monday, October 10, 2011

Example: Rate Limiting

» As we scale we begin to introduce a single point of failure.
* May be worth it...depending on how rigid your rate limits are
« May have to scale RatesDB

Rates
DB

&

rackspace

nee fanatical support
~ MOSTING

Monday, October 10, 2011

Example: Rate Limiting

* Another approach is to have the rate limits negotiated between nodes
« ADHT may be used: more scalable and fault tolerant
« But you have to deal with eventual consistency?

A

rackspace

nee fanatical support
~ MOSTING

Monday, October 10, 2011

Example: Rate Limiting

* What's the right approach?
* Depends...

» Repose provides an L2 cache access to components. It's pluggable, so
you can achieve both of these architectures...

* Built in simple fault tolerant O(1) DHT is the default...but it's swappable
* You can use either approach without changing the Rate Limit code!

o

rackspace

MOSTING

nee fanatical support

Monday, October 10, 2011

Another Example

Monday, October 10, 2011

Example

« Say validation of a token requires verifying a digital signature which is
computationally expensive.

Repose Proxy

MOSTING

A

perience fanatical support rOCkspace

Monday, October 10, 2011

Example

« We could horizontally scale the entire configuration...

!

Repose Proxy

Repose Proxy

Repose Proxy

&

nce fanatical support rOCkSpace

MOSTING

Monday, October 10, 2011

Example

« We can support this, but it adds overhead

!

Repose Proxy

Repose Proxy

Repose Proxy

anotical suee ¢
fanatical support

rackspace

MOSTING

o

Monday, October 10, 2011

Example

* We can, on the other hand, move token validation to a separate proxy...

Repose Proxy

Repose Proxy

nee fanatical support

rackspace

MOSTING

A

Monday, October 10, 2011

Example

« ...and horizontally scale that independently.

» A goal is to allow these type of configuration changes without downtime
— Similar to the way Zeus and Varnish operate today

/ Repose Proxy

-
Repose Proxy Repose Proxy
S

Repose Proxy

Ay

nce fanatical support rOCkSpace

MOSTING

Monday, October 10, 2011

What’s Available Today?

Monday, October 10, 2011

A Quick Note on APl Components

» Most components are custom to OpenStack
— Rate Limiting
— Versioning
— Authentication
* These components are written using existing standards

— Support for JEEG servlet filters
— Support for standard JEE artifacts

Geared fowards
optimized for 0S.

nee fanatical support

rackspace

MOSTING

o

Monday, October 10, 2011

APl Components

» A number of components have already been written and are ready for use

— Normilization

« If a user ends a request with .json update the request so that it eliminates the .json and
sets the Accept header to application/json.

* This allows APIs to support extensions “for fee”
* Allows simplifying of Accept headers.
— Error Code/Response Management
* How do we ensure that the WADL isn’t violated when you send an error message.
* This is tough problem.

« Error code negotiation allows formatting of error messages so that they don'’t violate the
contract.
— This involves some configuration
— Logging
* Fully customizable API logging a la Apache
» Supports same basic configuration settings and formats
» Can detect account number or really any regex from a URI and output it in the log.

Ay

nce fanatical support rOCkSpace

MOSTING

Monday, October 10, 2011

APl Components

* Versioning

— Given URIs for separate API versions. The component can route between them based on
the URI (/v1/, Iv2/) an Accept header (application/widgetv1+xml, application/widgetv2+json)
or both.

— This allows the creation of perma-links for API resources

— Version information endpoints can automatically be populated so that users can keep up to
date with latest versions.

— Additionally, a multiple choice response be given if a user sends a request that doesn’t
match any one particular version.

* | know you want server 12345, but do you want it in API version 1?7 or 27
— This component is not 100% complete, but we're close

 Rate limiting
— Support for dynamic rate limits based on groups.
— Customizable back off response via error code negotiation

— Multiple groups, group types etc.
— Shared L2 persistent cache of current rates for multiple deployments.

» Auth Support

— Front end for Keystone / Rackspace Auth 1.1
— Supports full validation and token caching
— Allows services to integrate with Auth service “for free”.

o

nce fanatical support rOCkSpace

MOSTING

Monday, October 10, 2011

35

APl Components
» AuthZ

— Ensure that a request is allowed according to the EndPoint Catalog

 Root. WAR

— Deploy the Repose Proxy within a Java APP Server, rather than as an external proxy

o

xperience fanatical support rackspace

MOSTING

Monday, October 10, 2011

Repose Proxy

 An initial version of the Repose proxy
— Provides config change updates
— Pluggable caching layer
» With a plugin for EH-Cache
— Fully dynamic configuration without downtime of individual components.

* An external proxy container based on Jetty.

o

xperience fanatical support fOCkSpOCQ

MOSTING

Monday, October 10, 2011

What we have planned

Monday, October 10, 2011

38

What we have planned

« Components:
— Serialization Conversion
« JSON/XML
* Arbitrary conversions XSLT, E4X, etc.
— Others...
* R&D a more efficient external container

— Custom Netty / Mina
— Zeus?

&

xperience fanatical support rackspace

MOSTING

Monday, October 10, 2011

What we have planned

» APl Components
— Operation Filtering (Contract Scope)
* Introspect a WADL, allow only the ones in the contract.
» Can be used to will filter Admin calls from the public API.
» Can be used to compute API coverage
— Multiple Language Support
» Define APl components in languages other than Java

* More work on Repose Proxy
— Efficient reconfiguration of changes between Nodes

o

xperience fanatical support rOCkSpace

MOSTING

Monday, October 10, 2011

What we have planned

e On GitHub soon...

experience fanatical support

ra

40

o

ce

MOSTING

Monday, October 10, 2011

Thanks!

experience fanatical support

ri

41

o

ce

MOSTING

Monday, October 10, 2011

