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Team: Cloud Integration
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Mission: Accelerate other cloud product lines by providing 
them with common tools and services. To ensure 
consistency between cloud products.
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Common Challenges

• Multiple Service Teams
– Different Developers = Different Sets of Skills
– Different Programing Languages:  Python, Ruby, Java

• All APIs must support common functionality in exactly the same way -- 
implementing some of these tasks is not trivial

– Versioning
– Rate Limiting
– Content Negotiation (JSON?  XML?)
– Authentication / Authorization
– Caching
– Logging

• All APIs must interact with:
–  Auth Service / IDM System
– Billing
– These interactions may be complex
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Given this...

• How do we ensure consistency?
– Our APIs should look as though they are part of a suite.
– How do we make sure something like Rate Limiting works the exact same way between 

services written by different devs, in different programing languages?
– Consistency from an operations perspective is also a concern:  One team uses squid, 

another varnish...different skill sets required to support caching.
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Given this...

• How do we avoid duplicating effort?
– Rate Limiting, Versioning, Content Negotiation,  Format Conversion, Caching these are:

• Difficult to implement and QA
• Take time to get right

– Why waste time implementing and QA-ing the same functionality more than once?
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Given this...

• How do we simplify interactions with the service framework?
– Interactions with the service framework can be complicated. How can we allow service 

teams to easily integrate with our enterprise?

• Also, how do we abstract away these interactions...
– OpenStack services may be deployed outside Rackspace.
– How do we build services that can be deployed on other enterprises where we can have

• Different authentication mechanisms
• Different integration points
• Different definition of a tenant
• Different chargeback schemes etc
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The problem becomes more difficult as we develop 
new products...
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A Solution...
• We allow code reuse of API related code and services
• In other words, we write....

– Rate Limiting,
– Versioning,
– Caching,
– Logging,
– etc...

...once and allow service teams to use the 
implementations directly.

• Take  a cookie cutter approach to putting APIs together...
• Have Service teams focus on things that are  different, the X in 

XaaS.
• Get the hard API stuff for free

• Code and services are made available and implemented 
as components.
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Code Reuse is nice...

• ...but how?
– Different development environments
– Operating Systems
– Programming Languages
– Tools/Capabilities
– Etc

• This is actually a very common problem...

9

Monday, October 10, 2011



Integration

• It is actually an integration problem...
– Services integrating with the Service framework
– Clients integrating with Services
– Services integrating with other Services
– Repetitive functionality,  ideal candidates for  code reusability but services may be written in 

different languages etc.
• Lots of Research on this Topic:

– Enterprise Integration Patterns 
• by Gregor Hohpe and Bobby Woolf
• http://www.enterpriseintegrationpatterns.com/toc.html

– Common Integration Patterns exist for solving this very problem...
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Common Patterns:  Pipes and Filters

• How can we perform complex processing on a message while maintaining 
independence and flexibility?
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Common Patterns: Message Router Pattern

• How can you decouple individual processing steps so that messages can 
be passed to different filters depending on a set of conditions?
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Common Patterns: Message Translator Pattern

• How can systems using different data formats communicate with each 
other using messaging?
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Common Patterns: Publish-Subscribe Pattern

• How can the sender broadcast an event to all interested receivers?
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Common Patterns

• API functionality that we want to reuse can be described in terms of these 
integration patterns.

– Versioning  
– Rate Limiting
– Content Negotiation
– Authentication / Authorization
– Caching
– Logging

• Lots of software implement these patterns, very efficiently
– ESBs implement all of the patterns described in the text

• But they are very SOAP centric :-(
• Very inefficient for ReST services

– There are REST related services that implement some of these patterns
• apigee, mashery
• ...but none open or free
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What is Repose?

• A platform for solving common integration problems, like a traditional ESB, 
except:

– The interface is always REST
– The protocol is always HTTP
– Must operate at cloud scale

• Another way to think of it is that Repose is a programmable HTTP proxy
– AppServer is to an Origin HTTP Server as Repose in to a Reverse HTTP Proxy

• Developers can develop components that live within Repose that handle 
common integration issues.
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HTTP Proxy Approach
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The Repose Proxy

• Organizes the API components via configuration
• Provides services to components

– L1/L2 Cache
– Secondary Storage
– Config Update Notifications
– Etc..
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Rate Limiting  Example
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Example: Rate Limiting
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Rate Limit
Verification

• Keep track of requests reject after some limit has been reached
• Rate Limiting seems simple but it presents some challenges
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Rate Limit
Verification

Rates
DB

Example: Rate Limiting
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• You may want to rate limit per customer.
• That requires some state: How many requests per second so far?
• We could store the current count in a database...
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• As we scale we begin to introduce a single point of failure.
• May be worth it...depending on how rigid your rate limits are
• May have to scale RatesDB
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Example: Rate Limiting
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• Another approach is to have the rate limits  negotiated between nodes
• A DHT may be used: more scalable and fault tolerant
• But you have to deal with eventual consistency?
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Verification

Example: Rate Limiting
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• What’s the right approach?
• Depends...
• Repose provides an L2 cache access to components.  It’s pluggable, so 

you can achieve both of these architectures...
• Built in simple fault tolerant O(1) DHT is the default...but it’s swappable
• You can use either approach without changing the Rate Limit code!
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Example: Rate Limiting
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Another  Example
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Example

• Say validation of a token requires verifying a digital signature which is 
computationally expensive.

26

Repose Proxy

Content
Negotiation Logging Rate Limit

Verification
Token/Policy

Validation

Monday, October 10, 2011



Example

• We could horizontally scale the entire configuration...
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Example

• We can support this, but it adds overhead
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Example

• We can, on the other hand, move token validation to a separate proxy...
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Example

• ...and horizontally scale that independently.
• A goal is to allow these type of configuration changes without downtime

– Similar to the way Zeus and Varnish operate today
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What’s Available Today?
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A Quick Note on API Components
• Most components are custom to OpenStack

– Rate Limiting
– Versioning
– Authentication 
– ...

• These components are written using existing standards
– Support for JEE6 servlet filters
– Support for standard JEE artifacts
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Geared towards 
optimized for OS.
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API Components

• A number of components have already been written and are ready for use
– Normilization

• If a user ends a request with .json  update the request so that it eliminates the .json and 
sets the Accept header to application/json.

• This allows APIs to support extensions “for fee”
• Allows simplifying of Accept headers. 

– Error Code/Response Management
• How do we ensure that the WADL isn’t violated when you send an error message.
• This is tough problem.
• Error code negotiation allows formatting of error messages so that they don’t violate the 

contract.
– This involves some configuration

– Logging
• Fully customizable API logging a la Apache
• Supports same basic configuration settings and formats
• Can detect account number or really any regex from a URI and output it in the log.
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API Components
• Versioning

– Given URIs for separate API versions.  The component can route between them based on 
the URI (/v1/, /v2/) an Accept header (application/widgetv1+xml, application/widgetv2+json) 
or both.

– This allows the creation of perma-links for API resources
– Version information endpoints can automatically be populated so that users can keep up to 

date with latest versions.
– Additionally,  a multiple choice response be given if a user sends a request that doesn’t 

match any one particular version.
• I know you want server 12345, but do you want it in API version 1?  or 2?

– This component is not 100% complete, but we’re close

• Rate limiting
– Support for dynamic rate limits based on groups.
– Customizable back off response via error code negotiation
– Multiple groups, group types etc.
– Shared L2 persistent cache of current rates for multiple deployments.

• Auth Support
– Front end for Keystone / Rackspace Auth 1.1
– Supports full validation and token caching
– Allows services to integrate with Auth service “for free”.
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API Components
• AuthZ

– Ensure that a request is allowed according to the EndPoint Catalog

• Root.WAR
– Deploy the Repose Proxy within a Java APP Server, rather than as an external proxy
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Repose Proxy

• An initial version of the Repose proxy
– Provides config change  updates
– Pluggable caching layer

• With a plugin for EH-Cache
– Fully dynamic configuration without downtime of individual components.

• An external proxy container based on Jetty.
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What we have planned
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What we have planned

• Components:
– Serialization Conversion

• JSON/XML
• Arbitrary conversions XSLT, E4X, etc.

– Others...
• R&D a more efficient external container

– Custom Netty / Mina
– Zeus?
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What we have planned

• API Components
– Operation Filtering (Contract Scope)

• Introspect a WADL, allow only the ones in the contract.
• Can be used to will filter Admin calls from the public API.
• Can be used to compute API coverage

– Multiple Language Support
• Define API components in languages other than Java

• More work on Repose Proxy
– Efficient reconfiguration of changes between Nodes
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What we have planned

• On GitHub soon...
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Thanks!
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