
OpenADK

(Agent Development Kit)

for Java
Developer’s Guide

Version 2.4

Data Solutions
9815 S. Monroe St.,

Ste. 400
Sandy, UT 84070

1.877.790.1261

OpenADK for Java – Developer’s Guide 2.4 1

www.pearsondatasolutions.-
com

OpenADK for Java – Developer’s Guide 2.4 2

http://www.pearsondatasolutions.com/
http://www.pearsondatasolutions.com/

©2003-2011 Pearson Education, Inc., All Rights Reserved

 SIFWorks and ADK are registered trademarks, and Data Solutions is a trademark, of NCS Pearson, Inc.
 SIF and Schools Interoperability Framework are trademarks of the Schools Interoperability Framework Association. Sun, Sun Microsys-

tems, the Sun logo, iForce, Java, and Sun Fire are trademarks of Sun Microsystems, Inc. in the United States and other
countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries. Novell and NetWare are registered trademarks of Novell, Inc. Apple, Mac, and
Macintosh are registered trademarks, and Mac OS X is a trademark, of Apple Computer, Inc. Linux is a registered
trademark of Linus Torvalds. Red Hat is a registered trademark of Red Hat, Inc. SUSE is a registered trademark of

SUSE AG (now part of Novell, Inc.)

OpenADK for Java – Developer’s Guide 2.4 3

Contents
 Part I 6

1. Introduction 6

SIF Versions Supported .. 6
Requirements ... 7
License & Redistribution .. 7
Documentation ... 8
Technical Support ... 8

2. Installation 8

Installing the ADK ... 8

 Part II 10

3. Concepts 10

The Role of the ADK Class Framework ... 10
Java Packages ... 11
Core Classes and Interfaces .. 14
SIF Data Objects Library ... 17
Working with SIF Data Objects .. 18
Parsing & Rendering SIF XML .. 27
SIF Infrastructure Messages ... 29
Working with SIF Messages ... 30
Provisioning SIF Zones .. 36
Working with Multiple Versions of SIF .. 37
Agent Logging ... 39
Server Logging ... 39
The Agent’s Work Directory ... 42

 Part III 43

4. The ADK Class 43

Initializing the Class Framework .. 43
Debug Output ... 44
Other ADK Static Methods .. 46
Summary .. 46

5. The Agent Class 46

Constructor ... 47
Agent Initialization ... 47
Agent Properties ... 48
Transport Protocols .. 50
Agent Shutdown ... 52
Lifecycle Considerations .. 52
Public Interface .. 55
Summary .. 56

6. Zones & Topics 57

About Zones ... 57
About Topics .. 63

7. Publishing 65

The Publisher Interface .. 66
The DataObjectOutputStream Parameter ... 67
The Query Parameter ... 67
The Zone Parameter ... 74

OpenADK for Java – Developer’s Guide 2.4 4

The SIFMessageInfo Parameter ... 74

8. Subscribing 75

The Subscriber Interface .. 75
Event Objects ... 75
The Zone Parameter ... 77
The SIFMessageInfo Parameter ... 77
Executing Queries from Subscriber.onEvent .. 77

9. Event Reporting 78

When to Report Events .. 78
How to Report Events .. 79
Strategies for Event Reporting ... 79
Preparing SIFDataObjects for Event Reporting .. 80

10. Querying 81

Querying for Data .. 82
Handling Query Results (SIF_Response Messages) ... 85
Implementing onQueryResults ... 86
Querying in Response to SIF Events .. 89

11. Using SIFEncryption 90

Usage by Subscriber Agents ... 90
Usage by Provider Agents .. 91
Limitations ... 92

12. Appendix A
Revisions 93

What’s New in 1.5.2.0 .. 93
What’s New in 1.5.1.5 .. 93
What’s New in 1.5.1.0 .. 97

13. Appendix B
Known Issues 104

Docs and Examples .. 104
Issues with SIF 2.x Support .. 104
Issues with SIF 1.x support .. 104

14. Appendix C
Upgrading from 1.5 105

Changes to SIF Versions supported .. 105
Agent Provisioning Changes .. 105
Message Processing Changes ... 107
SIF Data Object Changes ... 108

 Index 110

OpenADK for Java – Developer’s Guide 2.4 5

Part I
I N T R O D U C T I O N

1. Introduction
The OpenADK for Java – or ADK – is a high-level class framework for the Java plat-
form that simplifies the job of writing sophisticated, feature-rich SIF Agents for the
Schools Interoperability Framework™. It was designed to insulate applications from
the low-level mechanics of the SIF messaging infrastructure and XML data model.
With the ADK developers focus on the integration logic of their applications instead
of the underlying details of the SIF protocol.

Some of the ADK’s features include:

 High level, object-oriented class framework
 Supports all versions of SIF, including 2.1, 2.0r1, 2.0, 1.5r1, and 1.1
 Connects to any Zone Integration Server that supports the SIF standard
 SIF Data Object libraries to model all SIF objects as object-oriented Java classes
 Handles message parsing and rendering for all versions of the SIF data model
 Features a powerful data mapping engine to transform data to and from SIF XML
 HTTPS and HTTP support (agents include an embedded web server)
 Supports both Push and Pull modes of operation
 Supports simultaneous connectivity with multiple zones
 Supports zone aggregation via “topic” classes
 Support for synchronous queries and Selective Message Blocking (SMB)

SIF Versions Supported
The ADK supports all published versions of the Schools Interoperability Framework
specification 1.1 and beyond.

Specification Date
SIF 2.4 June 11, 2010
SIF 2.3 February 12, 2009
SIF 2.2 March 17, 2008
SIF 2.1 September 18, 2007
SIF 2.0r1 June 19, 2007
SIF 2.0 October 18,, 2006
SIF 1.5r1 October 11, 2004
SIF 1.1 February 6, 2003

OpenADK for Java – Developer’s Guide 2.4 6

Handling of Multiple SIF Versions
The ADK supports multiple versions of the Schools Interoperability Framework con-
currently. The framework sends and receives messages and renders SIF Data Objects
according to the unique rules of each version of the SIF Specification. Details such as
XML element names and sequence are automatically taken into account when render-
ing and parsing data objects.

When an agent initializes the class framework by calling the ADK.initialize()
method at startup, it may specify the version of the SIF Specification the ADK uses to
register with zone integration servers. This version is global to the Java virtual ma-
chine; if not specified, the most recently published version of the spec is used. The SIF
Version passed to the ADK.initialize method is considered to be the agent’s default
version, which will be used to render all messages that originate from the agent—for
example, when a SIF_Event message is reported to a zone.

Messages received by the agent from the zone integration server are automatically
processed using the version of SIF to which the message conforms. For example, if
your agent registers in a zone as a SIF 1.1 agent it can still receive and process older
SIF 1.1 messages as well as newer 2.0r1 messages. The ADK always takes care of pars-
ing incoming messages and rendering outbound messages in the appropriate version
of SIF.

Requirements

Java Requirements
 Java 2 Standard Edition SDK 1.5.0 or later (for development)
 Java 2 Runtime Edition 1.5.0 or later (for deployment)
 A Java IDE such as Eclipse is recommended for development but not required. Ec-

lipse can be downloaded free of charge from www.eclipse.org
 Apache Ant is required to run the Ant scripts to rebuild the ADK Example agents

from source code. Ant can be downloaded free of charge from www.apache.org

SIF Requirements
Agents built with the ADK connect to all zone integration server (ZIS) products that
conform to the SIF Specification 1.0r1 and later.

License & Redistribution
The ADK is licensed under the Apache 2.0 Software License. Copyright in the ADK is
held by Pearson and by the community contributors to the ADK project. The license is
in the file LICENSE-2.0.txt in the ADK folder after installation. Note that the Apache
license does not require you to make any of your application’s code available as open
source software.

All files under the Apache license may be redistributed in binary and/or source form
with your agent, although only a subset is actually needed by most agents (the con-
tents of the lib directory are usually required). Note that some files may be under
the same or a different open source license and subject to third-party license agree-
ments included in the licenses directory.

OpenADK for Java – Developer’s Guide 2.4 7

Documentation

Javadoc
The Javadoc is an integral part of the ADK documentation. To view it, open the
docs/Javadoc/index.html file in a browser of your choice.

Developer’s Guide
This guide is divided into three parts:

 Introduction & Installation Page 6
 Concepts Page 10
 Core Classes Page 43

If you are an experienced Java developer and have a good understanding of the
Schools Interoperability Framework, you may want to skim through the Developer’s
Guide first and then experiment with the ADK Example agents. These programs
demonstrate the basic structure of agents developed with the ADK. Once you are fa-
miliar with the core classes—ADK, Agent, Topic, Zone, Publisher, Subscriber, and
QueryResults—you should have little trouble building and testing your own SIF
Agent.

For those not familiar with SIF, we strongly suggest consulting the latest SIF Specifica-
tion available from the sifinfo.org web site. The ADK Developer’s Guide assumes a
basic understanding of the SIF architecture and concepts.

Tech Notes
Data Solutions may post additional supplemental documentation regarding the ADK
and SIF Agent development to the Internet. These documents are in the form of Tech
Notes or articles.

Technical Support
Support for the ADK is provided through the community web site tools.

2. Installation
Installing the ADK

To install the ADK, run the installation program and follow the instructions presented
in the dialog boxes. Installers are available for Microsoft Windows, Mac OS X, Linux,
and Solaris. You can also download the .zip package and expand it to any folder on
your local file system. The ADK is self-contained and does not make any changes to
the Windows Registry or to external files on other operating systems.

Directory Contents
The ADK directory structure:

Root Licenses and Readme files

OpenADK for Java – Developer’s Guide 2.4 8

\docs PDF Documentation and Javadocs

\examples ADK Example Agents

\lib Java libraries files that must be on the classpath to compile
or run agents developed with the ADK. You may redis-
tribute any of the libraries in this directory. Some files,
such as the Xerces XML parser from Apache Software
Foundation, may only be redistributed in accordance with
open-source license restrictions.

Java Classpath
Once installed, make sure the JAR files from the lib directory are referenced by your
development environment’s Java classpath.

Note the lib directory includes a number of JAR files beginning with the prefix
“sdo”. These are individual SIF Data Object modules. The SIF Data Objects library is
divided into multiple JARs so that you can redistribute only those components used
by your agent to reduce your agent’s memory and disk footprint. The sdoall.jar file
includes all SIF Data Object modules packaged into a single JAR, which can be redis-
tributed in place of the individual library files.

OpenADK for Java – Developer’s Guide 2.4 9

Part II
E S S E N T I A L C O N C E P T S

3. Concepts
The Role of the ADK Class Framework

The ADK is best characterized as a high-level Java-class framework, as opposed to a
set of programming APIs. As a class framework, it places certain roles and responsib-
ilities on your application and others on the framework itself. In general, the ADK
takes care of all of the details of the SIF infrastructure, messaging, and data encapsula-
tion while your agent handles the business logic and data manipulation that is unique
to your application.

Note the ADK does not contain any database or user interface classes as these are out-
side the scope of a SIF class framework.

Agent Responsibilities
When writing an agent with the ADK, you’re typically responsible for the following:

• Implement an Agent Class

Your agent should derive a class from the ADK’s abstract Agent class. The Agent
class is usually where the main program entry point is found and where startup
and shutdown tasks are centralized.

• Implement Message Handlers

The ADK interprets and dispatches incoming SIF messages to one or more mes-
sage handler classes implemented by your agent. A message handler is nothing
more than a Java class that implements the Subscriber, Publisher, or QueryResults
interfaces (and ReportPublisher for Vertical Reporting agents). Most of these inter-
faces have one or two methods, so it is easy to think of message handlers as call-
back functions.

Because message handlers are interface-based, you have a tremendous amount of
flexibility in the way you organize your code. For example, you could design mes-
sage handler classes so that a single class handles SIF messaging for a variety of
object types and from many zones. Or, you could create individual message hand-
lers to encapsulate each object type supported by your agent, each zone your
agent is connected to, or a combination of both. Regardless of how you choose to
organize your code, the ADK will call your message handler when it receives an

OpenADK for Java – Developer’s Guide 2.4 10

incoming SIF_Event, SIF_Request, or SIF_Response message from the zone integ-
ration server.

o Implement one or more Subscriber message handlers if your agent will re-
spond to SIF_Event messages. When connecting to SIF Zones, the ADK
automatically sends a SIF_Subscribe message for each SIF Data Object for
which a Subscriber message handler exists.

o Implement one or more Publisher message handlers if your agent will re-
spond to SIF_Request messages. When connecting to SIF Zones, the ADK
automatically sends a SIF_Provide message for each SIF Data Object for
which a Publisher message handler exists.

o Implement one or more QueryResults message handlers if your agent
sends SIF_Request messages for data and will process the resulting
SIF_Response query results.

o Implement one or more ReportPublisher message handlers if your agent
will respond to SIF_Request messages for Vertical Reporting objects.

• Connect to SIF Zones

Most agents are designed to connect to one or more SIF Zones at startup, often by
reading a list of zone connection parameters from a configuration file. (Tip: You
can use the AgentConfig class in the openadk.library.tools.cfg package to
read from an XML-based configuration file.) Agents developed with the ADK can
connect to multiple zones concurrently. When connecting to a zone, the class
framework takes care of sending the appropriate SIF provisioning messages
(SIF_Register, SIF_Subscribe, and SIF_Provide) to the server based on the message
handlers you have implemented. For instance, if you’ve implemented a Subscriber
message handler to respond to StudentPersonal SIF_Events, the ADK will auto-
matically send a SIF_Subscribe for StudentPersonal each time it connects to a
zone.

• Event Reporting

Your agent is responsible for detecting changes in the application’s database (or
working with the back-end application or its database to be notified when
changes occur) and reporting add, change, and delete events to zones via a
SIF_Event message. This is done by preparing an Event object and passing it to
the Zone.reportEvent method on the zone to which the data is published.

• Managing SIF RefIds

Your agent is responsible for keeping track of the SIF RefIds that it receives for ob-
jects or that it creates for new objects. Although the ADK provides a utility func-
tion to generate GUIDs, it does not provide a repository for RefIds storage. This
application-specific functionality is the responsibility of your agent.

Java Packages
The ADK is comprised of hundreds of Java classes and interfaces organized into 18
packages. Most core classes are found in the openadk.library package, while the re-

OpenADK for Java – Developer’s Guide 2.4 11

maining packages represent SIF Data Object (SDO) classes organized by SIF Working
Group for consistency with the SIF Specification.

Browse the Javadoc to learn more about each package and the classes and interfaces
they contain.

Package / Contents
openadk.library

Core classes and interfaces of the OpenADK. Here you’ll find essential classes
like ADK, ADKException, Agent, AgentProperties, Event, Query, SIFDataOb-
ject, SIFMessageInfo, and Zone, as well as message handler interfaces Sub-
scriber, Publisher, ReportPublisher and QueryResults,

openadk.library.assessment

Classes to model Assessment Working Group Objects. Here you’ll find classes
like Assessment, AssessmentPackage, and AssessmentForm.

openadk.library.common
Classes to model Common Elements. Here you’ll find classes like Name,
PhoneNumber, and Demographics

openadk.library.dw
Classes to model Data Warehouse & Reporting Working Group Objects. Here
you’ll find classes like AggregateStatisticInfo, AggregateStatisticFact, and Ag-
gregateCharacteristicInfo

openadk.library.etranscript

Classes to model Student Record Exchange Working Group Objects. Here
you’ll find classes like StudentRecordExchange, StudentDemographicRecord,
and StudentAcademicRecord

openadk.library.food
Classes to model Food Services Working Group Objects. Here you’ll find
classes like StudentMeal, StaffMeal, and FoodserviceItem

openadk.library.gradebook
Classes to model Grade Book Working Group Objects. Here you’ll find classes
like GradingAssignment, MarkInfo, and StudentPeriodAttendance.

openadk.library.hrfin
Classes to model Human Resources & Financials Working Group Objects. Here
you’ll find classes like EmployeePersonal, LocationInfo, and Payment

openadk.library.infra
Classes to model SIF Infrastructure Objects (primarily for internal use by the
ADK). Some of the ADK’s public interfaces pass an instance of the SIF_Error
class as a method parameter, so often times you will import this package to ac-
cess that class.

openadk.library.instr
Classes to model Instructional Services Working Group Objects. Here you’ll
find classes like Activity, Assignment, and Lesson

openadk.library.library
Classes to model Library Automation Working Group Objects. Here you’ll find
the LibraryPatronStatus class.

openadk.library.log
Classes and interfaces for the ADK’s logging infrastructure. (Note: The classes

OpenADK for Java – Developer’s Guide 2.4 12

Package / Contents
found here are currently for server-side logging only. The open source Apache
Log4j framework handles all client logging. In the future, client logging will be
abstracted and placed in this package so that developers can use other logging
frameworks besides Log4j.)

openadk.library.profdev

Classes and interfaces to model Professional Development Working Group Ob-
jects. Here you’ll find the EmployeeCredential and EmployeeCredit classes,
among others.

openadk.library.programs

Classes and interfaces to model Special Programs Working Group Objects.
Here you’ll find the StudentParticipation and StudentPlacement classes,
among others.

openadk.library.reporting
Classes and interfaces to model Vertical Reporting Task Force Objects. Here
you’ll find the ReportManifest, StudentLocator, and SIF_ReportObject classes

openadk.library.student
Classes and interfaces to model Student Information Working Group Objects.
Here you’ll find classes like StudentPersonal, SchoolInfo, and Stu-
dentSchoolEnrollment

openadk.library.tools
Optional high-level classes for Configuration Files, Mappings, Query Format-
ters, Load Balancers, and other tools commonly used in the development of
agents but outside the scope of the core ADK Class Framework

openadk.library.tools.cfg
The AgentConfig class implements an XML-based configuration file parser
that agents can use as-is or as the basis for custom parsers

openadk.library.tools.mapping
The Mappings class simplifies the task of mapping field values between the
local application’s data structures and SIF Data Objects

openadk.library.tools.metadata
The ADKMetadata class allows custom SIF objects to be defined for use with
the ADK.

openadk.library.tools.queries
The QueryFormatter class simplifies the task of converting SIF_Query ele-
ments to other forms such as SQL statements

openadk.library.tools.xpath
The SIFXPathContext class allows XPath queries to be run against ADK SIF
Data Objects

openadk.library.trans
Classes to model Transportation & Geographic Information Working Group
Objects. Here you’ll find classes like BusInfo, BusRouteDetail, and Bus-
RouteInfo

openadk.util
String, GUID, and XML utility routines

OpenADK for Java – Developer’s Guide 2.4 13

Core Classes and Interfaces
The following classes and interfaces are used most frequently in ADK programming.
Each is described in greater detail throughout this Guide.

ADK
The openadk.library.ADK class represents the ADK library as a global resource of
your agent. It is used to initialize the class framework and to define settings that affect
the ADK’s behavior at runtime. You cannot create an instance of this class directly;
rather, a global singleton is established when the ADK.initialize method is called.
The initialize method is important because it informs the class framework of the ver-
sion of SIF you will be using and the SIF Data Object – or SDO – libraries to load into
memory. Call this method early in your agent startup code.

The ADK class is covered in Chapter 4

Agent
The openadk.library.Agent class represents your SIF Agent. It is the central “ap-
plication” class of the ADK and generally houses the main program entry point.
Agents derive a class from this one and call its methods to handle startup and shut-
down tasks and to set global properties that are inherited by each zone the agent con-
nects to.

The Agent class is covered in Chapter 5

Zones
The concept of a SIF Zone is central to the architecture of the Schools Interoperability
Framework. A zone is a logical partition in which application integration takes place
between two or more SIF Agents. Each zone is managed by a Zone Integration Server.
The ADK has the ability to connect to more than one zone at the same time.

Common zone topologies include School Zones, which publish data from a single
school; District Zones, which publish data from a single school district; and Aggregate
Zones, which publish data from a combination of sources. The administrator of a zone
integration server will want the flexibility to create as many zones as needed to model
data in a school, district, or agency; the more flexible your agent is in terms of zone to-
pologies the better chance it has of working in any SIF environment. If you restrict
your agent to publishing data only to a single “district zone”, for example, it may not
work well with other vendors’ agents that are restricted to consuming data from a
single “school zone”. Data Solutions strongly encourages developers to support the
three types of zones mentioned above for maximum flexibility and scalability.

Zones are represented in the ADK by the openadk.library.Zone interface. During
agent initialization, agents obtain one or more Zone instances for each SIF Zone the
agent will connect to by calling the methods of the ZoneFactory class. The “zone fact-
ory” is responsible for creating new Zone instances and keeping track of the zones the
agent communicates with during a session. You can obtain a reference to the global
ZoneFactory by calling the Agent.getZoneFactory method.

Since Zone is an interface implemented privately by the class framework, it cannot be
sub-classed. With version 1.1 and later of the ADK, you can associate your own “zone
class” with a Zone instance by calling the Zone.setUserData method, and then later

OpenADK for Java – Developer’s Guide 2.4 14

retrieve that class with the getUserData method and casting the return value to your
class type. This is a common way of organizing your code by zone.

Topics
Depending on the requirements of your application, it may make sense to structure
the design of the agent code such that SIF messages are processed in a data-centric
versus zone-centric fashion. For example, you may wish to process messages related to
StudentPersonal objects in the same way regardless of the zone from which those
messages originate.

The ADK introduces a concept familiar to publish/subscribe frameworks but missing
from the Schools Interoperability Framework infrastructure: the topic. Data-centric
agents may perform all publish, subscribe, and query activity via topics, which serve
to aggregate messaging activity across multiple zones. Topic instances are obtained
from the agent’s TopicFactory. Each Topic represents a single type of SIF Data Object,
such as StudentPersonal, LibraryPatronStatus, or BusInfo. By “joining” topics with
one or more zones, SIF_Event and SIF_Request messages received from those zones
are dispatched to the topic for processing. In this way, your agent’s message handling
logic can be centralized and organized in a data-centric rather than a zone-centric
way.

Zones and Topics are covered in Chapter 6

Agent and Transport Properties
The ADK defines a rich set of operational properties that can be configured program-
matically or at runtime with the /D Java command-line option. Some properties are
used to determine basic agent functionality—such as whether Push or Pull mode is
used to communicate with the Zone Integration Server—while others let you fine-
tune how the class framework implements the SIF standard. Properties may be set on
a zone-by-zone basis; global properties inherited by all zones are defined by the agent
class.

Agent and Transport Properties are covered in Chapter 6

SIF Data Objects (SDO) Libraries
The ADK models all SIF Data Objects as object-oriented Java classes. These classes,
collectively referred to as the SIF Data Objects libraries, or SDO, exist for top-level ob-
ject types such as StudentPersonal, LibraryPatronStatus, and BusInfo; for common
elements like Name, Address, and PhoneNumber; and for enumerated types, dates,
and times. All approved objects from each version of SIF are represented, and in many
cases unapproved draft objects are also implemented for early-adopter testing.

A major benefit to the SDO library is its support for parsing and rendering data ob-
jects using multiple versions of SIF. For example, an ADK agent can automatically
parse and render a SIF 1.0r1 LibraryPatronStatus or SIF 1.1 LibraryPatronStatus object
—which differs between the two versions of the specification—without any interven-
tion on your part.

OpenADK for Java – Developer’s Guide 2.4 15

Publishers
A Publisher is a message handler class supplied by your agent to process SIF_Request
messages. Publisher is a Java interface that can be implemented by any class of your
choosing—typically from your application’s data layer.

By registering one or more Publishers with your agent’s zone and topic classes, you
direct the ADK to dispatch incoming SIF_Request messages to your application code
for processing. Agents typically respond to a SIF_Request by querying records in a
local database, then converting those records to one or more SIF Data Objects. You can
work with SIF Data Objects programmatically by constructing instances of SIF-
DataObject classes supplied for each object in SIF, or you can take a more data-driven
approach by using static XPath-style mappings read from a configuration file and
managed by the Mappings utility class. When responding to SIF_Requests, these ob-
jects are sent to an output stream supplied by the class framework, which then pack-
ages them into individual SIF_Response messages that are persisted to disk and ulti-
mately delivered to the zone integration server.

ReportPublisher is a special form of the Publisher interface for working with SIF Vertical
Reporting objects. Vertical Reporting is available in SIF 1.5 and later.

Publishing with the ADK is covered in Chapter 7

Subscribers
A Subscriber is a message handler class supplied by your agent to process SIF_Event
messages. Subscriber is a Java interface that can be implemented by any class of your
choosing—typically from your application’s data layer.

By registering one or more Subscribers with your agent’s zone and topic classes, you
direct the ADK to dispatch incoming SIF_Event messages to your application code
for processing. Agents typically respond to SIF_Event messages by updating corres-
ponding records in the local application database using the element and attribute val-
ues in the SIF Data Object contained in the event payload. You can work with SIF Data
Objects programmatically using the SIFDataObject classes supplied for each object
in SIF, or you can take a more data-driven approach by using static XPath-style map-
pings read from a configuration file and managed by the Mappings utility class.

Subscribing with the ADK is covered in Chapter 8

Queries and QueryResults
Zone and topic classes provide methods to send SIF_Request queries to a zone or a
specific agent in a zone to request SIF Data Objects. The results of a query are received
asynchronously as SIF_Response messages. The class framework dispatches these
messages to a QueryResults message handler as they are received from the zone integ-
ration server.

Agents typically process SIF_Response messages by converting the SIF Data Objects
in the response to database records and importing those records into a local applica-
tion database. The class framework supplies your message handler a stream from
which you can read an arbitrarily large number of SIFDataObject instances from the
query response. You can work with SIF Data Objects programmatically using the SIF-
DataObject classes supplied for each object in SIF, or you can take a more data-driven

OpenADK for Java – Developer’s Guide 2.4 16

approach by using static XPath-style mappings read from a configuration file and
managed by the Mappings utility class.

Querying with the ADK is covered in Chapter 10

SIF Data Objects Library
The SIF Data Objects (SDO) library is a set of object-oriented Java classes that model
all data objects, common elements, and enumerated types defined by the SIF spec.
Data objects like StudentPersonal and LibraryPatronStatus are encapsulated by
classes of the same name; common elements such as Name, Address, and Demo-
graphics are also represented by their own classes. Enumerated type classes are
provided wherever a SIF code or type attribute is required. The SDO classes handle
proper message rendering and parsing according to the rules of each version of SIF.

The SDO classes are not strictly required for ADK programming. You could work with
SIF data in pure XML form using strings or standard interfaces like DOM. There are
significant benefits to using the SDO classes, however; they include:

 Automatic message parsing
 Automatic message rendering
 Automatic handling of differences in each version of SIF
 Support for concurrent versions of SIF
 Automatic trimming of SIF_Response payloads
 Automatic packetizing of SIF_Response messages
 SIF_Response messages are returned in the version of SIF requested

Organization of SIF Data Object Classes
The SIF Data Object classes are arranged into Java packages along the same organiza-
tional boundaries as SIF Working Groups. Agents can select which packages to in-
clude at deployment time, or can choose to load all packages into memory indiscrim-
inately.

For example, if your agent uses objects from Student Information Systems and Food
Services but not from other working groups like Transportation or Library Automa-
tion, you can choose to distribute only the sdostudent.jar and sdofood.jar librar-
ies. When initializing the class framework with the static ADK.initialize function,
instruct the ADK to use only these two modules by passing the SIFDTD.SDO_STUDENT
and SIFDTD.SDO_FOOD flags to that function (logically OR the two flags together).

// Initialize the ADK to use the Student Information Systems and
 // Food Services SIF Data Object modules. You can include sdoall.jar
 // on the classpath, or only the sdostudent.jar and sdofood.jar files
 // to keep the size of your agent to a minimum.

ADK.initialize(SIFVersion.LATEST, SIFDTD.SDO_STUDENT | SIFDTD.SDO_FOOD);

Similarly, to include all SIF Data Object modules with your agent, redistribute the
sdoall.jar file and pass the SIF.ALL_SDO_LIBRARIES flag to the ADK.initialize
function. NOTE: calling the ADK.initialize() overload that takes no parameters is
equivalent to using the SIFVersion.LATEST and SIFDTD.SDO_ALL parameters.

OpenADK for Java – Developer’s Guide 2.4 17

// Initialize the ADK to use all SIF Data Object modules. Include
 // sdoall.jar on the classpath.

ADK.initialize(SIFVersion.LATEST, SIFDTD.SDO_ALL);

Java Packages
The table below summarizes the various SIF Data Object packages. Package names are
relative to openadk.library:

SIF Working Group openadk.library.* Package Library File

Common Elements common Built-In
Assessment assessment sdoassessment.jar

Data Warehousing dw sdodw.jar

Student Record Ex-
change

etranscripts sdoetranscripts.-
jar

Food Services food sdofood.jar

Grade Book gradebook sdogradebook.jar

HR & Financials hr sdohrfin.jar

SIF Infrastructure infra Built-In
Instructional Services instr sdoinstr.jar

Library Automation library sdolibrary.jar

Professional Develop-
ment

profdev sdoprofdev.jar

Special Programs programs sdoprograms.jar

Vertical Reporting &
Student Locator

reporting sdoreporting.jar

Student Information student sdostudent.jar

Transportation trans sdotrans.jar

Note the SIF Infrastructure data objects (e.g. SIF_ZoneStatus) and Common Element
data object (e.g. Name, Address, Demographics) are part of the core ADK class frame-
work and thus are included with the adk-library-<locale>.jar library file. They’re
always available regardless of which SDO modules you choose to load when calling
the ADK.initialize method.

Working with SIF Data Objects

SIFElement & SIFDataObject Classes
All SIF elements modeled by the ADK are encapsulated by classes derived from a
common abstract base class: openadk.library.SIFElement. These include top-level
data objects like StudentPersonal as well as complex child elements like Name, Demo-
graphics, Transaction, and so on. (A complex element is any element that has attributes
or children. In contrast, a simple field element is any element that has only a text value.
The ADK does not model field elements as Java classes, but it does supply classes to
encapsulate each and every complex element found in the SIF data model.)

OpenADK for Java – Developer’s Guide 2.4 18

Classes that model top-level SIF Data Objects like StudentPersonal are derived from
the SIFDataObject base class, which descends from SIFElement. There are over 115
such data objects in the SIF 2.0r1 Specification.

The full class hierarchy is as follows:

openadk.library.Element
openadk.library.SIFElement

Complex Element Classes
openadk.library.SIFDataObject

Data Object Classes

Class Constructors
Each SIFElement class offers two constructors: a default constructor that accepts no
parameters, and another that accepts all required or mandatory elements defined by
the SIF Specification. The following code illustrates how to use both forms of con-
structor. In the first example, a StudentPersonal object is created using that class’s de-
fault constructor. None of the object’s required attributes will have values (in this case
the RefId attribute), so it is the responsibility of the agent to ensure they are assigned
values before published to SIF.

In the second example, an Address instance is created using the constructor that ac-
cepts a value for each required attribute or element (in this case, AddressType,
Street/Line1, City, StateProvince, Country, and PostalCode are all denoted as Mandat-
ory in the SIF Specification.) Using this constructor is a shortcut to explicitly assigning
values to required attributes and elements, and makes it easy to create a valid Trans-
action instance in a single line of code:

// Create a StudentPersonal object
StudentPersonal sp = new StudentPersonal();
sp.setRefId(ADK.makeGUID());

// Create an Address
Address addr = new Address(
AddressType.MAILING, new Street("321 Baker Dr"),
"Metropolis", StatePrCode.IL, CountryCode.US, "98855");

Dynamic SIFDataObject Construction
SIFDataObject instances may also be created dynamically by passing an ElementDef
constant to the SIFDTD.createSIFDataObject method, identifying the kind of object
to create. (SIFDTD and ElementDef—two classes central to the SIF Data Objects librar-
ies—are discussed in subsequent sections.)

OpenADK for Java – Developer’s Guide 2.4 19

// Kinds of objects to create
ElementDef[] kinds = new ElementDef[] {

StudentDTD.STUDENTPERSONAL,
StudentDTD.STAFFPERSONAL,
LibraryDTD.LIBRARYPATRONSTATUS };

// Create a bunch of SIFDataObject instances...
SIFDTD metadata = ADK.DTD();
SIFDataObject[] objects = new SIFDataObject[kinds.length];
for(int i = 0; i < kinds.length; i++)
objects[i] = metadata.createSIFDataObject(kinds[i]);

Creating & Manipulating SIFDataObjects
The ADK supplies two ways to create and manipulate SIFDataObject instances. The
first is to programmatically construct objects and call the methods of the SDO classes
to get and set element and attribute values. For example,

//Constructing a StudentPersonal object
StudentPersonal sp = new StudentPersonal();
sp.setRefId(ADK.makeGUID());
sp.setName(NameType.LEGAL, "Johnson", "Clifford");

// Examining a StudentPersonal object
Name n = sp.getName();
System.out.println("Name: " + n.getLastName() + ", " + n.getFirstName());
OtherIdList ids = sp.getOtherIdList();
System.out.println("This student has " + ids.size() + " IDs");

You can also use the setElementOrAttribute method:

// Dynamically constructing a StudentPersonal object
SIFDataObject sp = ADK.DTD().createSIFDataObject(StudentDTD.STUDENTPERSONAL);
sp.setElementOrAttribute("@RefId", ADK.makeGUID());
sp.setElementOrAttribute("Name[@Type='01']/LastName", "Johnson");
sp.setElementOrAttribute("Name[@Type='01']/FirstName", "Clifford");

// Dynamically examining a StudentPersonal object
Element refId = sp.getElementOrAttribute("@RefId");
Element studentId = sp.getElementOrAttribute("OtherId[@Type='06'");

An alternative and more data-driven approach to working with SIFDataObjects is to
use the Mappings class from the openadk.library.tools.Mappings package to con-
vert SIFDataObject instances to and from a data source such as a Map by applying a
set of XPath-like mapping rules. These rules are usually stored in an external config-
uration file where they can be modified by system integrators in the field. For ex-
ample, the following rules for StudentPersonal objects define how to translate the ele-
ments and attributes of that object to a flat list of field values:

<object object=”StudentPersonal”>
<field name=”STUDENT_ID”>OtherId[@Type=’01’]</field>
<field name=”LAST_NAME”>Name[@Type=’01’]/LastName</field>
<field name=”FIRST_NAME”>Name[@Type=’01’]/FirstName</field>

</object>

You can then call upon the Mappings class to convert a StudentPersonal instance into
a Map of field/value pairs, or to convert a Map into a StudentPersonal object.

OpenADK for Java – Developer’s Guide 2.4 20

In practice, most agents use a combination of these two approaches when working
with SIF Data Objects. Refer to the chapter on SIF Data Objects for more information.

The SIFDTD Class
In order to support all versions of the SIF specification, the ADK has a built-in
metadata dictionary. This metadata encompasses information about each element and
attribute from all versions of SIF 1.0r1 and later. The class framework relies on this in-
formation to determine the versions of SIF each element or attribute supports, its tag
name, its sequence number, and various flags such as whether an element is repeat-
able or not.

The metadata dictionary is comprised of the static constants defined by a DTD class
located within each package in the ADK that contains objects representing SIF ele-
ments. Each DTD class defines static ElementDef constants representing each element
and attribute of SIF. ElementDef constants identify elements and attributes in a ver-
sion-independent way so that the class framework knows what your agent is referring
to regardless of whether the task at hand involves SIF 1.1, SIF 1.5r1, SIF 2.0r1 or some
future version of specification.

Whenever a method requires an ElementDef parameter, you must pass a constant
from one of the package-specific DTD classes:

// Create a Topic instance for “BusInfo” and “StudentPersonal” objects
Topic businfo = getTopicFactory().getInstance(TransDTD.BUSINFO);
Topic students = getTopicFactory().getInstance(StudentDTD.STUDENTPERSONAL);

SIFDTD Constants for Elements & Attributes
For elements that are part of the SIF Common Objects group or that otherwise are used
across more than one SIF Data Object, each DTD class uses a naming convention to
distinguish between the objects a common element appears in.

For example, the common <Name> element is used in StudentPersonal, StaffPersonal,
and StudentContact. However, the characteristics of <Name>— such as its sequential
order relative to its parent—are different when used as a child of <StudentPersonal>
than when used as a child of <StaffPersonal> and <StudentContact>. Thus, the
StudentDTD class defines multiple ElementDef constants for the <Name> element:

StudentDTD.STUDENTPERSONAL_NAME
StudentDTD.STAFFPERSONAL_NAME
StudentDTD.STUDENTCONTACT_NAME

The naming convention employed is the name of the parent SIF Data Object in upper-
case, followed by an underscore (“_”) and the name of the element or attribute, also in
upper-case:

[DTDClass].PARENT_CHILD

For example:

OpenADK for Java – Developer’s Guide 2.4 21

// Query for all BusInfo objects
Query q = new Query(TransDTD.BUSINFO);

// Include only the RefId, VehicleNumber, and Contractor in the response
q.setFieldRestrictions(
new ElementDef[] {
TransDTD.BUSINFO_REFID,
TransDTD.BUSINFO_VEHICLENUMBER,
TransDTD.BUSINFO_CONTRACTOR

}
);

Inspecting the ElementDef of a SIFDataObject
You can obtain the ElementDef associated with any SIFDataObject instance by call-
ing its getElementDef method. This is often used in Boolean comparisons to determ-
ine if an object is of a certain type:

SIFDataObject someObject = ...

if(someObject.getElementDef() == StudentDTD.STUDENTPERSONAL)
{
// This is a StudentPersonal object
StudentPersonal sp = (StudentPersonal)someObject;
System.out.println(“StudentPersonal with RefId “ + sp.getRefId());

}
else
if(someObject.getElementDef() == SIFDTD.STUDENTCONTACT)
{
etc.

Getting an Element’s Tag Name
The tag name of an element or attribute is specific to each version of SIF. With the
ADK, each ElementDef is associated with two names: a version-independent name,
which is used to identify the element or attribute regardless of the version of SIF
you’re working with; and a version-dependent tag name, which is used when render-
ing and parsing the element. Often times it is necessary to use the element tag name in
your code; for example, to log a debug message or to lookup an entry in a table that is
keyed by element name.

If you want to obtain the version-independent name of an element or attribute, call the
ElementDef.name method. This method returns the string used to identify the ele-
ment or attribute in the ADK’s metadata dictionary. By convention it is usually equi-
valent to the name of the element as it first appears in the SIF Specification as of SIF
2.0 or later. .

For example, calling the name method on the LibraryDtd.TRANSACTION constant re-
turns the string “Transaction”:

// Create a Transaction element and show its version-independent name
Transaction trans = new Transaction();

System.out.println(trans.getElementDef().name());

If you want to obtain the version-dependent name of an element or attribute—that is,
the string used when parsing and rendering the element—call the ElementDef.tag

OpenADK for Java – Developer’s Guide 2.4 22

method. This method requires that a SIFVersion instance be passed to it. Unlike the
name method, it returns the tag name specific to the version of SIF. For example, call-
ing tag on the LibraryDTD.TRANSACTION constant yields different results for SIF 1.1
than for SIF 2.0. In SIF 1.1, the element is known as “CircTx” and in SIF 2.0 it is known
as “Transaction”.

// Create a Transaction element and show its version-dependent tag name
Transaction trans = new Transaction();

// Show the tag name for SIF 1.1: “CircTX”
System.out.println(trans.getElementDef().tag(SIFVersion.SIF11));

// Show the tag name for SIF 2.0: “Transaction”
System.out.println(trans.getElementDef().tag(SIFVersion.SIF20));

The above code uses SIFVersion constants but in practice you obtain the SIFVersion
associated with a SIF Data Object by calling the SIFDataObject.getSIFVersion
method:

public void onEvent(Event event, Zone zone, MessageInfo info)
throws ADKException

{
SIFMessageInfo inf = (SIFMessageInfo)info;

// Print the version of the SIF_Message envelope
System.out.println(“Received a SIF_Event from a SIF “ +
inf.getSIFVersion() + “ agent”);

// Print the version-dependent tag name of the data contained in the event
SIFDataObject data = event.getData().readDataObject();
System.out.println(“A “ + data.getElementDef().tag(data.getSIFVersion())

+
“ object is contained in the event”);

System.out.println(“The “ + data.getElementDef().name() + “ object is a
SIF “ +

data.getSIFVersion() + “ object”);

The above example might print the following to the Java console:

Received a SIF_Event from a SIF 1.1 agent
A StudentPersonal object is contained in the event
The StudentPersonal object is a SIF 1.1 object

Building SIF Data Objects Dynamically
Most agents retrieve their data from a local database or other data store with its own
unique schema and programming interfaces. A common approach to interacting with
SIF is to dynamically map elements and attributes from a SIF Data Object to fields in
the local application’s database. The ADK provides a powerful facility for mapping:
the Mappings class found in the openadk.library.tools.mapping package. You
could also implement your own mapping routines by using functions such as SIF-
DataObject.setElementOrAttribute.

The following code creates a StudentPersonal object by enumerating the fields in a
mapping table. This code looks much different from most of the code shown through-
out the Developer’s Guide and ADK Example agents because it does not directly use
the SIF Data Object classes like Name, PhoneNumber, and StudentAddress to build the
StudentPersonal object. Instead, it uses XPath-like query strings and the setElement-

OpenADK for Java – Developer’s Guide 2.4 23

OrAttribute method of the SIFDataObject class. With the ADK, you have the flexib-
ility to work with SIF Data Objects however you like.

Refer to the SIFDataObject class in the Javadoc for more information on the setEle-
mentOrAttribute method.

// Build a table that maps fields in the local application to SIF
 // elements & attributes. The key of each entry is a name of your
 // choosing that identifies a field in the local database; the value
 // of each entry is an XPath-link query string that identifies
// the corresponding SIF element or attribute of the StudentPersonal

 // object

HashMap m = new HashMap();
m.put(“ForeignId”, “@RefId”);
m.put(“ID”, “OtherId[@Type=’06’]”);
m.put(“L_Name”, “Name[@Type=’01’]/LastName”);
m.put(“F_Name”, “Name[@Type=’01’]/FirstName”);
m.put(“Addr_Line1”, “StudentAddress/Address[@Type=’M’]/Street/Line1”);
m.put(“Addr_Line2”, “StudentAddress/Address[@Type=’M’]/Street/Line2”);
m.put(“Addr_City”, “StudentAddress/Address[@Type=’M’]/City”);
m.put(“Addr_State”, “StudentAddress/Address[@Type=’M’]/StatePr/@Code”);
m.put(“Addr_Zip”, “StudentAddress/Address[@Type=’M’]/PostalCode”);
m.put(“Pri_Email”, “Email[@Type=’Primary’]”);
m.put(“Sec_Email”, “Email[@Type=’Alternate1’]”);

// Now create a StudentPersonal from the mapping table. For each entry
 // in the table, lookup the associated value in the local application
 // database, then call the StudentPersonal.setElementOrAttribute method
 // to assign that value to the corresponding element or attribute in the
 // SIF Data Object

StudentPersonal student = new StudentPersonal();
for(Iterator it = m.keySet().iterator(); it.hasNext();)
{
String localField = (String)it.next();
String sifField = (ElementDef)m.get(field);

// Lookup the value of this field from the local application’s database
String value = myDatabaseView.getFieldValue(localField);

// Assign the field to the StudentPersonal object
if(value != null)
student.setElementOrAttribute(sifField, value);

}

Enumerated Types
The ADK defines enumerated type classes whenever a set of pre-defined values is ex-
pected for an object field. These classes are named the same as the attribute or element
they’re associated with. For example, the EducationLevel/Code element of the Stu-
dentContact data type is represented by the EducationLevelCode class.

As you might expect, the StudentContact.setEducationLevel method accepts a
single parameter: an EducationLevelCode object. Valid codes for this object are
defined as static constants of the enumerated type class: EducationLevelCode.EMC,
EducationLevelCode.E4, etc.

Enumerated type classes are provided as a convenience to programmers, to enforce
type safety, and to help ensure that valid values are used in the construction of SIF
messages. There are many cases when referencing one of the pre-defined constants of
an enumerated type class is not appropriate: for example, when reading values from a

OpenADK for Java – Developer’s Guide 2.4 24

database result set you will want to assign them directly to an element or attribute.
For this reason, all enumerated type classes offer a wrap method that you can use to
pass your own string in place of a pre-defined constant. The following code demon-
strates:

// Construct a StudentContact object
StudentContact sc = new StudentContact();

// Use the enum class to set EducationLevel to “E4”
sc.setEducationLevel(EducationLevelCode.E4);

// Set the code directly
sc.setEducationLevel(EducationLevelCode.wrap(“E4”));

// Can also set the code to an invalid value
sc.setEducationLevel(EducationLevelCode.wrap(“Zebra”));

Dates and Times
SIF 2.0 uses XSD data types to represent Dates, DateTimes, and Times. The ADK rep-
resents each of these fields using the Java Calendar object.

Creating RefIds for SIF Data Objects
When an agent publishes a data object to a zone for the first time, it must assign the
object a globally-unique identifier—or RefId—that will forever identify that object in
the zone. Both the ADK.makeGUID static function and Agent.makeGUID convenience
method create Globally Unique Identifiers (GUIDs).

// Create a new StudentPersonal object with a new GUID generated
 // by this agent
StudentPersonal sp = new StudentPersonal();
sp.setRefId(ADK.makeGUID());
...

Managing RefIds
Because it is specific to your agent’s transaction layer and involves interaction with a
database or other persistent data store, the ADK does not provide any classes to man-
age RefIds. You will need to create a mechanism to store RefIds created by your agent
when publishing SIF Data Objects for the first time, or imported from other agents
when receiving objects in SIF_Response and SIF_Event messages. Although there are
a number of ways to go about this, one simple solution is to use a database table to re-
cord the RefIds known to your agent. The following schema will usually suffice:

OpenADK for Java – Developer’s Guide 2.4 25

Column Data Type Definition
RefId Char[32] The GUID
PrimaryKey String or Numeric The primary key of the record in your applica-

tion’s database that is associated with this Re-
fId.

SecondaryKey String or Numeric The optional secondary key of the record in
your application’s database that is associated
with this RefId.

ObjectType Numeric A constant that identifies the type of data as-
sociated with this RefId. Consider defining
numeric values for each object type; for ex-
ample, 1=Students or StudentPersonal;
2=Teachers or StaffPersonal; etc.

When publishing an object to a zone for the first time, assign a RefId to it and record
the association between that RefId and the local application database record. You
must use this RefId to subsequently identify the object whenever it is included in a
SIF message: for example, when reporting a SIF_Event to a zone.

When receiving an object in a SIF_Event or SIF_Response message, the agent should
first lookup its RefId in the above table. Most SIF Data Objects have an attribute
named “RefId” that you can obtain via the SIFDataObject.getRefId method. If the
RefId exists in your table, take the appropriate action on the corresponding database
record. For example, if you receive a SIF_Event with a Change action that identifies a
student you have on file, update the student record appropriately. However, if you re-
ceive a Change event for a student that does not exist in your RefId repository, you
cannot take action on the event because the agent doesn’t know which student record
to update.

How does the RefId repository get created initially? Data Solutions recommends that
all agents incorporate some form of “synchronization procedure” that is run the first
time the agent is installed and again at the beginning of each school year. This process
retrieves all SIF Data Objects from the zone or zones the agent is connected to, and us-
ing an algorithm of your choosing, matches them up with corresponding records in
the application database. The goal of synchronization is to establish an initial set of
RefIds such that your agent knows which SIF Data Objects equate to the record that
already exist in the application’s database. Once this process is complete, you can be-
gin responding to SIF Events.

There are many ways to implement a synchronization procedure, some more involved
than others. For example, you might have a user interface for the administrator to
control the synchronization process, to choose the kinds of SIF Data Objects to query
from the zone, and to provide a way for the administrator to visually match up ap-
plication records with their corresponding SIF Data Objects. Or, your might opt for a
more automated process where the agent requests objects from the zone and tries to
match them with application records using a common field such as Student ID. Re-
gardless of the approach you take, be sure to include some form of synchronization
procedure in your agent’s design.

OpenADK for Java – Developer’s Guide 2.4 26

Parsing & Rendering SIF XML
The ADK is designed to automatically parse and render SIF XML for you at the appro-
priate times. For example, when an incoming SIF_Event message is received, the data
contained within is parsed into a SIFDataObject instance and passed to the Sub-
scriber message handler registered with the Zone or Topic the message was received
on.

The SIFParser and SIFWriter classes are used internally to accomplish all parsing
and rendering.

The SIFWriter Class
You can use the SIFWriter class to programmatically render SIF XML for your own
needs. For example, suppose you have an instance of a openadk.library.stu-
dent.StudentPersonal object in memory and want to render it to Java’s System.out
stream or to a text file. Use the SIFWriter class to wrap an output stream and write
any SIFDataObject instance to that stream in SIF XML format:

// Construct a StudentPersonal object
StudentPersonal myStudent = new StudentPersonal();
myStudent.setRefId(ADK.makeGUID());
myStudent.setName(new Name(“Smith”, “Joe”));

// Render it to System.out
SIFWriter writer = new SIFWriter(System.out, true /* auto-flush */);
writer.write(myStudent);

// Also render it to a file named MyStudent.xml
FileOutputStream fos = new FileOutputStream(“MyStudent.xml”);
writer = new SIFWriter(fos, true);
writer.write(myStudent);

 fos.close();

The above code writes a <StudentPersonal> element to the Java console as well as to
a file named MyStudent.xml.

The SIFParser Class
Use the SIFParser class to wrap an input stream and parse any SIF XML into a
SIFElement instance (of which SIFDataObject is a sub-class). Note SIFParser is in-
tended to parse data objects only and not full SIF_Message content.

The following code streams in the previous section’s MyStudent.xml file from disk
and parses it back into a StudentPersonal object:

OpenADK for Java – Developer’s Guide 2.4 27

// Construct a SIFParser instance that can be used for parsing
SIFParser p = SIFParser.newInstance();

// Open a FileReader to read the text file
FileReader in = new FileReader(“MyStudent.xml”);

// Read the file into a StringBuffer in 4K chunks
StringBuffer xml = new StringBuffer();
int bufSize = 4096;
char[] buf = new char[bufsize];
while(in.ready()) {
bufSize = in.read(buf, 0, buf.length);
xml.append(buf, 0, bufsize);

}

// Parse it and cast the result to a StudentPersonal object
StudentPersonal student = p.parse(xml.toString(), null /* zone */);
System.out.println(“Read student from disk; RefId is “+student.getRefId());

Encoding XML Character Entities
In XML, certain characters like the less-than and greater-than symbols, apostrophes,
and the ampersand must be encoded (or “escaped”) with special character entities.
For example, the string “Red & Blue” must be encoded as “Red & Blue”; the
name “Kim D’Angelo” must be encoded as “Kim D'Angelo”, and so on. XML
parsers will automatically unencode these strings so they’re presented to receiving
agents as “Red & Blue” and “Kim D’Angelo”, respectively.

The SIFWriter class in ADK 1.5.1 and later automatically encodes all XML content
according to the table below; there is nothing special you need to do for this to hap-
pen.

Invalid Character Equivalent XML Entity
< <
> >
& &
‘ '

IMPORTANT: Since the ADK handles encoding all XML content for you, its important that agents do not also per-
form this task. Otherwise “double-escaping” can occur. For example, consider the string “Kim D’Angelo”. The apo-
strophe is invalid and must be encoded as “'”. Suppose the agent were to perform this on its own and assigned a
resulting value of “Kim D'Angelo” to an element. When rendering the element, the ADK’s SIFWriter class
would also attempt to encode it. Since the ampersand character is invalid, the string would be incorrectly rendered as
“Kim D&apos;Angelo” instead of “Kim D'Angelo”. The result? Receiving agents would parse the string
and receive a student named “Kim D&aposAngelo” instead of “Kim D’Angelo”, which is obviously not the desired
outcome.

Disabling XML Encoding

There are some cases when it is desirable to turn off escaping for specific elements.
For example, suppose you intend to write in-line XML content to a SIF_Exten-
dedElement element. Automatic encoding in this case is not desirable because all of
the < and > characters in your XML content would be escaped. In these rare cases you
can use the setDoNotEncode method to turn off encoding on an element-by-element
basis:

OpenADK for Java – Developer’s Guide 2.4 28

StudentPersonal sp = new StudentPersonal();

// Get the SIF_ExtendedElements container
SIF_ExtendedElements container = sp.getSIF_ExtendedElementsContainer();

// Construct a SIF_ExtendedElement with in-line XML content, but turn off
// encoding by calling the setDoNotEncode method
SIF_ExtendedElement inlineXml = new SIF_ExtendedElement(“teaminfo”,
“<![CDATA[<team>Blue & Red</team>]]”);

inlineXml.setDoNotEncode(true);

// Add the element to the container
container.addChild(inlineXML);

SIF Infrastructure Messages
One aspect of ADK programming you might find surprising is that the class frame-
work handles sending SIF Infrastructure messages for you at the appropriate times,
and generally does not allow you to send these messages yourself. A good example is
the sending of SIF_Ack messages. The ADK acknowledges messages behind the
scenes after it has dispatched a message to a message handler, but does not offer you a
way to directly send a SIF_Ack message to a zone.

There are ways you can influence how and when infrastructure messages are sent—
and there is even a limited API for sending them yourself—but in general this task
should be left up to the ADK. The following table summarizes the methods that dir-
ectly or indirectly cause SIF Infrastructure messages to be sent to the Zone Integration
Server.

Message When the message is sent
SIF_Ack Sent by the ADK upon receiving a message from the Zone

Integration Server. SIF_Ack is sent after calling your agent’s
message handler. If an exception is thrown by the message
handler, a SIF_Ack containing an error is returned; other-
wise a success SIF_Ack is returned.

When using the TrackQueryResults class to issue a SIF_Re-
quest query while processing a SIF_Event, the ADK may in-
voke Selective Message Blocking (SMB) on the event by
sending a SIF_Ack with the appropriate status code. A
second SIF_Ack message is sent to clear the SMB state as
soon as your message handler returns control to the ADK.

SIF_Event Sent by the ADK when the reportEvent method is called on
a Zone.

SIF_Provide Sent by the ADK when the Zone.connect method is called
and you have registered a Publisher with one or more Zones
or Topics. The ADKFlags.PROV_PROVIDE flag must be passed
to the Zone.setPublisher or Topic.setPublisher method
for this message to be sent. If you agent wishes to respond to
SIF_Request messages but does not want to register as a
Provider with the zone, specify the ADKFlags.PROV_NONE in-
stead.

SIF_Register Sent by the ADK when the Zone.connect method is called
and you have specified the ADKFlags.PROV_REGISTER flag.

OpenADK for Java – Developer’s Guide 2.4 29

Message When the message is sent
It is acceptable to send a SIF_Register message each time
your agent starts up because the Zone Integration Server
will return a successful status code.

SIF_Request Sent by the ADK when the Zone.query or Topic.query
method is called, or when the TrackQueryResults class is
used to issue a synchronous query.

SIF_Response Sent by the ADK when data is returned by your Publisher-
.onRequest message handler. The ADK handles dividing
response data into packets, so more than one SIF_Response
message may be sent if the amount of data to return is larger
than the maximum buffer size of the requesting agent.

SIF_Subscribe Sent by the ADK when the Zone.connect method is called
and you have registered a Subscriber with one or more Top-
ics or Zones. The ADKFlags.PROV_SUBSCRIBE flag mus be
passed to the Zone.setSubscriber or Topic.setSub-
scriber method for this message to be sent.

SIF_SystemControl/
SIF_Sleep

Sent by the ADK when the Zone.sleep or Agent.sleep
method is called. Also sent when the Agent.shutdown meth-
od is called.

SIF_SystemControl/
SIF_Wakeup

Sent by the ADK when the Zone.wakeup or Agent.wakeup
method is called. (Note that the sending of a SIF_Register
message on agent startup will automatically wake up a
sleeping agent per SIF Specifications.)

SIF_SystemControl/
SIF_Ping

Sent by the ADK when the Zone.connect or Zone.sifPing
method is called. The ADK always sends a SIF_Ping mes-
sage when connecting to a zone in order to determine if the
agent is sleeping or not.

SIF_SystemControl/
SIF_GetMessage

Sent periodically by the ADK when running in Pull mode to
retrieve the next group of messages waiting in the agent’s
queue on the Zone Integration Server. The polling frequency
defaults to 30 seconds but may be changed by setting the
adk.messaging.pullFrequency agent or zone property.

SIF_Unprovide This message is not sent automatically by the ADK. To
manually send it, call the Zone.sifUnprovide method.

SIF_Unsubscribe This message is not sent automatically by the ADK. To
manually send it, call the Zone.sifUnsubscribe method.

SIF_Unregister Sent when the Agent.shutdown or Zone.disconnect meth-
od is called and the ADKFlags.PROV_UNREGISTER flag is
passed to that method.

Working with SIF Messages

Message Handlers
A message handler is a callback class that implements one of the ADK’s four message
handler interfaces:

Interface Handles
openadk.library.Publisher SIF_Request messages
openadk.library.ReportPublisher SIF_Request messages for Ver-

OpenADK for Java – Developer’s Guide 2.4 30

tical Reporting objects
openadk.library.Subscriber SIF_Event messages
openadk.library.QueryResults SIF_Response messages

Message handlers form the cornerstone of asynchronous message processing in the
ADK. Because they’re Java interfaces, they can be implemented on any class of your
choosing and are easily combined into existing code. This interface-based approach
results in clean, organized, understandable code that works the same regardless of
whether you’re connected to one zone or a hundred.

Classes that implement the message handler interfaces are responsible for processing
SIF_Request, SIF_Event, and SIF_Response messages received by the agent. Mes-
sage processing is always performed asynchronously and may begin as early as the
Zone.connect method is called on a given zone, so be sure to implement your hand-
lers with thread synchronization in mind.

You can register a message handler with a Topic object, a Zone object, or the Agent
object. Agents that use topic classes typically register handlers with Topic instances
only. If you aren’t using topics, you register handlers with each Zone instance. These
three classes—Topic, Zone, and Agent—each provide the following methods for regis-
tering message handlers:

• setPublisher(Publisher handler, ElementDef objType, PublishingOp-
tions flags)

• setReportPublisher(ReportPublisher handler, ReportPublishingOp-
tions flags)

• setSubscriber(Subscriber handler, ElementDef objType, Subscrip-
tionOptions flags)

• setQueryResults(QueryResults handler, ElementDef objType,
QueryResultsOptions flags)

The objType parameter is a constant from the SIFDTD class that identifies the type of
SIF Data Object the message handler will service. You can call the above methods re-
peatedly for different kinds of SIF Data Objects, passing the same message handler in-
stance to each call. The following code demonstrates how to register the same Sub-
scriber class to handle SIF_Events received from a zone for StudentPersonal,
SchoolInfo, and StudentSchoolEnrollment objects:

OpenADK for Java – Developer’s Guide 2.4 31

 // Get a zone instance from the Agent’s ZoneFactory
 Zone myZone = getZoneFactory().getZone(“Zone1”,
 “http://localhost:7080/Zone1”);

 SubscriptionOptions subOpts = new SubscriptionOptions();

 // Register SIF_Event message handlers
 myZone.setSubscriber(this, StudentDTD.STUDENTPERSONAL,
 subOpts);
 myZone.setSubscriber(this, StudentDTD.SCHOOLINFO,
 subOpts);
 myZone.setSubscriber(this, StudentDTD.STUDENTSCHOOLENROLLMENT,
 subOpts);

Message Dispatching
Message Handlers work like traditional callback functions: the class framework uses
them to call into your code when a SIF message is received and needs to be processed.
It calls the appropriate message handler asynchronously whenever a SIF_Event,
SIF_Request, or SIF_Response message is received from a zone. When there is more
than one message handler for a zone, the type of SIF Data Object contained in the
message payload is used to determine which one to call. This is why you must specify
an ElementDef constant to the setPublisher and setSubscriber methods of the
Zone and Topic interfaces.

Recall that you can set message handlers on the Agent, Zone, and Topic classes. These
three classes form a “message dispatching chain”:

 Agent

 Zone

 Topic

When an incoming SIF_Message is received, the ADK first attempts to dispatch it to
the Topic instance corresponding to the type of object contained in the message. For
example, if a SIF_Event is received with StudentPersonal objects, the class framework
first tries to dispatch the message to the Subscriber message handler registered with
the SIFDTD.STUDENTPERSONAL topic. (This of course assumes your agent is using topic
classes, which are entirely optional.)

If no Topic is found to handle the message, the ADK next consults the Zone object from
which the message originated. If a message handler hasn’t been registered with the
zone object, the ADK makes one final attempt at dispatching the message directly to
the Agent class. These three entities—topic, zone, and agent—form the message dis-
patching chain by which all incoming messages are sent for processing.

When to Implement Message Handler Interfaces
An agent may implement one or more message handlers on as many classes as is ap-
propriate. Trivial agents, such as the ADK Examples, might choose to implement all
interfaces directly on the Agent class:

OpenADK for Java – Developer’s Guide 2.4 32

public class MyAgent extends Agent implements Publisher, Subscriber

More complex agents typically implement message handlers on multiple classes. For
example, consider an agent with a database layer comprised of classes to encapsulate
each table in the database. Such an agent might implement the Publisher and Sub-
scriber message handlers on each of these database classes, thereby placing the know-
ledge of publishing and subscribing near the database layer:

public class MyAgent extends Agent;

public class StudentDatabase implements Publisher, Subscriber;

public class EnrollmentDatabase implements Publisher, Subscriber;

public class FoodServiceDatabase implements Publisher, Subscriber;

public class DataImporter implements QueryResults;

etc.

Where in your code you choose to implement message handlers all depends on your
preference and overall agent design. At Data Solutions, we commonly create our own
“SIFZone” class that implements all of the message handler interfaces in one place.
Then we attach this class to the ADK Zone instance by calling the Zone.setUserData
method (see also Attaching User Data to a Zone on page 64):

public class SIFZone implements Publisher, Subscriber, QueryResults
{
// The ADK Zone instance wrapped by this custom SIFZone class
protected Zone fZone;

/** Constructor */
public SIFZone(Zone adkZone) {
fZone = zone;
fZone.setUserData(this);

}

/** Set up the zone and its message handlers */
public void setup() {
fZone.setSubscriber(this, StudentDTD.STUDENTPERSONAL,
new SubscriptionOptions());

...
fZone.setPublisher(this, LibraryDTD.LIBRARYPATRONSTATUS,
new SubscriptionOptions());

...
fZone.setQueryResults(this);

}

/** Connect to the zone */
public void connect() {
setup();
fZone.connect(ADKFlags.PROV_REGISTER);
...

}

etc.

Registering Message Handlers with Zones
Call the setPublisher, setSubscriber, and setQueryResults methods of the Zone
interface to register a Publisher, Subscriber, or QueryResults implementation with a

OpenADK for Java – Developer’s Guide 2.4 33

zone. Any messages received from the zone will then be dispatched to your message
handler according to the object type contained in the payload:

// Create a Zone instance
Zone myZone = getZoneFactory().getZone(“Zone1”,

 “http://localhost:7080/Zone1”);

// Register message handlers for this zone
myZone.setSubscriber(database, StudentDTD.STUDENTPERSONAL,

new SubscriptionOptions());
myZone.setSubscriber(database, StudentDTD.STUDENTSCHOOLENROLLMENT,

new SubscriptionOptions());

myZone.setQueryResults(database, StudentDTD.STUDENTPERSONAL);
myZone.setQueryResults(database, StudentDTD.STUDENTSCHOOLENROLLMENT);

 myZone.setPublisher(database, StudentDTD.LIBRARYPATRONSTATUS,
 new PublishingOptions);

In this example, Subscriber and QueryResults message handlers are registered with the
zone to handle incoming SIF_Event and SIF_Response messages that contain Stu-
dentPersonal and StudentSchoolEnrollment payloads. The PROV_SUBSCRIBE flag
causes the ADK to send a SIF_Subscribe message to the zone when it connects. A
Publisher message handler is also registered for LibraryPatronStatus objects; the
PROV_PROVIDE flag instructs the ADK to send a SIF_Provide message for this object
type when connecting to the zone.

Registering Message Handlers with Topics
When a message handler is registered with a Topic, it is called by the class framework
for messages associated with the topic’s object type regardless of the zone from which
the message originated. Thus, you can write code that is data-oriented instead of
zone-oriented.

Topic students = getTopicFactory().getTopic(
 SIFDTD.STUDENTPERSONAL);
Topic enrollments = getTopicFactory().getTopic(

 SIFDTD.STUDENTSCHOOLENROLLMENT);
 Topic library = getTopicFactory().getTopic(
 SIFDTD.LIBRARYPATRONSTATUS);

// Register message handlers for these topics
students.setSubscriber(database, ADKFlags.PROV_SUBSCRIBE);
enrollments.setSubscriber(database, ADKFlags.PROV_SUBSCRIBE);
students.setQueryResults(database);
enrollments.setQueryResults(database);

 library.setPublisher(database, ADKFlags.PROV_PROVIDE);

 // Join zones to the topic and connect to each zone...

The Subscriber Interface
Classes that implement the Subscriber interface handle SIF_Event messages received
by the agent. This message handler is covered in greater detail by the Subscribing
chapter beginning on page 75.

The Subscriber interface defines the following method:

OpenADK for Java – Developer’s Guide 2.4 34

public void onEvent(Event event, Zone zone, MessageInfo info)
throws ADKException;

The Publisher Interface
Classes that implement the Publisher interface handle SIF_Request messages received
by the agent. This message handler is covered in greater detail by the Publishing
chapter beginning on page 65.

The Publisher interface defines the following method:

public void onRequest(
DataObjectOutputStream out,
Query query,
Zone zone,
MessageInfo inf)
throws ADKException;

The ReportPublisher Interface
Classes that implement the ReportPublisher interface handle SIF_Request messages
where the object type specified in the request is a SIF_ReportObject. Only agents that
implement SIF 1.5 Vertical Reporting need to implement this interface. It must be used
in place of the standard Publisher interface if you plan to respond to requests for
SIF_ReportObject.

The ReportPublisher interface defines the following method:

public void onReportRequest(
String reportObjectRefId,
ReportObjectOutputStream out,
Query query,
Zone zone,
MessageInfo inf)
throws ADKException;

The QueryResults Interface
Classes that implement the QueryResults interface handle SIF_Response messages re-
ceived by the agent. This message handler is covered in greater detail by the Querying
chapter beginning on page 81.

The QueryResults interface defines the following two methods:

OpenADK for Java – Developer’s Guide 2.4 35

public void onQueryPending(MessageInfo info, Zone zone)
throws ADKException;

public void onQueryResults(
DataObjectInputStream data,
SIF_Error error,
Zone zone,
MessageInfo info)
throws ADKException;

Throwing Exceptions from Message Handlers
All message handlers may throw an exception of type com.edustructure.sif-work-
s.ADKException if an error occurs while processing a message. When you throw an
exception from a message handler, the ADK returns an error acknowledgement to the
ZIS in the form of a SIF_Ack message. The error category, error code, description, and
extended description fields of the SIF_Ack/SIF_Error element depend on the type of
exception thrown. When a message handler returns successfully, the ADK acknow-
ledges the message with a success SIF_Ack.

Exceptions are handled slightly differently for SIF_Request messages because, ac-
cording to SIF Specifications, errors that occur during request & response handling
should be returned to the requestor as a SIF_Error element in the payload of a
SIF_Response packet. When the ADK catches an exception thrown from the Pub-
lisher.onQuery method, it returns a success SIF_Ack for the original SIF_Request
message. A SIF_Error element is then embedded in the last SIF_Response packet de-
livered to the server.

Provisioning SIF Zones
The Schools Interoperability Framework requires that an agent be registered with a
SIF Zone in order to send messages. It also requires that an agent declare its intent to
subscribe to SIF Data Objects or to serve as the zone’s authoritative provider of an ob-
ject type. We refer to these tasks collectively as “provisioning”. Provisioning involves
the sending of SIF_Register, SIF_Unregister, SIF_Subscribe, SIF_Unsubscribe,
SIF_Provide, and SIF_Unprovide messages.

 Note: The SIF Specification refers to “provisioning” as the act of sending SIF_Provide and SIF_Unprovide mes-
sages. We use the term to encompass all SIF registration messages sent by an agent, including SIF_Register,
SIF_Provide, SIF_Subscribe, SIF_Unregister, SIF_Unprovide, and SIF_Unsubscribe.

SIF_Register & SIF_Unregister Messages
A SIF_Register message is automatically sent to the Zone Integration Server when
the Zone.connect method is called and the ADKFlags.PROV_REGISTER flag is passed
to that method. Agents therefore register each time they start up (assuming your code
is written to connect to zones at startup time), which ensures the registration data on
the server is always up-to-date. You can manually send a SIF_Register message by
calling the Zone.sifRegister method.

A SIF_Unregister is sent when the Zone.disconnect method is called and the ADK-
Flags.PROV_UNREGISTER flag is passed to that method. Using this flag is not gener-
ally recommended because un-registering an agent clears its queue and all state in-
formation from the Zone Integration Server. You can manually send a SIF_Unre-
gister message by calling the Zone.sifUnregister method.

OpenADK for Java – Developer’s Guide 2.4 36

SIF_Subscribe & SIF_Unsubscribe Messages
Agents that subscribe to SIF_Event messages must send a SIF_Subscribe message
to the zone integration server for each object type they wish to subscribe to. The serv-
er will then distribute events to the agent as they’re received from other agents in the
zone.

The ADK handles subscription for you when the Zone.connect method is called. It
determines the list of objects to subscribe to by examining the Subscriber message
handlers that have been registered with the zone. If the ADKFlags.PROV_SUBSCRIBE
flag was passed to the setSubscriber method, a SIF_Subscribe message is sent for
that object. If this flag is not used, the ADK does not automatically send a SIF_Sub-
scribe message.

It is important that agents register message handlers with Zones and Topics before call-
ing Zone.connect to ensure the appropriate provisioning messages are sent.

The ADK does not automatically send SIF_Unsubscribe messages to zones. You can
do this manually by calling the Zone.sifUnsubscribe method.

SIF_Provide & SIF_Unprovide Messages
Agents that wish to be the authoritative or default provider of an object type in a zone
must send a SIF_Provide message for each object type. This instructs the zone integ-
ration server to route undirected SIF_Requests to the agent. Note only one agent in a
zone can be designated the provider of an object type. This does not preclude other
agents from responding to SIF_Request messages explicitly directed at them, so you
can still write Publisher message handlers for objects even if your agent is not assum-
ing the role of provider.

The ADK handles sending SIF_Provide messages for you when the Zone.connect
method is called. It determines the list of objects by examining the Publisher message
handlers that have been registered with the zone. If the ADKFlags.PROV_PROVIDE flag
was passed to the setPublisher method, a SIF_Provide message is sent for that
object. If this flag is not used, the ADK does not automatically send a SIF_Provide
message.

It is important that agents register message handlers with Zones and Topics before call-
ing Zone.connect to ensure the appropriate provisioning messages are sent.

The ADK does not automatically send SIF_Unprovide messages to zones. You can do
this manually by calling the Zone.sifUnprovide method.

Working with Multiple Versions of SIF
The ADK supports all versions of SIF 1.0r1 and later. Agents developed with the ADK
can operate in mixed environments where not all agents connected to a zone use the
same version of SIF. In most cases, you do not need to worry about SIF versioning be-
cause the ADK handles the details for you. For example, when a SIF_Request is re-
ceived the ADK formats your responses to conform to the version of SIF specified by
the requestor.

OpenADK for Java – Developer’s Guide 2.4 37

Default Version
Although the ADK supports multiple versions of SIF simultaneously, you need to de-
clare the “default version” your agent will use. This is done at agent startup when ini-
tializing the class framework. Unless you specify otherwise, the “default version” is
the latest version of the SIF Specification supported by the ADK. This is a global set-
ting that applies to all zones to which the agent is connected for the current session.

All outbound messages generated by your agent will be rendered according to the de-
fault version. For inbound messages, the ADK inspects the xmlns and Version attrib-
utes of the SIF_Message envelope to decide which version to use when parsing the
message. If the version of a message is supported by the ADK, the message is parsed
accordingly regardless of the default version you declared when you initialized the
ADK. Thus, agents can operate in mixed environments because they are able to re-
ceive and process messages from any sender.

If the ADK receives a message for a version of SIF it does not support, an error
SIF_Ack is returned to the sender:

<SIF_Error>
<SIF_Category>12</SIF_Category>
<SIF_Code>2</SIF_Code>
<SIF_Desc>SIF 2.0r6 is not supported</SIF_Desc>
<SIF_ExtendedDesc>http://www.sifinfo.org/v2.0r6/messages</SIF_ExtendedDesc>

</SIF_Error>

How the ADK Registers Multiple Versions with a Zone
When the ADK sends a SIF_Register message to a zone, it declares the versions of
SIF the agent will support by including one or more SIF_Version elements in the re-
gistration message. These elements let the Zone Integration Server know which ver-
sions of the specification your agent is capable of supporting, as well as the version it
considers to be its default. The server can then avoid sending messages to the agent if
it does not support those messages.

The ADK uses several factors in determining how to prepare the SIF_Version ele-
ments of the SIF_Register message:

 The default version of SIF used by the agent
 The versions of SIF supported by the ADK
 The latest version of SIF supported by the Zone Integration Server

Note that with the SIF 1.1 specification released in early 2003, agents may declare sup-
port for more than one version of the standard. However, earlier versions of SIF re-
stricted the agent to declaring only a single version number. To avoid incompatibilit-
ies with earlier Zone Integration Servers that do not yet support SIF 1.1, the ADK
takes the following approach to registration:

• It assumes the Zone Integration Server supports SIF 1.1 or later and therefore will
accept registration messages that use SIF 1.1 conventions. If this is not the case,
call the AgentProperties.setZisVersion method to inform the ADK of the
latest version supported by the Zone Integration Server. To ensure the server ac-

OpenADK for Java – Developer’s Guide 2.4 38

cepts its registration messages, the ADK will prepare the SIF_Register message
to conform to this version of SIF.

• The ADK declares each version of SIF it supports in the SIF_Register message

• The ADK declares the agent’s default version of SIF to be the version passed to
the ADK.initialize method at agent startup. By default, this value is the latest
version supported by the ADK

To illustrate, consider an agent that has initialized the ADK to use SIF 1.0r1 as the
agent’s default version, but is connecting to a Zone Integration Server that supports
SIF 1.1. The class framework will send the following SIF_Register message to the
server using a SIF 1.1 message envelope, declaring all versions of the specification
supported by the ADK, and declaring the default version to be SIF 1.0r1:

<SIF_Message xmlns=”http://www.sifinfo.org/infrastructure/1.x” Version=”1.1”>
<SIF_Register>
...
<SIF_Version>1.0r1</SIF_Version>
<SIF_Version>1.0r2</SIF_Version>
<SIF_Version>1.1</SIF_Version>
...

If this agent were to call AgentProperties.setZisVersion(“1.0r1”) to inform the
ADK that the latest version supported by the Zone Integration Server is 1.0r1, the
SIF_Register message would be sent in a SIF 1.0r1 message envelope and would
only include a single SIF_Version element per SIF 1.0r1 specifications:

<SIF_Message xmlns=”http://www.sifinfo.org/v1.0r1/messages”>
<SIF_Register>
...
<SIF_Version>1.0r1</SIF_Version>

Agent Logging

Server Logging
With SIF 1.5 and later, an agent can contribute to the zone integration server’s logs by
reporting a SIF_LogEntry object to a zone via an Add event. SIF_LogEntry can be
used to log simple error messages, or it can be used to refer to a SIF_Message and a
set of data objects previously received by the agent. It is designed to be used just like
any other object in the Schools Interoperability Framework. SIF_LogEntry particip-
ates in both the request and response and subscription models of SIF and may have a
designated provider agent in each zone, a role that’s usually assumed by the zone in-
tegration server.

One notable difference between SIF_LogEntry and other objects in SIF is that it only
supports Add events; you cannot Change or Delete log entries once they’ve been pub-
lished to a zone. Another difference is in the way SIF_LogEntry events are reported
by the ADK. Rather than construct an instance of SIF_LogEntry and report an event
with the normal Zone.reportEvent method, agents call the methods of the Server-
Log class, available from each zone by calling the Zone.getServerLog method.

OpenADK for Java – Developer’s Guide 2.4 39

The ServerLog Class
The ServerLog class represents a logical log container on the server, and can be exten-
ded and customized to support logging mechanisms other than SIF_LogEntry. In ad-
dition, it handles some of the more complicated underlying details of constructing
SIF_LogEntry objects, such as replicating the event header in the object’s SIF_Lo-
gEntryHeader element.

Follow these steps to report a SIF_LogEntry to a zone:

1. Call the Zone.getServerLog method to obtain the zone’s ServerLog instance.
This class is defined in the openadk.library.log package.

2. Call one of the forms of the ServerLog.log method to report a log entry to the
zone integration server.

The following example reports a simple text message to the server:

 myZone.getServerLog().log(“Agent started synchronization”);

Other forms of the log method exist that let you pass more information, such as ex-
tended message text and an error category and code:

 MyZone().getServerLog().log(
 LogLevel.ERROR,
 “Agent has run out of memory and will shut down”,
 outOfMemoryException.getMessage(),
 “SYS-100”, /* Application-defined error code */
 LogEntryCodes.CATEGORY_ERROR,
 LogEntryCodes.CODE_AGENT_FAILURE);

Logging References to SIF Messages & SIF Data Objects
The code examples above show how to write simple messages to the server log. One
of the major benefits of the SIF_LogEntry object is that it can optionally refer to a pre-
viously received SIF_Message and set of data objects. This information can be used by
consumers of SIF_LogEntry to associate log entries with messages and data for mes-
sage tracking and analysis purposes.

To include a reference to a previous SIF_Message, call the form of ServerLog.log
that accepts a SIFMessageInfo parameter. SIFMessageInfo is passed to all ADK mes-
sage handler functions and contains header information that the ADK will use to
build the SIF_LogEntry/SIF_OriginalHeader element.

The following example shows how to report a SIF_LogEntry object that indicates an
agent was unable to process a SIF_Event because of a failure in the application’s busi-
ness rules. The SIFMessageInfo instance passed to the Subscriber.onEvent method,
which contains header information describing the SIF_Event message, is passed to
the log method. In addition, the subject of the failure, a StudentPersonal object, is
packaged into an array and passed as the final parameter to that method.

OpenADK for Java – Developer’s Guide 2.4 40

 // Subscriber message handler
 public void onEvent(Event ev, Zone zone, MessageInfo inf)
 throws ADKException
 {
 ...
 if(failedObject != null)
 {
 MyZone().getServerLog().log(
 LogLevel.ERROR,
 “Could not delete student John Smith due to a business rule”,
 null, /* no extended description */
 null, /* no application-defined error code */
 LogEntryCodes.CATEGORY_DATA_ISSUES_WITH_FAILURE,
 LogEntryCodes.CODE_BUSINESS_RULE_FAILURE,
 (SIFMessageInfo)inf,

 new SIFDataObject[] { failedObject });
 }

Using ServerLog with Versions of SIF Prior to 1.5
The SIF_LogEntry object was not introduced into the Schools Interoperability Frame-
work specification until 1.5. When an agent is running in an earlier version of the spe-
cification, the ServerLog class does not send SIF_LogEntry objects to the server. In-
stead, it writes the error message and code information passed to the log method to
the local agent log for the zone.

Echoing SIF_LogEntry to the Agent Log
By default, the ADK automatically writes a summary line to the local agent log for the
zone whenever the ServerLog.log method is called. The summary line includes the
following elements from the SIF_LogEntry object:

 SIF_Desc

 SIF_ExtendedDesc

 SIF_Category

 SIF_Code

 SIF_ApplicationCode

The SIF_OriginalHeader and SIF_LogObject elements, if present, are not included
in the summary line.

The echoing of SIF_LogEntry messages is generally recommended because it allows
administrators to view important log information from either the agent or server logs.
Further, there is no guarantee that a zone will consume SIF_LogEntry events; it may
in fact ignore them if the ZIS does not have internal support for this object type and
there are no subscribers in the zone. Nonetheless, you can disable the echo feature by
adjusting the settings of the class framework’s default ServerLogModule implementa-
tion module:

1. Obtain the ServerLog instance at the top of the class framework’s logging chain
by calling ADK.getServerLog

2. Call the ServerLog.getLoggers method to obtain an array of ServerLogModule
implementations.

OpenADK for Java – Developer’s Guide 2.4 41

3. Enumerate the array. For each instance, call the getID method. If the string re-
turned equals “DefaultServerLogModule”, proceed to step 4.

4. Cast the ServerLogModule instance to openadk.library.log.DefaultServerLog-
Module and call its setEcho method with a value of false

The following code illustrates:

 // Disable the echoing of ServerLog entries to the local agent log
 ServerLog root = ADK.getServerLog();
 ServerLogModule[] loggers = root.getLoggers();
 for(int i = 0; i < loggers.length; i++) {
 if((loggers[i].getID().equals(“DefaultServerLogModule”)) {
 ((DefaultServerLogModule)loggers[i]).setEcho(false);
 }
 }

The Agent’s Work Directory
When the Agent.initialize method is called, the ADK creates a work directory on
the local file system. This directory is used to store SIF_Response packets pending
delivery to the ZIS as well as messages that are too large to fit in memory. It is also
used by the Agent Local Queue when writing messages to the local file system.

The location of the work directory is relative to the agent’s home directory, obtained
by calling the Agent.getHomeDir method. The default implementation of this method
chooses a home directory as follows:

• If the adk.home System property is set, it is used as the home directory

• If the adk.home System property is not set, the user.dir System property is used
instead. On most Java platforms this property is set to the directory from which
the Java program was started.

You may override the Agent.getHomeDir method to return an alternate home direct-
ory if your agent has unique requirements. If the Agent.initialize method cannot
verify the work directory exists, or cannot create it, an exception is thrown.

OpenADK for Java – Developer’s Guide 2.4 42

Part III
C O R E C L A S S E S

4. The ADK Class
The openadk.library.ADK class represents the ADK library as a global resource of
your agent. It is used to initialize the class framework and to set properties that affect
the ADK’s behavior at runtime. You cannot create an instance of this class directly; in-
stead, it is established automatically when the ADK.initialize method is called.

Initializing the Class Framework
Prior to calling any ADK methods or instantiating SIFDataObject classes, you must
first initialize the class framework. The static ADK.initialize method accepts two
parameters:

public static void initialize(
 SIFVersion defaultVersion,
 int sdoLibraries)

 throws ADKException;

Parameter Description
defaultVersion Identifies the default version of SIF your agent will use.

Because it supports multiple versions of SIF concurrently, the
ADK is capable of processing incoming messages regardless of
version number. However, it requires that you declare a default
version to be used for outbound messages originating from the
agent. Most of the time you will want to use the latest version
supported by the ADK, but on occasion it may be necessary to run
your agent as if it was written for an earlier version of the SIF
Specification.

The default version is a global setting.

Refer to Working with Multiple Versions of SIF on page 37 for
more information.

sdoLibraries Identifies the SIF Data Object modules to load into memory.

Constants are defined by the openadk.library.SDO class. To load
multiple modules into memory, logically OR the constants; for in-
stance, (SDO.STUDENT|SDO.LIBRARY) loads SIF Data Objects

OpenADK for Java – Developer’s Guide 2.4 43

from both the Student Information Systems working group and
the Library Automation working group.

If an SDO module is not loaded, any constants from the SIFDTD
class defined by the module are null and cannot be used at
runtime. You will receive IllegalStateExceptions when trying to
reference objects from an SDO module that is not loaded.

For example,

// Initialize the ADK to use SIF 1.1 and to load the SIS and Food
 // Services SDO modules
ADK.initialize(SIFVersion.SIF_11, SDO.STUDENT | SDO.FOOD);

Calling the ADK.initialize method with no parameters uses the latest version of SIF
supported by the class framework and loads all SDO modules loaded into memory:

public static void initialize()
throws ADKException;

When to Initialize
Initialization is typically done early on in your agent’s startup routine—in the pro-
gram’s main function or in Agent.initialize. If you perform ADK initialization
from your Agent.initialze method, be sure to do so before calling the superclass im-
plementation.

For example,

 public class MyAgent extends Agent
 {
 public void initialize()
 {
 // Initialize the ADK
 ADK.initialize();

 // Now call the superclass
 super.initialize();

Debug Output
The ADK features rich debugging support via the Apache Log4J library. By default,
minimal debugging is enabled when the ADK is initialized. You may adjust this set-
ting at agent startup depending on the configuration file or command-line options of
your agent by modifying the ADK.debug value directly:

OpenADK for Java – Developer’s Guide 2.4 44

// Turn off debugging
ADK.debug = ADK.DBG_NONE;

// Turn on minimal debugging
ADK.debug = ADK.DBG_MINIMAL;

// Turn on only logging of Exceptions and detailed messaging traces
 // with content
ADK.debug = ADK.DBG_EXCEPTIONS |

ADK.DBG_MESSAGING_DETAILED |
 ADK.DBG_MESSAGING_CONTENT;

We suggest experimenting with the ADK’s various debug flags so you can see what
kinds of messages are written to the log when each is enabled. It’s also a great way to
learn what the ADK is doing under the hood as it sends and receives SIF messages.
Each of the example agents look for a “/debug n” option on the command-line, where
n is a debugging level in the range 0 through 5. Try running the example agents with
different debug levels turned on.

Redirecting Debug Output to a Log File
The default output for debug messages is the Java console. To redirect all log output
to a log file, call the static ADK.setLogFile method or set the adk.log.file System
property prior to ADK initialization. This can be done programmatically as shown be-
low, or by specifying the /D option on the Java command-line.

// Redirect log output to “agent.log”
System.setProperty(“adk.log.file”, “agent.log”);

// Initialize the ADK
ADK.initialize();

From the Java command-line:

java /Dadk.log.file=c:/temp/myagent.log ...

Other Ways to Redirect Debug Output
Because the ADK uses Apache’s Log4J library as its underlying log library, you can
customize that system to redirect output to the Windows NT Event Viewer, to a rela-
tional database, or to any other “appender” class for the Log4J environment. The ADK
class framework defines several static Category objects that you can access and ma-
nipulate with the Log4J API:

 To obtain a reference to the ADK’s Category instance, reference the static ADK.log
variable directly; the class framework writes debug messages to this Category pri-
or to agent initialization

 To obtain a reference to the Agent’s Category instance, call the Agent.getLog
method; the class framework writes global, zone-independent debug messages to
this Category

 To obtain a reference to a Zone’s Category instance, call the version of the
Agent.getLog method that accepts a Zone parameter; the class framework writes
zone-specific debug messages to these Categories

OpenADK for Java – Developer’s Guide 2.4 45

Other ADK Static Methods
Most of the other public methods of the ADK class are used internally by the class
framework. Refer to the Javadoc for a complete description of each.

Method Description
getADKVersion Gets the version of the ADK library
getSIFVersion Gets the default version of SIF in effect for the

agent. This is the SIFVersion argument passed to
the initialize method, or if none was provided,
the latest version of SIF supported by the class
framework.

getSupportedSIFVersion Enumerates all SIF versions supported by the
class framework

getTransportProtocols Enumerates all transport protocols supported by
the class framework

initialize Initializes the ADK
isInitialized Determines if the ADK has been initialized
isSIFVersionSupported Determines if a SIF version is supported by the

class framework
makeGUID Creates a Globally Unique Identifier
setLogFile Redirects log output to a file

Summary

 The ADK class represents the class framework as a resource of your application
 You cannot create instances of the ADK class; all of its methods are static
 Call the ADK.initialize method prior to using other classes in the framework
 Set the debugging flag and optionally redirect debugging to a log file prior to ini-

tializing the class framework

5. The Agent Class
The openadk.library.Agent class represents your SIF Agent to the framework and
typically houses the main program entry point. Derive a class from Agent and over-
ride the initialize method to perform all initialization and startup tasks, such as
setting global agent properties, optionally establishing Topics, and connecting to
zones.

To use the Agent class,

 Derive a class from openadk.library.Agent
 Create an instance of your Agent class
 Call the Agent.initialize method

OpenADK for Java – Developer’s Guide 2.4 46

Constructor
The Agent constructor requires that you pass the SourceId by which your agent will be
identified in all messages it generates. The SIF Specification requires that each agent in
a zone have a unique SourceId value.

 public class MyAgent extends Agent
 {
 public MyAgent()
 {
 this(“MyCompanyAgent”);

 }

 public MyAgent(String sourceId)
 {

 super(sourceId);

 setName(“Descriptive Agent Name”);
 }

The SourceId of your agent should be a configurable value so that administrators can
change it if necessary—for instance, in the unlikely event another vendor has selected
the same default SourceId as you have, or the administrator wants to run multiple cop-
ies of the agent. You may call the Agent.setSourceId method to change the value
after construction, but this should be done prior to connecting to any zones. Changing
the SourceId after your agent has connected to zones will result in errors from the
Zone Integration Server.

Agent Initialization
Before using an instance of the Agent class, it must be initialized:

// Create and initialize the Agent object
MyAgent agent = new MyAgent();
agent.initialize();

The initialize method is a great place to centralize your own agent startup tasks.
Agents typically override this method to:

 Set default agent properties (e.g. Push or Pull mode)
 Set default transport protocol settings (e.g. the port number for Push mode)
 Optionally establish one or more Topics
 Connect to one or more zones

The remainder of this chapter covers each of these tasks in greater detail. You may
want to refer to the ADK Example agents for a working example—use these agents as
a starting point for creating your own.

When overriding the initialize method, make sure to call the superclass:

OpenADK for Java – Developer’s Guide 2.4 47

public class MyAgent extends Agent
{
public void initialize() throws Exception
{
super.initialize();

// Set default properties
AgentProperties props = getProperties();
props.setMessagingMode(AgentProperties.PUSH_MODE);

// Set transport protocol properties
...

Agent Properties
The ADK defines a fairly large set of operational properties that can be configured
programmatically or at runtime with the /D Java command-line option. Some proper-
ties are used to control basic SIF functionality—such as whether Push or Pull mode
should be used to communicate with the Zone Integration Server, what port to listen
on for Push mode, and so on—while others let you fine-tune how the class framework
implements the SIF standard.

ADK properties are encapsulated by the AgentProperties class. There is one instance
of this class for the agent and one instance for each zone. To access the default Agent-
Properties object, call Agent.getProperties. Next, call the get and set methods of
this object to change the default properties inherited by all zones.

// Enable Pull mode with a polling frequency of 1 minute
AgentProperties props = myAgent.getProperties();
props.setMessagingMode(AgentProperties.PULL_MODE);
props.setPullFrequency(60000);

Most properties can be set on a zone-by-zone basis as well. To access the AgentProp-
erties object of a specific zone, call Zone.getProperties. The property values set on
this object apply only to the zone. For example, to instruct the class framework to use
Push mode for one zone in particular,

// Create the “district” zone and instruct it to use Push mode
Zone dz = getZoneFactory().getInstance(
 “DistrictZone”, “http://209.11.65.3:7500/DistrictZone”);

AgentProperties zoneProps = dz.getProperties();
zoneProps.setMessagingMode(AgentProperties.PUSH_MODE);

// Also change default security settings for this one zone
zoneProps.setEncryptionLevel(3);
zoneProps.setAuthenticationLevel(3);

Specifying Properties on the Java Command-Line
When the Agent.initialize method is called, the ADK scans all Java system proper-
ties for entries that begin with the “adk.” prefix. If any are found, they’re assigned to
the AgentProperties object as defaults. By using the /D option on the Java com-
mand-line, you can dynamically adjust the ADK’s settings at runtime without making
any changes to code or configuration files.

For example, the following command-line changes the messaging mode to Push:

OpenADK for Java – Developer’s Guide 2.4 48

java /Dadk.messaging.mode=Push –classpath ...

Common Properties
Refer to the Javadoc for a comprehensive list of settings defined by the AgentProper-
ties class. Some of the more commonly-used properties are summarized below. Those
marked with  are global and cannot be defined on a zone-by-zone basis.

Property Name / Default Value Description

adk.defaultTimeout

Default: 30000 ms

The default timeout value used by the
ADK when the agent does not provide a
specific value

adk.messaging.effectiveBufferSize

Default: 32000 bytes

The internal buffer size used by the class
framework; determines when data is off-
loaded to disk

adk.messaging.keepMessageContent

Default: “false”

When true, the SIFMessageInfo.getMes-
sage method returns the XML content of
the message as it was received by the Zone
Integration Server. When false, the class
framework does not preserve message
content and therefore returns a null when
this method is called.

adk.messaging.maxBufferSize

Default: 20000000 bytes

The SIF_MaxBufferSize value used by
the agent when sending SIF_Register
and SIF_Request messages

adk.messaging.mode

Default: “Push”

The messaging mode used to communic-
ate with the Zone Integration Server; may
be set to either “Push” or “Pull”

adk.messaging.pullFrequency

Default: 30000 ms

Determines how often the ADK polls the
Zone Integration Server for messages
when running in Pull mode

adk.messaging.transport

Default: “http”

The transport protocol used to communic-
ate with the Zone Integration Server.

adk.messaging.sleepOnDisconnect

Default: “true”

Determines if a
SIF_SystemControl/SIF_Sleep message
is sent to a zone when the Zone.discon-
nect or Agent.shutdown method is called

adk.provisioning.mode

Default: “adk”

The Provisioning Mode in effect for the
agent. The class framework defines three
such modes: ADK-managed, Agent-man-
aged, and ZIS-managed

adk.security.authenticationLevel

Default: 0

The minimum authentication level that
must be in effect by any channel over
which the agent’s messages are allowed to
travel. The ADK uses this value when con-
structing SIF message headers (i.e. the
SIF_Header/SIF_Authentication-Level
element)

adk.security.encryptionLevel The minimum encryption level that must

OpenADK for Java – Developer’s Guide 2.4 49

Property Name / Default Value Description

Default: 0
be in effect by any channel over which the
agent’s messages are allowed to travel.
The ADK uses this value when construct-
ing SIF message headers (i.e. the
SIF_Header/SIF_EncryptionLevel ele-
ment)

Of all properties, three are changed most often:

 adk.messaging.mode

 adk.messaging.pullFrequency

 adk.transport.protocol

Transport Protocols
The ADK supports two transport protocols by default:

 HTTP
 HTTPS

Additional protocols may be offered in the future.

Prior to connecting your agent to any zones, you should set transport properties as
needed. Push-mode agents in particular must set the HTTP/HTTPS port on which to
listen for messages. The ADK does not assume a default port. (Pull mode agents do
not establish a local port for listening so this is not a requirement when running in
Pull mode). In addition, you can change the IP address to listen on if more than one
network card is installed. By default, the ADK listens on all addresses.

HTTP is the default transport protocol. To change it, call the AgentProperties.-
setTransportProtocol method and pass the text name of a protocol supported by
the ADK (e.g. “http” or “https”). Note you can obtain the correct name from the
TransportProperties object as shown below.

// Set HTTPS properties
HttpsProperties https = myAgent.getDefaultHttpsProperties();
https.setPort(9443);
https.setRequireClientAuth(true);

// Change the default protocol to HTTPS
AgentProperties props = myAgent.getProperties();
props.setTransportProtocol(https.getProtocol());

Transport Properties
Each transport protocol supported by the ADK is assigned a “default” Transport-
Properties object used by all zones. For HTTP and HTTPS, subclasses exist that
make it easier to get and set properties specific to those protocols. You can obtain the
default properties with the following methods:

OpenADK for Java – Developer’s Guide 2.4 50

// Get the default properties for a protocol (e.g. “http” or “https”)
TransportProperties getDefaultTransportProperties(String protocol)
// Get the default HTTP properties
HttpProperties getDefaultHttpProperties();

// Get the default HTTPS properties
HttpsProperties getDefaultHttpsProperties();

The latter methods are convenience methods. If you call getDefaultTransportProp-
erties directly instead of using one of these convenience methods, you should cast
the return value to the appropriate subclass. For example,

HttpProperties http = (HttpProperties)getDefaultTransportProperties(“http”);

Setting Default HTTP Properties
To change the default HTTP properties for the agent,

• Obtain the HttpProperties object from the Agent instance:

HttpProperties http = myAgent.getDefaultHttpProperties();

• Call the HttpProperties setter methods to adjust settings:

// Change the push port to 12000 and the push address to 210.1.45.15
http.setPort(12000);
http.setHost(“210.1.45.15”);

Setting Default HTTPS Properties
Refer to the “HTTPS” section in the Deployment chapter for more information regard-
ing HTTPS.

To change the default HTTPS properties for the agent,

• Obtain the HttpsProperties object from the Agent instance:

HttpsProperties https = myAgent.getDefaultHttpsProperties();

• Call the HttpsProperties setter methods to adjust settings:

https.setPort(12443);
https.setKeystore(“agent.cer”);
https.setKeystorePassword(“changeit”);
https.setRequireClientAUth(false);

Specifying Properties on the Java Command-Line
You can also define Transport Properties on the command-line using the following
naming convention: “adk.transport.protocol.property=value”, where protocol is
one of the transport protocols supported by the ADK like “http” or “https”. For ex-
ample, to change the default HTTP port number used by Push mode agents,

OpenADK for Java – Developer’s Guide 2.4 51

java /Dadk.transport.https.port=7505 /Dadk.transport.https.keystore=
zis.cer /Dadk.transport.https.requireClientAuth=true

Customizing the Default Transport Properties for a Zone
The ADK uses the default transport properties whenever it needs to establish a listen-
ing socket for Push-mode agents. Thus, the defaults can be used for all zones to which
your agent connects.

However, if you want to customize a specific zone with its own transport properties—
for example, to require Client Authentication on one zone in particular—you can cre-
ate your own TransportProperties instance and assign it to a zone directly. The
ADK will then use your custom properties for that zone instead of choosing the de-
faults.

When creating a new TransportProperties object, you must supply the constructor
with an object from which default values can be inherited. Simply pass the default
transport properties as illustrated below:

// Obtain the default properties for HTTPS
HttpsProperties httpsDefs = getDefaultHttpsProperties();
httpDefs.setClientAuth(false);
httpDefs.setPort(12443);
// Create a new TransportProperties instance with custom values
TransportProperties myZoneHttps = new TransportProperties(httpsDefs);
myZoneHttps.setPort(12444);
myZoneHttps.setHost(“10.0.0.4”);
myZoneHttps.setClientAuth(true);

// Assign custom properties to myZone
Zone myZone = getZoneFactory().getZone(“myzone”);
myZone.setTransportProperties(myZoneHttps);

Agent Shutdown
The Agent.shutdown method performs important cleanup tasks:

• Closes resources held internally by the ADK

• Calls the disconnect method of each Zone instance, which by default sends a
SIF_Sleep message to prevent the Zone Integration Server from pushing mes-
sages while the agent is off-line

• If the ADKFlags.PROV_UNREGISTER flag is passed to the shutdown method, a
SIF_Unregister message to each zone to unregister the agent and permanently
clear the contents of its queue on the server.

Agent.shutdown should always be called when the agent is terminated. You can en-
sure this by using a try-finally block in your main function as illustrated by all
ADK Example agents.

Lifecycle Considerations
Although we tend to think of SIF Agents as clients of the Zone Integration Server,
agents play the role of a server, too. They should run at all times to process messages

OpenADK for Java – Developer’s Guide 2.4 52

received by the ZIS on behalf of the local application, even when the ZIS is not avail-
able or the local application is not running.

To build a robust SIF Agent, you should give special attention to its lifecycle:

• Implement the agent’s main thread so that it runs even when there is no mes-
saging activity; or, if embedded in another Java application, ensure the agent’s
thread is allowed to run in the background at all times

• Wrap the agent in an NT Service on Microsoft Windows platforms—or as an equi-
valent service-level process on other platforms—so that it will launch unattended
when the computer is started

• Implement a “Connection Watchdog” to retry the connection of zones when the
agent starts up it may be started before the Zone Integration Server, particularly if
both are running on the same server and it is rebooted.

• When a critical resource is lost—such as a database connection—call the
Zone.sleep method to temporarily halt messaging between the agent and that
zone. When the resource is recovered, call the Zone.wakeup method to restore
messaging. Placing an agent in sleep mode not only prevents the Zone Integration
Server from attempting to push messages to it, but also signals system adminis-
trators that the agent is off-line and may be experiencing a problem.

Preventing the Main Thread from Ending
If your agent runs external to your application, you can prevent the main thread from
ending as illustrated in the code below. The approach taken here is two-fold: First, a
Java “shutdown hook” is installed so that the agent can detect when the virtual ma-
chine is being terminated. This is a feature of Java 1.3 and later. Second, a semaphore
is created to block the thread until the shutdown hook is called.

When used in combination, this approach effectively prevents your agent’s main
thread from ending until Ctrl+C is pressed in the Java console, the System.exit
method is called, or the operating system requests that the process be terminated.

OpenADK for Java – Developer’s Guide 2.4 53

static Object sLifecycle = new Object();

public static void main(String[] args)
{
MyAgent agent = null;

try
{
// Create and initialize the agent
agent = new MyAgent();
agent.initialize();

// Do whatever else is required by your agent at startup time

// Create a “shutdown hook” to notify the sLifecycle object
 // when Java is exiting

final Object _lifecycle = sLifecycle;
Runtime.getRuntime().addShutdownHook(
new Thread() {
public void run() {
synchronized(_lifecycle) {
_lifecycle.notifyAll();

}
}

}
);

// Wait for the shutdown hook to notify the sLifecycle object
synchronized(sLifecycle) {
sLifecycle.wait();

}

// Agent is now ending...

}
finally
{
// Ensure Agent.shutdown is always called
if(myAgent != null) {
try {
myAgent.shutdown();

} catch(Exception e) {
System.out.println(e);

}
}

}

Notice a try-finally block is created to ensure the agent is shutdown properly. Shut-
ting down the agent is necessary so it can free its local resources (e.g. close the local
queues, etc.) and disconnect from zones.

OpenADK for Java – Developer’s Guide 2.4 54

Public Interface
Refer to the Javadoc for a complete description of each method.

Method Description
getDefaultHttpProperties Gets the default HTTP transport properties. This

is a convenience method equivalent to calling
getTransportProperties with a value of “http”
and casting the result to an HttpTransportProp-
erties object.

getDefaultHttpsProperties Gets the default HTTPS transport properties. This
is a convenience method equivalent to calling
getTransportProperties with a value of
“https” and casting the result to an HttpsTrans-
portProperties object.

getTransportProperties Gets the default TransportProperties object for
a transport protocol supported by the ADK

getHomeDir Gets the agent’s home directory
getId Gets the SourceId value passed to the constructor.

The agent is known by this unique name to all
zones with which it is registered.

getLog Gets the Log4J “category” for the agent or for a
specific zone

getName Gets the agent product name. By default, this
method returns the value returned by getId. The
ADK calls this method to obtain the UserAgent
header for HTTP messages sent to Zone Integra-
tion Servers. Override this method to specify your
own product name.

getProperties Gets the AgentProperties object. These are glob-
al properties inherited by all zones.

getPublisher Gets the global Publisher message handler for a
specific SIF object type. This message handler will
be called when a SIF_Request message is received
but a Publisher has not been registered with the
source zone or topic.

getQueryResults Gets the global QueryResults message handler for
a specific SIF object type. This message handler
will be called when a SIF_Response message is re-
ceived but a QueryResults has not been registered
for the source zone or topic.

getReportPublisher Gets the global ReportPublisher message handler
for Vertical Reporting agents. This message hand-
ler will be called when a SIF_Request message for
SIF_ReportObject objects is received but a Report-
Publisher has not been registered for the source
zone or topic.

getSubscriber Gets the global Subscriber message handler for a
specific SIF object type. This message handler will

OpenADK for Java – Developer’s Guide 2.4 55

be called when a SIF_Event message is received
but a Subscriber has not been registered for the
source zone or topic.

initialize Initialize the agent. This method must be called
prior to calling any other function of the Agent
class.

IsInitialized Determines if the initialize method has been
called to initialize the agent.

isShutdown Determines if the shutdown method has been
called to shut down the agent.

makeGUID Creates a Globally Unique Identifier (a SIF RefId)
setPublisher Registers a global Publisher message handler with

the Agent class.
setQueryResults Registers a global QueryResults message handler

with the Agent class.
setReportPublisher Registers a global ReportPublisher message hand-

ler with the Agent class.
setSubscriber Registers a global Subscriber message handler

with the Agent class.
shutdown Shutdown the Agent by closing local resources

and sending a SIF_Sleep message to each zone to
which the agent is connected. Agents should al-
ways call this method prior to terminating.

sleep Sends a SIF_Sleep system control message to
each zone to which the agent is connected.

wakeup Sends a SIF_Wakeup system control message to
each zone to which the agent is connected.

Summary

 The Agent class represents your SIF Agent to the class framework
 Derive a class from openadk.library.Agent
 Pass the agent’s unique SourceId to the constructor
 Override the initialize method to set default agent and transport properties;

don’t forget to call the superclass implementation
 The ADK does not assign a default HTTP or HTTPS port to agents, so you must

set this transport property during agent initialization (only applicable when the
agent is running in Push mode)

 Call the initialize method prior to connecting to zones
 Call the shutdown method when the agent process is ending

OpenADK for Java – Developer’s Guide 2.4 56

6. Zones & Topics
About Zones

The concept of a “zone” is central to the architecture of the Schools Interoperability
Framework. A zone is a logical entity in which application integration takes place
among two or more agents. Each zone is managed by a Zone Integration Server.

With the ADK, you can build agents that have the ability to connect to multiple zones
for district-wide installations of SIF.

Zone Objects
Zones are represented by the openadk.library.Zone interface. During agent startup,
you obtain Zone instances for each of the zones your agent will connect to by calling
the methods of the ZoneFactory class. The zone factory is a global resource of the
agent that serves to create new Zone objects and to keep track of which zones the
agent is connected to. Call the Agent.getZoneFactory method to obtain a reference
to the zone factory:

public void initialize() throws Exception
{
super.initialize();

// Obtain Zone instances for each zone the agent will connect to
ZoneFactory factory = getZoneFactory();
...

Next, call the getInstance method to obtain a Zone instance. If this is the first time
calling this method for a zone, the factory returns a new Zone object. Subsequently, the
same object will be returned.

// Obtain Zone instances for each zone the agent will connect to
ZoneFactory factory = getZoneFactory();
Zone[] zones = new Zone[] {
factory.getInstance(“MyZone”, “http://localhost:7080/MyZone”),
factory.getInstance(“DistrictZone”, “https://zis.org:7443/DistrictZone”),

};

We recommend reading a list of zones from a configuration file and providing a
graphical user interface from which system administrators can manage zones and op-
tionally specify properties for each, such as whether Push or Pull mode is to be used.
Most of the ADK Examples allow you to specify zones in a configuration file as well
as on the command-line.

Zone IDs and URLs
The first parameter to the getInstance method is the Zone ID. The Zone ID is usually
a short string such as “DISTRICT_ZONE” or “Ramsey” that is chosen by the server
administrator when configuring the ZIS. When connecting to the ZIS, keep in mind
that zone identifiers are case-sensitive and cannot include spaces or special characters
like the period, colon, and ampersand.

OpenADK for Java – Developer’s Guide 2.4 57

The second parameter to the getInstance method is the zone URL. The ADK con-
nects to the zone by sending an HTTP or HTTPS request to this URL, so it must begin
with http: or https: when these two transport protocols are used. The format of the
URL is specific to the ZIS product you’re using. With the ZIS, the URL must be in the
following format, where zoneID is case-sensitive and identifies a zone on the server
(e.g. “Ramsey”):

http://host:port/zoneID

Connecting to Zones
Once a Zone instance has been obtained from the ZoneFactory, you can establish a
connection with the Zone Integration Server. Once connected, the ADK may immedi-
ately begin to receive messages from the server so it is important a few setup tasks be
performed first:

• If Topics are being used as discussed in the next section, join the zone with one or
more topics by calling the Topic.join method. Any messages received from the
zone will be dispatched to the message handler of the appropriate topic.

• If Topics are not being used—or you want to handle message processing specially
for a zone—register Publisher, Subscriber, and QueryResults message handlers dir-
ectly with the zone instance by calling its setPublisher, setSubscriber, and
setQueryResults methods. These message handlers are discussed in chapters 7,
8, and 10.

• If a zone is to have custom properties that differ from the agent’s defaults, prepare
an AgentProperties object and set any zone-specific values. This properties ob-
ject can then be passed to the zone.connect method.

Once the above tasks are complete, call the Zone.connect method to establish a con-
nection with the zone. Depending on the flags passed to that method and the message
handlers registered with the zone and topic classes, the ADK may send a combination
of SIF_Register, SIF_Subscribe, SIF_Provide, and SIF_Ping messages at this
time.

There are two forms of the Zone.connect method:

public void connect(int adkFlags)
throws ADKException;

public void connect(int adkFlags, AgentProperties properties)
throws ADKException;

• The adkFlags parameter should be set to ADKFlags.PROV_REGISTER to send a
SIF_Register message to the zone. It is recommended that you always send a re-
gistration message because it wakes up the agent if previously sleeping and re-
leases all messages blocked with Selective Message Blocking. To connect to a zone
without sending a SIF_Register message, specify the ADKFlags.PROV_NONE flag or
a value of zero.

No other ADKFlags have an effect on the connect method.

OpenADK for Java – Developer’s Guide 2.4 58

• The properties parameter defines properties specific to this zone only. By de-
fault, a zone inherits the agent’s default properties. Refer to the Zone Properties
section below for more information.

Connection Errors

If the Zone Integration Server returns an error acknowledgement for a registration or
provisioning message, the Zone.connect method will throw a SIFException describ-
ing the details of the error. If you connect to zones by looping through an array as il-
lustrated below, make sure to use the try-catch block inside the loop so that the agent
will attempt to connect to as many zones as possible:

// Obtain Zone instances for each zone the agent will connect to
ZoneFactory factory = getZoneFactory();
Zone[] zones = new Zone[] {
factory.getInstance(“MyZone”, “http://localhost:7080/MyZone”),
factory.getInstance(“DistrictZone”, “https://zis.org:7443/DistrictZone”),

};

// TODO: Join the zone to one or more Topics

// TODO: Create custom properties for the zone if applicable

// Now connect to each zone...
for(int i = 0; i < zones.length; i++)
{
try
{
zones[i].connect(ADKFlags.PROV_REGISTER);

}
catch(SIFException se)
{
System.out.println(“Could not connect to zone “ + zones[i]);
System.out.println(“The server reported an error: “ + se.toString());

}
}

As with all SIFExceptions, you can inspect the error category, code, description, and
extended description by calling the getErrorCategory, getErrorCode, getError-
Desc, and getErrorExtDesc methods. This is useful if you want to react to a connec-
tion error based on the error category and code. To simply print an exception to the
console, call the toString method (used above) to obtain a string in this style:

“[Category=1, Code=1]: Description. Extended Description.”

Zone Properties
By default, each Zone object inherits the default global options of the agent. Recall that
the AgentProperties object stores default operational settings such as the messaging
mode to use to connect to the Zone Integration Server. The properties of the agent,
which serve as defaults for all zones to which the agent connects, are obtained by call-
ing the Agent.getProperties method.

You can also set properties on a zone-by-zone basis. There are two ways to accomplish
this:

1. Create an AgentProperties instance and pass it to the Zone.connect method.
The AgentProperties constructor requires that the agent’s properties be passed
to it as an argument. By doing so, the zone properties can inherit default values
from the agent.

OpenADK for Java – Developer’s Guide 2.4 59

2. Call the Zone.getProperties method to obtain the AgentProperties object for
that zone, then call its methods to inspect or change properties

The following example shows how to set the messaging mode to Pull for DZ_ZONE
while leaving the agent’s default messaging mode to Push for all other zones:

public void initialize() throws Exception
{
// Set default agent properties
AgentProperties defaults = getProperties();
defaults.setMessagingMode(AgentProperties.PUSH_MODE);

// Create a couple of zones...
ZoneFactory factory = getZoneFactory();
Zone[] zones = new Zone[] {
factory.getInstance(“COUSINS_MS”, “http://localhost:7080/Cousins_MS”),
factory.getInstance(“PORTERDALE_MS”,

“http://localhost:7080/Porterdale_MS”),
factory.getInstance(“DZ_ZONE”, “https://zis.org:7443/DZ_ZONE”),

};

// Change the messaging mode to Pull mode for the DZ_ZONE only
AgentProperties zoneProps = new AgentProperties(defaults);
zoneProps.setMessagingMode(AgentProperties.PULL_MODE);

Attaching User Data to a Zone
To attach your own arbitrary Object to a Zone instance, call the Zone.setUserData
method. To retrieve the object at a later time, call the Zone.getUserData method and
cast the result to the appropriate class. Note the ADK will retain a reference to your
object for as long as the agent is running, so if the object must be garbage collected be
sure to call setUserData with a null value when it is no longer used by your agent.

Obtaining the SIF_ZoneStatus Object
Zone Integration Servers report administrative information about zones, such as the
agents registered in the zone and the list of providers and subscribers for each SIF
Data Object type, in a SIF_ZoneStatus object. An agent can query for SIF_Zon-
eStatus in the same way it queries for other objects—by issuing a SIF_Request mes-
sage and processing the SIF_Response returned by the ZIS.

The Zone.getZoneStatus method provides a simple and direct way to obtain the
SIF_ZoneStatus object for a zone. Behind the scenes, this method sends a SIF_Re-
quest message to the zone integration server and blocks until a response is received.
Refer to the GetZoneStatus ADK example agent to see how this is done.

Of course, you may also request SIF_ZoneStatus the conventional way by sending a
SIF_Request message for it. Simply call the Zone.query method and pass a Query in-
stance that references the SIFDTD.SIF_ZONESTATUS object. The QueryZoneStatus
ADK example agent shows this approach in action. Note that by querying for
SIF_ZoneStatus you must register a QueryResults message handler to receive the re-
sponse asynchronously, whereas the Zone.getZoneStatus method does not require a
message handler.

Public Interface
Refer to the Javadoc for a complete description of each method.

OpenADK for Java – Developer’s Guide 2.4 60

Method Description
connect Connect to the zone. SIF Infrastructure messages,

including SIF_Register, SIF_Subscribe,
SIF_Provide, and SIF_SystemControl / SIF_Ping,
may be sent to the zone based on the flags passed
to this method and the message handlers that are
registered with the Zone instance or any Topic to
which it is joined.

disconnect Disconnect from the zone. The SIF_Unregister
message is sent only when the
ADKFlags.PROV_UNREGISTER flag is specified. No
other messages are sent to the Zone Integration
Server.

getAgent Gets a reference to the Agent object
getErrorHandler Gets the UndeliverableMessageHandler for this zone

if one has been previously registered
getProperties Gets the AgentProperties object for this zone.

Properties set here are applicable to this zone
only. All other properties are inherited from the
agent’s defaults.

getUserData Retrieves the Object attached to the Zone with the
setUserData method

getZoneId Gets the Zone ID
getZoneStatus Synchronously obtains the SIF_ZoneStatus object

from the Zone Integration Server, or times out if
no response is received from the ZIS in the allot-
ted period of time.

getZoneUrl Gets the Zone URL
isConnected Determines if this zone is in a connected state
isSleeping Determines if this zone is sleeping
publishEvent Publishes a SIF_Event to the zone
purgeQueue Purges all messages from the agent’s queue
query Issues a SIF_Request query to this zone
setErrorHandler Registers a UndeliverableMessageHandler handler

with this zone to be notified when messages are
received but cannot be dispatched to the ADK’s
message handlers. Note: Agents do not typically
call this method on a zone-by-zone basis but in-
stead install a global error handler by calling
Agent.setErrorHandler

setProperties Sets the AgentProperties object for this zone
setPublisher Registers a Publisher message handler directly

with this zone, optionally sending a SIF_Provide
message to the Zone Integration Server.

setQueryResults Registers a QueryResults message handler directly
with this zone.

setReportPublisher Registers a ReportPublisher message handler dir-
ectly with this zone, optionally sending a
SIF_Provide message to the Zone Integration

OpenADK for Java – Developer’s Guide 2.4 61

Method Description

Server.
setSubscriber Registers a Subscriber message handler directly

with this zone, optionally sending a SIF_Sub-
scribe message to the Zone Integration Server.

setUserData Attaches an arbitrary Java Object to this Zone
sifPing Sends a SIF_SystemControl / SIF_Ping mes-

sage to the zone.
sifProvide Sends a SIF_Provide message to the zone.

Agents do not typically call this method as provi-
sioning is handled by the class framework, but it
is provided nonetheless.

sifRegister Sends a SIF_Register message to the zone.
Agents do not typically call this method as regis-
tration is handled by the class framework, but it is
provided nonetheless.

sifSend Sends arbitrary XML content to the Zone Integra-
tion Server.

sifSleep Sends a SIF_SystemControl / SIF_Sleep mes-
sage to the zone

sifSubscribe Sends a SIF_Subscribe message to the zone.
Agents do not typically call this method as provi-
sioning is handled by the class framework, but it
is provided nonetheless.

sifUnprovide Sends a SIF_Unprovide message to the zone. This
is the only method that sends this message.

sifUnregister Sends a SIF_Unregister message to the zone.
Agents typically call the Zone.disconnect meth-
od with the ADKFlags.PROV_UNREGISTER flag in-
stead of calling this method directly.

sifUnsubscribe Sends a SIF_Unsubscribe message to the zone.
This is the only method that sends this message.

sifWakeup Sends a SIF_SystemControl / SIF_Wakeup mes-
sage to the zone.

sleep Sends a SIF_SystemControl / SIF_Sleep mes-
sage to the zone. There is no difference in calling
this method over sifSleep

wakeup Sends a SIF_SystemControl / SIF_Wakeup mes-
sage to the zone. There is no difference in calling
this method over sifWakeup

Zones Summary
 The Zone interface encapsulates zones in the ADK
 Obtain a Zone instance by calling methods of the agent’s ZoneFactory
 Zones may be joined with Topics (described in the next section)
 Messages may be received by the agent as soon as Zone.connect is called
 Prior to connecting a zone, an agent must either register message handlers dir-

ectly with the Zone instance or join the zone with a Topic

OpenADK for Java – Developer’s Guide 2.4 62

 Most properties can be customized on a zone-by-zone basis
 To send a SIF_Register message when connecting to a zone, pass the ADKFlag-

s.PROV_REGISTER flag to the connect method. Agents are encouraged to always
send a SIF_Register message.

 Implement a Connection Watchdog thread to retry failed connection attempts

About Topics
Rather than communicate with zones directly, agents can perform all publish, sub-
scribe, and query activity via Topics. A topic is a concept unique to the ADK that ag-
gregates messaging across multiple zones. Use Topics if you want to structure your
code to be data-centric instead of zone-centric. The use of Topics is optional.

Each Topic instance is associated with a single type of SIF data object—such as Stu-
dentPersonal, LibraryPatronStatus, or BusInfo. When calling the methods of the Topic
class, the action is applied to all Zones “joined” with that topic. When an inbound
message is received from a zone, it is dispatched to the Topic associated with the data
contained in the message. In this way, your agent’s message handlers can respond to
messages in the same way regardless of which zone the message was received from.

Topic Objects
Topics are represented by the openadk.library.Topic interface. During agent star-
tup, you create Topic instances for each of the SIF Data Object types your agent will
work with by calling the methods of the TopicFactory class. The topic factory is a
global resource of the agent that serves to create new Topic objects and to keep track of
which topics the agent has created. Call the Agent.getTopicFactory method to ob-
tain a reference to the topic factory:

public void initialize() throws Exception
{
super.initialize();

// Create Topic instances for each SIF data object type the agent will use
TopicFactory factory = getTopicFactory();
...

Next, call the getInstance method to obtain a Topic instance and pass a SIFDTD con-
stant that identifies a SIF Data Object type. If this is the first time calling this method
for a topic, the factory returns a new Topic object. Subsequently, the same object will
be returned.

// Create Topic instances for each SIF data object type the agent will use
TopicFactory factory = getTopicFactory();
Topic students = factory.newInstance(SIFDTD.STUDENTPERSONAL);
Topic staff = factory.newInstance(SIFDTD.STAFFPERSONAL);

Registering Message Handlers with Topics
To register message handlers with Topic instances, call the following methods:

• Topic.setPublisher(Publisher handler, int flags)

• Topic.setReportPublisher(ReportPublisher handler, int flags)

OpenADK for Java – Developer’s Guide 2.4 63

• Topic.setSubscriber(Subscriber handler, int flags)

• Topic.setQueryResults(QueryResults handler)

When the ADK receives an incoming SIF_Request message, it is dispatched to your
topic’s message handler if the payload contains a SIF Data Object for which the topic
was established.

The setPublisher and setSubscriber methods accept two parameters: a reference
to the Publisher or Subscriber message handler you’re registering with the topic, and an
integer that describes the provisioning options for the registration. One or more con-
stants from the ADKFlags class may be specified.

The provisioning options instruct the class framework to send SIF_Provide and
SIF_Subscribe messages, respectively, to each zone that is joined with the topic. To
cause SIF_Provide to be sent to zones, specify the ADKFlags.PROV_PROVIDE flag.
Specify the ADKFlags.PROV_SUBSCRIBE flag to cause a SIF_Subscribe message to be
sent to each zone. If you do not want these messages to be sent at all, specify ADK-
Flags.PROV_NONE.

Important: To ensure that SIF_Subscribe and SIF_Provide messages are sent to each zone, be sure to create Topics
and register message handlers with them before connecting to zones.

Joining Zones with Topics
In order for your topic to receive SIF messages, you must “join” one or more zones
with the topic. You can join the same zone with multiple topics:

// Create a Topic instance for StudentPersonal
TopicFactory factory = getTopicFactory();
Topic students = factory.newInstance(SIFDTD.STUDENTPERSONAL);

// Register a Subscriber with the topic so that all SIF_Event messages
// that contain a StudentPersonal payload will be dispatched to this
// topic’s handler
Subscriber stuView = (Subscriber)MyDatabase.GetStudentView();
students.setSubscriber(stuView, ADKFlags.PROV_SUBSCRIBE);

// Create Zones
ZoneFactory zoneFact = getZoneFactory();
Zone elemZone = zoneFactory.newInstance(“ELEM”,

“http://10.0.0.4:7080/ELEM”);
Zone dzZone = zoneFactory.newInstance(“DZ”, “http://10.0.0.4:7080/DZ”);

// Join the Zones with the Topic
students.join(elemZone);
students.join(dzZone);

In the above example, the “ELEM” and “DZ” zones are each joined with the Student-
Personal topic and a Subscriber has been registered with it to handle SIF_Event mes-
sages. Any SIF_Event that contains a StudentPersonal payload—regardless of the
zone from which it originates—is dispatched to the message handler for that topic.
Since Topics take precedence over Zones in the message dispatching chain, this would
be the case even if you registered the Subscriber with each of the zones directly.

Public Interface
Refer to the Javadoc for a complete description of each method.

OpenADK for Java – Developer’s Guide 2.4 64

Method Description
getObjectType Returns a SIFDTD constant identifying the SIF

Data Object type represented by this topic
getPublisher Returns the Publisher message handler registered

with this topic to handle SIF_Request messages
getQueryResultsObject Returns the QueryResults message handler re-

gistered with this topic to handle SIF_Response
messages

getSubscriber Returns the Subscriber message handler registered
with this topic to handle SIF_Event messages

getZones Returns the Zone objects joined with this topic
join Joins a Zone with this topic
query Issues a SIF_Request query to all zones joined

with this topic
setPublisher Registers a Publisher message handler with this

topic to handle SIF_Request messages
setQueryResults Registers a QueryResults message handler with

this topic to handle SIF_Response messages
setReportPublisher Registers a ReportPublisher message handler with

this topic to handle SIF_Response messages for
SIF_ReportObject objects. Only Vertical Reporting
agents that use Topics should call this method.

setSubscriber Registers a Subscriber message handler with this
topic to handle SIF_Event messages

Topics Summary
 A topic represents a SIF Data Object type and a single point of processing for all

SIF Messages received by the agent where that object type is contained in the mes-
sage payload

 Topics offer a data-oriented way to structure your code, independent of the zones
your agent is connected to

 Topics are optional. Agents can work directly with Zone instances
 Topics encapsulated by the openadk.library.Topic interface
 Obtain a Topic instance by calling methods of the agent’s TopicFactory
 Call the setPublisher, setSubscriber, and setQueryResults method to re-

gister message handlers with the topic before joining zones with it
 Call the Zone.connect method after the zone has been joined with topics

7. Publishing
SIF Agents “publish” objects to zones by responding to SIF_Request queries. An
agent is not required to publish any object types, but for most it makes sense to pub-
lish data for which the application is authoritative. A library automation agent, for in-
stance, would be expected to publish the LibraryPatronStatus object since it is the ap-
plication that houses circulation records for students and staff.

OpenADK for Java – Developer’s Guide 2.4 65

SIF_Request messages received by the ADK are dispatched to the agent‘s Publisher
message handlers based on the zone the message is received from and the type of ob-
ject requested in the query conditions. To process SIF_Requests, implement the Pub-
lisher interface and register it with one or more Topic or Zone objects as described in
Working with SIF Messages on page 32.

Agents typically respond to SIF_Request messages by following these steps:

1. Evaluate the query conditions to select records from the application’s database

2. If the query is not supported by your agent, prepare and throw a SIFException
with an error category of SIFErrorCodes.CAT_REQRSP_8 and an error code of SI-
FErrorCodes.REQRSP_UNSUPPORTED_QUERY_9. (NOTE: The ADK will automatic-
ally return a similar error acknowledgement when a SIF_Request is received for
an object type that’s not supported by the agent, so you don’t need to check this
condition in your own code.)

3. Query the application’s database or other data source for records matching the
query conditions. Convert the resulting records to SIFDataObject instances,
either programmatically or using classes such as Mappings

4. Stream the set of SIFDataObjects to the DataObjectOutputStream supplied by
the class framework

All of the underlying tasks associated with creating and sending SIF_Response mes-
sages are handled by the framework. This includes dividing the response stream into
one or more packets based on the buffer size of the requesting agent; removing unne-
cessary elements from objects per the requestor’s instructions in the SIF_QueryOb-
ject/SIF_Element of the request; rendering SIF Data Objects in the version of SIF re-
quested in the SIF_Request/SIF_Version element; and so on.

When you stream objects to the DataObjectOutputStream, the ADK writes them to
the agent’s work directory on the file system. They are then converted to SIF_Re-
sponse message and delivered to the zone integration server immediately. If there is a
failure – for example, the agent stops running or the computer is powered down – the
class framework picks up where it left off the next time the agent is run.

The Publisher Interface
The Publisher interface is implemented by classes that can respond to SIF_Requests.
It has one method:

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

The goal of the Publisher.onRequest method is to evaluate the supplied Query, cre-
ate one or more SIFDataObjects that meet the query conditions, and then stream
those data objects to the supplied DataObjectOutputStream.

You can stream an arbitrarily large amount of data. The ADK automatically divides
the results into packets in order to send one or more SIF_Response messages to the
zone. It also takes care of rendering the SIFDataObjects using the version of SIF in-

OpenADK for Java – Developer’s Guide 2.4 66

dicated in the SIF_Request message and trims objects to size based on the SIF_Ele-
ment restrictions in the query.

The DataObjectOutputStream Parameter
Returning data from the onRequest method is very straightforward: simply create
one or more SIFDataObjects and call the DataObjectOutputStream.write method
for each:

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
// Return a bogus student object
StudentPersonal student = new StudentPersonal();
student.setRefId(“E3E34B359D75101A88C3D00AA00184754”);
student.setName(new Name(NameType.BIRTH, “Alicia”, “Johnson”));

// Write to the output stream
results.write(student);

}

Sending Raw XML
You can also send raw XML content by using the SIFDataObjectXML class. Keep in
mind, however, that because you are preparing your own objects as XML instead of
the class framework, it will not be able to perform two important functions that are
normally performed automatically:

 No multiple version support
• No automatic trimming of SIF elements to match the query’s field restrictions

To send raw XML content:

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
// Create a <StudentPersonal> object
String xml =
“<StudentPersonal RefId=’E3E34B359D75101A88C3D00AA00184754’>” +
“<Name Type=’01’>” +
“<LastName>Johnson</LastName” +
“<FirstName>Alicia</FirstName>” +

“</Name>” +
“</StudentPersonal>”;

// Wrap the string in a SIFDataObjectXML object
SIFDataObjectXML student = new SIFDataObjectXML(SIFDTD.STUDENTPERSONAL,

xml);

// Write to the output stream
results.write(student);

}

The Query Parameter
The Query parameter to onRequest describes the SIF object or objects to return in the
response. In SIF 1.0 there are two basic flavors of request: those with query conditions

OpenADK for Java – Developer’s Guide 2.4 67

and those without. Call Query.hasConditions to quickly determine if a query has
any conditions:

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
if(query.hasConditions())
{
// Evaluate the query

}
else
{
// Return all objects

}

Evaluating Conditions
To enumerate all conditions of a query, call the getConditions method. Conditions
are organized by ConditionGroup, each of which is comprised of one or more Condi-
tion objects. In SIF 1.0 there is only one root ConditionGroup, but in future versions
of SIF this will be expanded.

The ConditionGroup and Condition classes model the SIF_ConditionGroup and
SIF_Condition elements described by the SIF Specification.

Because of the limited query support offered by SIF 1.0, agents typically request all
objects or a single object given a RefId value. The Query.hasCondition method can be
used to quickly determine if a specific, well-known condition has been placed on the
query. The following code snippets illustrate how to use the hasCondition method to
respond to a query without implementing comprehensive query analysis logic:

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
// Either query for all StudentPersonal objects or for a single
// object by RefId
Condition c = query.hasCondition(SIFDTD.STUDENTPERSONAL_REFID);
if(c != null)
{
// Lookup the student with the specified RefId
String refId = c.getValue();

...
}
else
{
// Query for all students...

}

This example involves LibraryPatronStatus objects:

OpenADK for Java – Developer’s Guide 2.4 68

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
// Either query for all LibraryPatronStatus objects or for a single object
// for the Student or Staff identified by RefId

Condition c = query.hasCondition(SIFDTD.LIBRARYPATRONSTATUS_SIFREFID);
if(c != null)
{
// Get the RefId value
String refId = c.getValue();

// Student or staff?
c = query.hasCondition(SIFDTD.LIBRARYPATRONSTATUS_SIFREFIDTYPE);
if(c.getValue().equals(“StudentPersonal”))
{
// Query for the student identified by RefId

}
else
if(c.getValue().equals(“StaffPersonal”))
{
// Query for the staff identified by RefId

}
else
throw new SIFException(
SIFErrorCodes.CAT_XML_1,
SIFErrorCodes.XML_INVALID_VALUE_4,
“SifRefIdType must specify StudentPersonal or StaffPersonal”,
c.getValue() + “ is not a valid value for this attribute”);

}
else
{
// Query for all LibraryPatronStatus objects...

}

Object Type
If your Publisher interface is registered with a Topic, your implementation will inher-
ently know the type of object being queried for. This is because you can only register
one Publisher with a given topic, and topics are always associated with one and only
one object type. So when the Publisher message handler is called on your StudentPer-
sonal topic, you can assume the request is for StudentPersonal objects.

However, if you are not using topics—or more commonly, are reusing the same Pub-
lisher implementation among many topics—the object type associated with the request
can be obtained from the Query.getObjectType method:

OpenADK for Java – Developer’s Guide 2.4 69

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
if(query.getObjectType() == SIFDTD.STUDENTPERSONAL)
{
// Query for StudentPersonal objects...

}
else
if(query.getObjectType() == SIFDTD.SCHOOLINFO)
{
// Query for SchoolInfo objects...

}

Notice the getObjectType method returns a SIFDTD constant to uniquely identify the
type of object in a version-independent way. This approach is used consistently
throughout the ADK because the string names of elements and attributes in SIF may
change from version to version. By using SIFDTD constants your code is portable from
one version of SIF to the next.

 If you’re not familiar with the SIFDTD class, please refer to Creating & Manipulating SIFDataObjects on page 20.

The ADK supplies two ways to create and manipulate SIFDataObject instances. The
first is to programmatically construct objects and call the methods of the SDO classes
to get and set element and attribute values. For example,

 // Constructing a StudentPersonal object
 StudentPersonal sp = new StudentPersonal();
 sp.setRefId(refid);
 sp.setName(NameType.LEGAL, “Johnson”, “Clifford”);

 // Examining a StudentPersonal object
 Name n = sp.getName();
 System.out.println(“Name: “ + n.getLastName() + “, “ + n.getFirstName());
 OtherId[] ids = sp.getOtherIds();
 System.out.println(“This student has “ + ids.length + “ IDs”);

You can also use the setElementOrAttribute method:

 // Dynamically constructing a StudentPersonal object
 SIFDataObject sp = ADK.DTD().createSIFDataObject(SIFDTD.STUDENTPERSONAL);
 sp.setElementOrAttribute(“@RefId”, refid);
 sp.setElementOrAttribute(“Name[@Type=’01’]/LastName”, “Johnson”);
 sp.setElementOrAttribute(“Name[@Type=’01’]/FirstName”, “Clifford”);

 // Dynamically examining a StudentPersonal object
 String refId = sp.getElementOrAttribute(“@RefId”);
 String studentId = sp.getElementOrAttribute(“OtherId[@Type=’06’”);

An alternative and more data-driven approach to working with SIFDataObjects is to
use the Mappings class from the openadk.library.tools.Mappings package to con-
vert SIFDataObject instances to and from a HashMap by applying a set of XPath-like
mapping rules. These rules are usually stored in an external configuration file where
they can be modified by system integrators in the field. For example, the following
rules for StudentPersonal objects define how to translate the elements and attributes
of that object to a flat list of field values:

<object object=”StudentPersonal”>
<field name=”STUDENT_ID”>OtherId[@Type=’01’]</field>
<field name=”LAST_NAME”>Name[@Type=’01’]/LastName</field>

OpenADK for Java – Developer’s Guide 2.4 70

<field name=”FIRST_NAME”>Name[@Type=’01’]/FirstName</field>
</object>

You can then call upon the Mappings class to convert a StudentPersonal instance into
a HashMap of field/value pairs, or to convert a HashMap into a StudentPersonal object.

In practice, most agents use a combination of these two approaches when working
with SIF Data Objects. Refer to the chapter on SIF Data Objects for more information

Sometimes it is necessary to use the SIFDTD constant as a key into your own lookup
tables, or to otherwise obtain the string name of an element or attribute. To obtain the
version-independent name of a SIFDTD constant, call its name() method. For the ver-
sion-dependent name—which is specific to the version of SIF associated with the mes-
sage being processed and may change with each version of SIF—call the getObject-
Tag convenience method.

The following code calls the name method as a way of determining the name of a table
in the application’s SQL database, and uses the getObjectTag method to print a mes-
sage to the Java console:

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
SIFMessageInfo inf = (SIFMessageInfo)info;

// In our database, tables are named the same as SIF 1.0r1 objects:
String sql = “SELECT * FROM “ + query.getObjectType().name();

// Print the version-dependent tag name of the object we’re querying for
System.out.println(
“Agent “ + inf.getSourceId() + “ in zone “ + zone.getId() + “ is “ +
“querying for all “ + query.getObjectTag() + “ objects”

// Execute the query
...

Using the QueryFormatter Classes
For agents that need to prepare a query string for SQL or another form of query lan-
guage, the openadk.library.tools.QueryFormatter utility class offers a simple
solution. This class builds a string from a dictionary of field names you supply. The
text to use for logical AND and OR operators is configurable, and by subclassing Query-
Formatter you can change the way fields are rendered to the query string.

An example of how to subclass QueryFormatter is found in the SQLQueryFormatter
class, which causes string values to be surrounded with single quotes, the text “AND”
to be used for logical AND operations, and the text “OR” to be used for logical OR op-
erations. Source code is provided in the \extras directory.

Mapping SIF Attributes to Local Field Names

In order for the basic QueryFormatter class to work, you must supply it with a Dic-
tionary that maps SIF attributes to field names of your choosing. The format func-
tion uses these field names in place of SIF attributes specified in the query condition.
When building the Dictionary, the key values must be constants from the SIFDTD
class.

OpenADK for Java – Developer’s Guide 2.4 71

Mapping SIF Values

If the value of a mapping contains curly braces, the text within the braces maps field
values. The format of this string must be:

“field-name{value1|str1|value2|str2|…}”

where valueN is replaced with strN.

This feature is handy if you need to substitute a SIF attribute value with a value spe-
cific to your application. For example, the acceptable values for the SifRefIdType at-
tribute of the LibraryPatronStatus object is “StudentPersonal” or “StaffPersonal”. If
in your application’s database you represented these as numeric types—say 1 and 2,
respectively—you could create a field mapping as follows:

“CircStatus.Type{StudentPersonal|1|StaffPersonal|2}”

Another way to use this feature is to substitute any value with the specified text. This
can be done by simply leaving the valueN component blank. In the following example,
the value for the SIF attribute mapped to the “Transportation.Direction” field will al-
ways be the hard-coded value 16, regardless of the actual value specified in the query
conditions:

“Transportation.Direction{|16}”

Of course, you can subclass QueryFormatter to modify the default behavior or to add
your own functionality, but by default it performs mappings as described herein.

An Example

This code shows how to use the SQLQueryFormatter class:

OpenADK for Java – Developer’s Guide 2.4 72

// Static dictionary that maps SIF Data Object names to tables in our
database schema
static HashMap sMyTables = new Dictionary();
static {
sMyTables.put(SIFDTD.STUDENTPERSONAL.name(), “Students”);
sMyTables.put(SIFDTD.STAFFPERSONAL.name(), “Staff”);
sMyTables.put(SIFDTD.LIBRARYPATRONSTATUS.name(), “CircStatus”);

};

// Static dictionary that maps SIFDTD constants to field names in our
database schema
static HashMap sMyFields = new Dictionary();
static {
sMyFields.put(SIFDTD.STUDENTPERSONAL_REFID, “Students.SifGUID”);
sMyFields.put(SIFDTD.STAFFPERSONAL_REFID, “Teachers.SifGUID”);
sMyFields.put(SIFDTD.LIBRARYPATRONSTATUS_SIFREFID, “CircStatus.SifGUID”);
sMyFields.put(SIFDTD.LIBRARYPATRONSTATUS_SIFREFIDTYPE,
“CircStatus.Type{StudentPersonal|1|StaffPersonal|2|}”);

sMyFields.put(SIFDTD.LIBRARYPATRONSTATUS_LIBRARYTYPE, “{|
};

// Static QueryFormatter
static QueryFormatter sFormatter = new SQLQueryFormatter();

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
String table = query.getObjectType().name();

// Build an SQL statement
String sql = “SELECT * FROM “ + table + “ WHERE “ +
sFormtter.format(query, sMyFields);

If the above code received a SIF_Request for LibraryPatronStatus:

<SIF_Request>
…
<SIF_Query>

<SIF_QueryObject ObjectName=”LibraryPatronStatus”>
<SIF_ConditionGroup Type=”And”>

<SIF_Conditions Type=”Or”>
<SIF_Condition>

<SIF_Element>@SifRefId</SIF_Element>
<SIF_Operator>EQ</SIF_Operator>
<SIF_Value>xxx</SIF_Value>

</SIF_Condition>
<SIF_Condition>

<SIF_Element>@SifRefId</SIF_Element>
<SIF_Operator>EQ</SIF_Operator>
<SIF_Value>yyy</SIF_Value>

</SIF_Condition>
<SIF_Condition>

<SIF_Element>@SifRefId</SIF_Element>
<SIF_Operator>EQ</SIF_Operator>
<SIF_Value>zzz</SIF_Value>

</SIF_Condition>
</SIF_Conditions>
<SIF_Conditions Type=”None”>

<SIF_Condition>
<SIF_Element>@SifRefIdType</SIF_Element>
<SIF_Operator>EQ</SIF_Operator>
<SIF_Value>StudentPersonal</SIF_Value>

</SIF_Condition>
</SIF_Conditions>

OpenADK for Java – Developer’s Guide 2.4 73

</SIF_ConditionGroup>
</SIF_Query>

</SIF_Request>

The result of calling SQLQueryFormatter.format would be:

SELECT * FROM CircStatus WHERE (CircStatus.SifGUID = ‘xxx’ OR Circ-
Status.SifGUID = ‘yyy’ OR CircStatus.SifGUID = ‘zzz’) AND (Circ-
Status.Type = 1)

The Zone Parameter
The third parameter to Publisher.onQuery is the Zone object identifying the zone
from which the SIF_Request message originated.

The zone is an important piece of information when processing requests because it
defines the scope of records to return from the application’s database. A request for
“all StudentPersonal objects” should be interpreted as “all StudentPersonal objects
from this zone”. Although the SIF Specification places no restrictions on the organiza-
tion of zones in a district, Data Solutions recommends that each school be represented
by its own zone, and an additional zone be created for the district itself. In this scen-
ario, you could use the Zone object to select records from the appropriate database by
maintaining a mapping of schools-to-zones.

The SIFMessageInfo Parameter
The final parameter to Publisher.onQuery is a MessageInfo object, which provides
miscellaneous information about the message such as its header fields, message ID,
and the SourceId of the sender. For SIF_Request messages, additional fields such as
SIF_Request/SIF_MaxBufferSize and SIF_Request/SIF_Version are available.
These attributes can be retrieved by casting the object to a SIFMessageInfo and call-
ing the following methods:

 SIFMessageInfo.getSourceId

 SIFMessageInfo.getMsgId

 SIFMessageInfo.getSIFRequestVersion

 SIFMessageInfo.getSIFMaxBufferSize

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
SIFMessageInfo inf = (SIFMessageInfo)info;

System.out.println(“Received a SIF_Request from “ + inf.getSourceId() +
“ in zone “ + zone.getZoneId());

System.out.println(“The SIF_MaxBufferSize value is: “ +
inf.getSIFMaxBufferSize());

System.out.println(“The SIF_Version value is: “ +
inf.getSIFRequestVersion());

System.out.println(“The version of the SIF_Request message is: “ +
inf.getSIFVersion());

Refer to the Javadoc for more information on the SIFMessageInfo class.

OpenADK for Java – Developer’s Guide 2.4 74

8. Subscribing
The Subscriber Interface

The Subscriber interface is implemented by classes that can respond to SIF_Events. It
has one method:

public void onEvent(Event event, Zone zone, MessageInfo info)
throws ADKException

Event Objects
The Event object provides the SIF Data Objects communicated by the event and de-
scribes what action should be taken on those objects. Call the getAction method to
determine if the objects were added, changed, or deleted. This method returns one of
three constants defined by the Event class:

 Event.ADD

 Event.CHANGE

 Event.DELETE

To retrieve the actual SIFDataObjects, call the getData method and then read from
the returned DataObjectInputStream until no more objects are available:

public void onEvent(Event event, Zone zone, MessageInfo info)
throws ADKException

{
DataObjectInputStream data = event.getData();

while(data.available())
{
StudentPersonal student = (StudentPersonal)data.readDataObject();

switch(event.getAction())
{
case Event.ADD:
// Add this student to the local database

case Event.CHANGE:
// Update this student in the local database

case Event.DELETE:
// Remove this student from the local database

}
}

}

Object Type
If your Subscriber interface is registered with a Topic, your implementation will inher-
ently know the type of object communicated by the event. This is because you can
only register one Subscriber with a given topic, and topics are always associated with
one and only one object type. So when the Subscriber message handler is called on

OpenADK for Java – Developer’s Guide 2.4 75

your StudentPersonal topic, you can assume the event is for StudentPersonal ob-
jects.

However, if you are not using topics—or more commonly, are reusing the same Sub-
scriber implementation among many topics—the object type associated with the event
can be obtained from the Event.getObjectType method:

public void onEvent(Event event, Zone zone, MessageInfo info)
throws ADKException

{
if(event.getObjectType() == SIFDTD.STUDENTPERSONAL)
{
// This Event contains StudentPersonal objects...

}
else
if(event.getObjectType() == SIFDTD.SCHOOLINFO)
{
// This Event contains SchoolInfo objects...

}

Notice the getObjectType method returns a SIFDTD constant to uniquely identify the
type of object in a version-independent way. This approach is used consistently
throughout the ADK because the string names of elements and attributes in SIF may
change from version to version. By using SIFDTD constants your code is portable from
one version of SIF to the next.

 If you’re not familiar with the SIFDTD class, please refer to Creating & Manipulating SIFDataObjects on page 20.

The ADK supplies two ways to create and manipulate SIFDataObject instances. The
first is to programmatically construct objects and call the methods of the SDO classes
to get and set element and attribute values. For example,

 // Constructing a StudentPersonal object
 StudentPersonal sp = new StudentPersonal();
 sp.setRefId(refid);
 sp.setName(NameType.LEGAL, “Johnson”, “Clifford”);

 // Examining a StudentPersonal object
 Name n = sp.getName();
 System.out.println(“Name: “ + n.getLastName() + “, “ + n.getFirstName());
 OtherId[] ids = sp.getOtherIds();
 System.out.println(“This student has “ + ids.length + “ IDs”);

You can also use the setElementOrAttribute method:

 // Dynamically constructing a StudentPersonal object
 SIFDataObject sp = ADK.DTD().createSIFDataObject(SIFDTD.STUDENTPERSONAL);
 sp.setElementOrAttribute(“@RefId”, refid);
 sp.setElementOrAttribute(“Name[@Type=’01’]/LastName”, “Johnson”);
 sp.setElementOrAttribute(“Name[@Type=’01’]/FirstName”, “Clifford”);

 // Dynamically examining a StudentPersonal object
 String refId = sp.getElementOrAttribute(“@RefId”);
 String studentId = sp.getElementOrAttribute(“OtherId[@Type=’06’”);

An alternative and more data-driven approach to working with SIFDataObjects is to
use the Mappings class from the openadk.library.tools.Mappings package to con-
vert SIFDataObject instances to and from a HashMap by applying a set of XPath-like
mapping rules. These rules are usually stored in an external configuration file where

OpenADK for Java – Developer’s Guide 2.4 76

they can be modified by system integrators in the field. For example, the following
rules for StudentPersonal objects define how to translate the elements and attributes
of that object to a flat list of field values:

<object object=”StudentPersonal”>
<field name=”STUDENT_ID”>OtherId[@Type=’01’]</field>
<field name=”LAST_NAME”>Name[@Type=’01’]/LastName</field>
<field name=”FIRST_NAME”>Name[@Type=’01’]/FirstName</field>

</object>

You can then call upon the Mappings class to convert a StudentPersonal instance into
a HashMap of field/value pairs, or to convert a HashMap into a StudentPersonal object.

In practice, most agents use a combination of these two approaches when working
with SIF Data Objects. Refer to the chapter on SIF Data Objects for more information

The Zone Parameter
The second parameter to Subscriber.onEvent is the Zone object identifying the zone
from which the SIF_Event message originated. You can use this information to select
the appropriate database to update with the objects contained in the event. For ex-
ample, if a new student is added, your agent can consult its schools-to-zones table to
determine which school the student should be added to.

The SIFMessageInfo Parameter
The final parameter to Subscriber.onEvent is a MessageInfo object, which provides
miscellaneous information about the message such as its header fields, message ID,
and the SourceId of the sender. These attributes can be retrieved by casting the object
to a SIFMessageInfo.

public void onRequest(
DataObjectOutputStream results, Query query, Zone zone, MessageInfo info)
throws ADKException

{
SIFMessageInfo inf = (SIFMessageInfo)info;

// In order to get the verion-specific tag name of the SIF Data Object, the
// version of SIF associated with the SIF_Event must be obtained from the

MessageInfo
String objectTag = event.getObjectType().tag(inf.getSIFVersion());

// Write a message to the console (e.g. “Received a SIF_Event::Add for
StudentPersonal

// from agent MyAgent in zone MyZone”)
System.out.println(
“Received a SIF_Event::” + event.getActionStr() +
“ for “ + objectTag +
“ from agent “ + inf.getSourceId() +
“ in zone “ + zone.getZoneId());

Refer to the Javadoc for more information on the SIFMessageInfo class.

Executing Queries from Subscriber.onEvent
If the processing of a SIF_Event will require that your agent query for additional data
in order to complete the operation, the TrackQueryResults class must be used to per-
form the query synchronously. This is required so that Selective Message Blocking
will be enabled if needed.

OpenADK for Java – Developer’s Guide 2.4 77

Selective Message Blocking and the ADK
Selective Message Blocking is a feature of SIF that prevents deadlock conditions when
requesting objects during SIF Event processing. When invoked, it marks all SIF Events
as “frozen” in the agent queue on the server so that subsequent SIF Response mes-
sages will be returned to the agent. Once all SIF Responses have been received and the
agent is finished processing the SIF Event, it removes the Selective Message Blocking
mode from its queue.

Selective Message Blocking is handled automatically by the ADK’s TrackQueryRes-
ults class. When using this class from within your Subscriber message handler, pass
the handler’s Event parameter to the TrackQueryResults constructor. Track-
QueryResults will then invoke SMB on that SIF Event and will subsequently clear the
block when you’re finished using it. You do not need to worry about sending the ap-
propriate SIF_Ack messages to invoke and clear Selective Message Blocking and in
fact the ADK does not provide a mechanism to do so manually.

9. Event Reporting
SIF Agents that publish objects to a zone are responsible for letting other agents know
when those objects have changed or been deleted, as well as when new objects have
been added. Similarly, agents that wish to communicate changes in shared SIF objects
should also publish events so that other applications will be notified the data has
changed. For example, if a student’s address was corrected in the Library application,
it should report the change so the Student Information System can update its authorit-
ative copy of the student data.

When an event is reported by your agent, the Zone Integration Server forwards it on
to all subscribers of that object type. System administrators often configure the ZIS to
disallow event reporting by some agents as a means of enforcing policy. For instance,
if a district requires that changes to student information can only be made in the Stu-
dent Information System, the administrator can disallow event reporting by all other
agents in the zone.

When to Report Events
Agents should report SIF Events when a shared SIF object is added, changed, or de-
leted. However, we recommend that agents make event reporting a configurable op-
tion so that system administrators can fine-tune the agent to cut down on network
traffic. This way, if an administrator knows that event reporting will be disallowed in
an agent’s Access Control List, he can also disable it in the agent’s configuration file.

Reporting Events to the Appropriate Zone
You should take care to write your agent to report events only to the zone associated
with the data objects that have been added, changed, or deleted by your application.
This is particularly important when reporting added objects. For example, if a new
student is added to East High School, your agent should only report an event to the
zone associated with that school. Reporting the change to all zones would result in the
new student being added to each of the other schools’ databases, which is probably

OpenADK for Java – Developer’s Guide 2.4 78

not the desired effect. For this reason, the Topic interface does not have a reportEvent
method.

How to Report Events
Event reporting in the ADK is performed by calling the reportEvent method on a
Zone instance. There are two forms of this method: one that accepts a SIFDataObject
and a constant identifying how the object has changed (i.e. added, changed, or de-
leted); and another that accepts this same information encapsulated by an Event in-
stance:

public void reportEvent(SIFDataObject object, byte actionCode)
throws ADKException;

public void reportEvent(Event event)
throws ADKException;

Action codes are defined by the Event class:

 Event.ADD

 Event.CHANGE

 Event.DELETE

To report an event for a single object:

// Report a new student
StudentPersonal student = ...
myZone.reportEvent(student, Event.ADD);

Per SIF Specifications, an agent can only send one SIFDataObject per event. How-
ever, in the future this restriction may be relaxed so the Event class uses arrays and
Java streams to ensure it can support an arbitrarily large number of objects in the fu-
ture.

To wrap an event in an Event object:

// Report a new student using the Event object
StudentPersonal student = ...
Event ev = new Event(new SIFDataObject[] { student }, Event.ADD);
myZone.reportEvent(ev);

Note the Event class is also used by the Subscriber message handler when a
SIF_Event message is received by your agent, so some of the constructors and public
methods of the class do not apply to event reporting.

Strategies for Event Reporting
There are many strategies for keeping track of changes made by your application.
Some agents report changes immediately at the time they’re made by a user in the ap-
plication’s user interface, while others keep track of changes in a “journal” and peri-
odically enumerate the journal to report events to SIF.

Good software engineering practice prescribes that changes be tracked in your applic-
ation’s data layer—as opposed to in a client layer—to ensure that SIF Events are re-

OpenADK for Java – Developer’s Guide 2.4 79

ported whenever changes are made regardless of how they’re made. When arriving at
a strategy for SIF Event reporting, consider all of the ways in which data is changed
by your application. Chances are SIF should be an integral part of all of these pro-
cesses.

 Changes made directly in your application’s user interface
 Changes made by Import functions
 Changes made by external tools such as an End-of-Year Rollover tool
 Backup and Restore
 etc.

Another important aspect of Event Reporting involves reliability. Agents should track
and report changes even if those changes occur when the SIF Agent is not running. If
you use the ADK to develop an “external agent”—that is, an agent that runs alongside
your application—there is always the possibility that the agent will not be running at
the same time your application is.

Journaling
One common approach to tracking changes for the purposes of SIF Event reporting is
to use a “journal”. A journal is a database table or other data store that captures what
kind of data changed, how it changed, and when it changed. Your agent can periodic-
ally enumerate entries in the journal to generate SIF Events. Once a SIF Event is suc-
cessfully sent for an entry in the journal, it is removed.

Preparing SIFDataObjects for Event Reporting
When reporting an event, agents are responsible for including only the data that has
actually changed. This is important because it allows other agents to quickly determ-
ine the scope of the change when updating data in the application’s local database.
For example, if a student’s phone number has changed, your agent should only in-
clude the <PhoneNumber> element in the StudentPersonal object communicated by the
event; all other elements of the StudentPersonal object should be excluded.

There are two schools of thought for accomplishing this with the ADK:

• Create SIFDataObjects from scratch from the data in your database

• Use the SIFElement.setChanged method to mark elements as “changed”

The method you choose depends on how you’ve written your agent to interact with
your application’s database layer.

Method 1: Create SIFDataObjects from Scratch
This approach involves simply creating a new SIFDataObject instance and then as-
signing values to only those fields that have changed. For example, if a user has just
modified the home phone number in your application’s user interface, you can create
a new StudentPersonal object on-the-fly for the purposes of event reporting. By call-
ing the StudentPersonal.setPhoneNumber method, the phone number will be the
only element included in the SIF Event.

OpenADK for Java – Developer’s Guide 2.4 80

String homePhone = getFieldFromDialogBox(“HomePhone”);

// Create a StudentPersonal to report this change to SIF
StudentPersonal sp = new StudentPersonal();
sp.setRefId(...);
sp.setPhoneNumber(PhoneNumberType.HOME_PHONE, homePhone);

// Report the event to the zone
myZone.reportEvent(sp, Event.CHANGE);

Don’t forget to assign the student object’s RefId value by calling setRefId.

Method 2: Use SIFElement.setChanged
The above method works well when creating new SIFDataObjects from scratch, but
what if you already have an instance in memory and want to use it to report a
change?

All SIF Data Object classes derived from openadk.library.Element have an internal
flag to track state. You can set this flag by calling the SIFElement.setChanged meth-
od, which marks the element and all of its children as changed. When reporting SIF
Events, the ADK only includes changed elements in the event.

For performance reasons, the “changed” flag is only modified when you explicitly call
the setChanged method rather than automatically whenever you set the value of an
element. You should call setChanged(false) on the root SIFDataObject before
marking any child elements as changed to ensure that the object is in a consistent
state. This technique is illustrated below.

// Assume this StudentPersonal is fully populated
StudentPersonal student = ...

// Reset all elements of StudentPersonal to the “not changed” state
student.setChanged(false);

// Mark the home phone and middle name as changed
student.getPhoneNumber(PhoneNumberType.HOME_PHONE).setChanged(true);
student.getName().getMiddleName().setChanged(true);

// Now report the event; only <PhoneNumber> and <MiddleName> will
 // be included in the StudentPersonal object rendered by the ADK
myZone.reportEvent(student, Event.CHANGE);

10. Querying
Agents that consume data from a SIF Zone do so by sending a SIF_Request message
to query for all SIF Data Objects of a given type, or for only a select subset of objects
that match conditions placed on the query. For instance, an agent can query for “all
StudentPersonal” objects or for “the StudentPersonal object with RefId xxx”.

When the zone integration server receives a SIF_Request, it forwards the message to
the agent that is registered as the authoritative Provider of the object type in the zone.
Queries may also be directed at a specific agent—in this case the server places the
SIF_Request message in that agent’s queue only. When the responding agent pro-

OpenADK for Java – Developer’s Guide 2.4 81

cesses the request, it creates one or more SIF_Response messages consisting of the ob-
jects requested. The server delivers these messages to the requesting agent’s queue.
Ultimately, they’re received by the ADK and dispatched to the QueryResults message
handler for the associated SIF Data Object type.

Querying for Data
Querying for SIF Data Objects with the ADK is easy:

 Prepare a openadk.library.Query instance to describe the type of object your
agent is querying and any conditions to be placed on the query.

 Pass the Query instance to the query method of a zone or topic. If the Zone.query
method is called, a SIF_Request message is sent to that zone; if the Topic.query
method is called, a message is broadcast to all zones joined with the topic.

 To direct the query at a specific agent, pass the SourceId of the destination agent to
the query method.

 Optionally, you can associate a small piece of state information with the query by
calling Query.setUserData. This state information will be persisted by the ADK
and available later on when the response messages are received.

To receive the results of a query,

 Implement the QueryResults message handler interface on a class of your choosing
and register that handler with a zone or topic by calling the Zone.setQueryRes-
ults or Topic.setQueryResults methods.

 You can provide a single QueryResults implementation to handle all SIF_Re-
sponse messages received by the agent, or you can register multiple implements,
one for each kind of SIF Data Object your agent queries. When multiple QueryRes-
ults handlers are registered with a zone or topic, the ADK dispatches incoming
SIF_Response messages to the appropriate handler by examining the message
payload and choosing an implementation based on the type of SIF Data Object
contained in the message.

Querying for All Objects
The following example shows how to query a zone for all StudentPersonal objects. No
conditions are placed on the Query:

// Prepare a Query for all StudentPersonal objects
Query q = new Query(SIFDTD.STUDENTPERSONAL);

// Send the query to a zone
Zone myZone = getZoneFactory().getZone(“MYZONE”);
myZone.query(q);

To query all zones joined with a topic, call the Topic.query method:

OpenADK for Java – Developer’s Guide 2.4 82

// Prepare a Query for all StudentPersonal objects
Query q = new Query(SIFDTD.STUDENTPERSONAL);

// Send the query to all zones joined with the StudentPersonal topic
Topic students = getTopicFactory().getInstance(SIFDTD.STUDENTPERSONAL);
students.query(q);

Querying for a Specific Object by RefId
The following example shows how to query a zone for a specific StudentPersonal ob-
ject by specifying a condition on the query.

// Prepare a Query for StudentPersonal objects
Query q = new Query(SIFDTD.STUDENTPERSONAL);

// Add a condition to query for a specific RefId
q.addCondition(SIFDTD.STUDENTPERSONAL_REFID, Condition.EQ,

“4A37969803F0D00322AF0EB969038483”);

// Send the query to a zone
Zone myZone = getZoneFactory().getZone(“MYZONE”);
myZone.query(q);

The first argument to the Query.addCondition method is an ElementDef constant
from the SIFDTD class that identifies the RefId attribute of the StudentPersonal object.
The second argument is an operator from the Condition class, and the third parameter
is the string value to compare against. Taken together, these three parameters place a
condition on the query instructing the responding agent to “Return the StudentPer-
sonal object where the RefId attribute is equal to 4A37969803F0D00322AF0E-
B969038483“.

Note that the current version of the SIF Specification only supports the equality oper-
ator, Condition.EQ. The ADK defines additional operators for greater-than and less-
than comparisions—Condition.LT and Condition.GT. Although these operators
may be supported by SIF in the future, using them with SIF 1.x will result in an inval-
id SIF_Request message.

Multiple conditions can be placed on a query by calling Query.addCondition re-
peatedly:

OpenADK for Java – Developer’s Guide 2.4 83

// Prepare a Query for LibraryPatronStatus objects
Query q = new Query(SIFDTD.LIBRARYPATRONSTATUS);

// Add conditions to query for a specific StaffPersonal RefId
q.addCondition(SIFDTD.LIBRARYPATRONSTATUS_SIFREFIDTYPE, Condition.EQ,

“StaffPersonal”);
q.addCondition(SIFDTD.LIBRARYPATRONSTATUS_SIFREFID, Condition.EQ,

“4A37969803F0D00322AF0EB969038483”);

// Send the query to a zone
Zone myZone = getZoneFactory().getZone(“MYZONE”);
myZone.query(q);

Directed Queries
A “directed query” is a SIF_Request message sent to a specific agent in a zone. To
send a directed query, use the form of the Zone.query or Topic.query method that
accepts a DestinationId parameter.

// Prepare a Query for StudentPersonal objects
Query q = new Query(SIFDTD.STUDENTPERSONAL);

// Add a condition to query for a specific RefId
q.addCondition(SIFDTD.STUDENTPERSONAL_REFID, Condition.EQ,

“4A37969803F0D00322AF0EB969038483”);

// Send the query to the “SASIxp” agent in this zone
Zone myZone = getZoneFactory().getZone(“MYZONE”);
myZone.query(q, “SASIxp”, 0);

Note the third parameter to the query method is a “query flag” reserved for future
use. Specify a value of zero.

Placing Field Restrictions on a Query
The SIF query mechanism provides a way for agents to declare the specific elements
that should be returned with SIF_Response messages. By doing so, you can minimize
the amount of data sent over the network. For example, if your agent is only inter-
ested in the first and last name of each StudentPersonal object it receives, adding
“field restrictions” to the query will instruct the recipient to return only these two ele-
ments in its response.

OpenADK for Java – Developer’s Guide 2.4 84

// This agent has determined that it needs the middle name of a student.
// It knows the provider of the student is the “SASIxp” agent because it
// has recently received a SIF_Event from that agent. This code sends a
// directed query to the “SASIxp” agent for a specific StudentPersonal
// object identified by RefId. An array of fields is passed to the
// Query.setFieldRestrictions method to instruct the recipient to only
// return the <Name> element of the student.

Query q = new Query(SIFDTD.STUDENTPERSONAL);

// Add a condition to query for a specific RefId
q.addCondition(SIFDTD.STUDENTPERSONAL_REFID, Condition.EQ,

“4A37969803F0D00322AF0EB969038483”);

// Add optional field restrictions
q.setFieldRestrictions(new ElementDef[] {
SIFDTD.STUDENTPERSONAL_NAME

};

// Send the query to the “SASIxp” agent in this zone
Zone myZone = getZoneFactory().getZone(“MYZONE”);
myZone.query(q, “SASIxp”, 0);

Handling Query Results (SIF_Response Messages)
SIF’s request and response model is asynchronous, which means the results of a query
will be received by your agent at any time as SIF_Response messages are retrieved
from its queue on the server. If the agent responding to a query is running, connected
to the zone, and able to process SIF_Request messages quickly, responses may be re-
ceived soon after the query is sent. On the other hand, if the responding agent is down
or is not able to process the query at the time it is received, your agent may not receive
SIF_Response messages until long after the query was issued.

The QueryResults Interface
The QueryResults interface is implemented by classes that can handle SIF_Response
messages received in response to a query issued by the agent. Unlike the Publisher and
Subscriber interfaces, which have one method apiece, QueryResults has two methods:

public void onQueryPending(MessageInfo info, Zone zone)
throws ADKException;

public void onQueryResults(
DataObjectInputStream data,
SIF_Error error,
Zone zone,
MessageInfo info)
throws ADKException;

The onQueryPending method is called by the ADK when it successfully sends a
SIF_Request message to a zone. This method allows your agent to keep track of the
message IDs of each request that has been issued. If tracking the requests sent by your
agent is not necessary to its operation, this method can be unimplemented.

The onQueryResults method is called by the ADK when a SIF_Response message is
received.

OpenADK for Java – Developer’s Guide 2.4 85

Implementing onQueryResults

The DataObjectInputStream Parameter
The first parameter is onQueryResults is an input stream from which you can enu-
merate the SIFDataObjects received by the ADK in a SIF_Response message. To do
so, repeatedly call the DataObjectInputStream.readDataObject method until no
more objects are available. This is done in a while loop as illustrated below.

public void onQueryResults(
DataObjectInputStream data,
SIF_Error error,
Zone zone,
MessageInfo info)
throws ADKException

{
// Check for a SIF_Error condition
if(error != null)
{
System.out.println(“The query failed: “ + error);

return;
}

// Continue processing SIFDataObjects from the input stream as long
// as the available method returns true
while(data.available())
{
// Get the next SIF Data Object
SIFDataObject object = data.readDataObject();

// Do something with the data...
}

}

If your QueryResults message handler is registered to a specific SIF Data Object type,
your code can assume that the type of object contained in SIF Response messages
passed to that handler are of a certain type. For example, suppose you’ve registered a
QueryResults handler with a zone specifically for the SIFDTD.STUDENTPERSONAL object
type:

// Register a QueryResults message handler with the zone to handle
// responses to queries for students only
myZone.setQueryResults(SIFDTD.STUDENTPERSONAL, myStudentDatabase);

In this case, you can assume that all SIFDataObject instances returned by the input
stream will be openadk.library.student.StudentPersonal instances and can
safely cast objects to that type. However, suppose you have registered a single
QueryResults implementation with a zone to handle all SIF_Response messages re-
gardless of payload:

// Register a single QueryResults message handler with the zone to handle
// responses to all queries regardless of object type
myZone.setQueryResults(this);

In this case, it is usually necessary to determine the type of object that will be returned
by the input stream’s readDataObject method. This can be done by calling DataOb-
jectInputStream.getObjectType:

OpenADK for Java – Developer’s Guide 2.4 86

public void onQueryResults(
DataObjectInputStream data,
SIF_Error error,
Zone zone,
MessageInfo info)
throws ADKException

{
// Check for a SIF_Error condition
if(error != null)
{
System.out.println(“The query failed: “ + error);

return;
}

// What kind of SIFDataObject will be returned by the input stream?
ElementDef type = data.getObjectType();

while(data.available())
{
// Get the next SIF Data Object
SIFDataObject object = data.readDataObject();

// Handle it appropriately based on object type
if(type == SIFDTD.STUDENTPERSONAL)
{
StudentPersonal sp = (StudentPersonal)object;

// Do something with the student...
}
else
if(type == SIFDTD.STAFFPERSONAL)
{
StaffPersonal sp = (StaffPersonal)object;

// Do something with the teacher...
}

}
}

Notice the DataObjectInputStream.getObjectType method returns a SIFDTD con-
stant to uniquely identify the type of object in a version-independent way. This ap-
proach is used consistently throughout the ADK because the string names of elements
and attributes in SIF may change from version to version. By using SIFDTD constants
your code is portable from one version of SIF to the next.

 If you’re not familiar with the SIFDTD class, please refer to Creating & Manipulating SIFDataObjects on page 20.

The ADK supplies two ways to create and manipulate SIFDataObject instances. The
first is to programmatically construct objects and call the methods of the SDO classes
to get and set element and attribute values. For example,

OpenADK for Java – Developer’s Guide 2.4 87

 // Constructing a StudentPersonal object
 StudentPersonal sp = new StudentPersonal();
 sp.setRefId(refid);
 sp.setName(NameType.LEGAL, “Johnson”, “Clifford”);

 // Examining a StudentPersonal object
 Name n = sp.getName();
 System.out.println(“Name: “ + n.getLastName() + “, “ + n.getFirstName());
 OtherId[] ids = sp.getOtherIds();
 System.out.println(“This student has “ + ids.length + “ IDs”);

You can also use the setElementOrAttribute method:

 // Dynamically constructing a StudentPersonal object
 SIFDataObject sp = ADK.DTD().createSIFDataObject(SIFDTD.STUDENTPERSONAL);
 sp.setElementOrAttribute(“@RefId”, refid);
 sp.setElementOrAttribute(“Name[@Type=’01’]/LastName”, “Johnson”);
 sp.setElementOrAttribute(“Name[@Type=’01’]/FirstName”, “Clifford”);

 // Dynamically examining a StudentPersonal object
 String refId = sp.getElementOrAttribute(“@RefId”);
 String studentId = sp.getElementOrAttribute(“OtherId[@Type=’06’”);

An alternative and more data-driven approach to working with SIFDataObjects is to
use the Mappings class from the openadk.library.tools.Mappings package to con-
vert SIFDataObject instances to and from a HashMap by applying a set of XPath-like
mapping rules. These rules are usually stored in an external configuration file where
they can be modified by system integrators in the field. For example, the following
rules for StudentPersonal objects define how to translate the elements and attributes
of that object to a flat list of field values:

<object object=”StudentPersonal”>
<field name=”STUDENT_ID”>OtherId[@Type=’01’]</field>
<field name=”LAST_NAME”>Name[@Type=’01’]/LastName</field>
<field name=”FIRST_NAME”>Name[@Type=’01’]/FirstName</field>

</object>

You can then call upon the Mappings class to convert a StudentPersonal instance into
a HashMap of field/value pairs, or to convert a HashMap into a StudentPersonal object.

In practice, most agents use a combination of these two approaches when working
with SIF Data Objects. Refer to the chapter on SIF Data Objects for more information

The SIF_Error Parameter
The second parameter to onQueryResults is a SIF_Error instance from the open-
adk.library.infra package. This parameter is null if the query was processed suc-
cessfully by the responding agent. However, if the responder encountered an error
while processing the query, it will return a SIF_Error element in its SIF_Response
message. In this case the error parameter will be non-null.

It is good practice to always check the error parameter before enumerating SIF-
DataObjects from the input stream.

The Zone Parameter
The third parameter to onQueryResults is a Zone object identifying the zone from
which the SIF_Response message was received. You can use this information to select
the appropriate database to update with the objects received by the query.

OpenADK for Java – Developer’s Guide 2.4 88

The MessageInfo Parameter
The final parameter to onQueryResults is a MessageInfo object, which provides mis-
cellaneous information about the message such as its header fields, message ID, and
the SourceId of the sender. These attributes can be retrieved by casting the object to a
SIFMessageInfo. This parameter can also be used to retrieve attributes specific to
SIF_Response messages, including:

• The message identifier of the original SIF_Request message. Call the SIFMes-
sageInfo.getSIFRequestMsgId method to obtain this value.

• The SIF_Response packet number. Call the SIFMessageInfo.getPacketNumber
method to obtain this value.

• Whether or not this is the last SIF_Response message in a series. Call the SIFMes-
sageInfo.getMorePackets method to obtain this value.

• Retrieve any state information that you might persisted with the request. To do
so, call SIFMessageInfo.getRequestInfo() to retrieve a RequestInfo instance.
To retrieve the state information, simply call RequestInfo.getUserData(). Re-
questInfo also tracks the date and time of the original request, which you could
retrieve for statistical purposes.

When used in conjunction with the QueryResults.onQueryPending method, the
above information can be useful in tracking the completion of queries issued by the
agent. Tracking queries is optional but recommended for agents that have a user inter-
face and need to keep users informed of the progress of queries that have been issued
to date.

Refer to the Javadoc for more information on the SIFMessageInfo class.

Tracking the Progress of Queries
To track the progress of queries, implement QueryResults.onQueryPending to re-
cord the message identifier of each SIF_Request message sent to a zone. This is easily
done in-memory by using a temporary table such as a HashMap. However, because the
SIF Request & Response model is asynchronous, you should consider using a persist-
ent file or database table versus an in-memory cache if this information is important
to the operation of your agent.

When incoming SIF_Responses are received by the QueryResults.onQueryResults
method, call SIFMessageInfo.getSIFRequestMsgId to determine which query the
response is associated with. Next, call the SIFMessageInfo.getMorePackets function
to determine if the response is the last in a series. If so, the agent knows it has success-
fully received all data from that query.

Querying in Response to SIF Events
If the processing of a SIF_Event will require that your agent query for additional data
in order to complete the operation, construct a TrackQueryResults object to execute a
query and block the current thread until the results are received. When using Track-
QueryResults in this way, you must pass the Event object to its constructor so the
ADK can send an “Intermediate” acknowledgement to the ZIS, thereby invoking Se-
lective Message Blocking. When the request has been satisfied, the TrackQueryRes-

OpenADK for Java – Developer’s Guide 2.4 89

ults object will automatically send a “Final” acknowledgement to remove the block
from the SIF_Event message.

11. Using SIFEncryption
The SIF 1.5 Authentication object allows usernames and passwords to be shared
among applications. To further secure the password, SIF requires that the password be
either obscured using BASE64 encoding or encrypted or hashed using a standard set
of cryptographic algorithms. The ADK’s SIFEncryption class manages the complex-
ity of dealing with encrypted and obscured passwords and dealing with shared keys
between SIF-enabled applications.

Supported Algorithms
The SIF Specification enumerates the algorithms that can be used to obscure, hash, or
encrypt passwords. The OpenADK supports the following algorithms from that list:

 Base64. The passwords are encoded using the BASE64 encoding algorithm. Note
that in this mode, passwords are not encrypted and can be easily retrieved using a
BASE64 decoder.

 SHA1 and MD5. These algorithms create a “hash” of the password, which can be
used to authenticate a user by hashing the password that they use at login time
and comparing it to this value.

 DES, TripleDES, and RC2. These algorithms are known as symmetric encryption
algorithms and all for the password to be securely encrypted and decrypted using
a key that is shared between the applications. The actual encryption key is not
shared using SIF. The key must be pre-configured between the applications by an
administrator. The password cannot be decrypted without knowledge of the
secret key.

Usage by Subscriber Agents
To use the SIFEncryption class to read passwords from an Authentication object pro-
vider, you should typically call the SIFEncryption.getInstance() overload that ac-
cepts a AuthencationInfoPassword instance and a Zone. This method will create and
initialize the appropriate SIFEncryption instance and return it. If the provider is us-
ing one of the symmetric encryption methods, such as DES, TripleDES, or RC2, as
shown in the example object below, the private key needs to configured in the agent
or zone properties. This can be done either by modifying the agent’s configuration file
as shown below (if you are using the openadk.library.tools.AgentConfig class)
or by calling agent.getProperties().setEncryptionKey(keyName, key). An
example of using the agent’s configuration file is shown below.

<!-- The 128-bit key used for sending passwords -->
<property name="adk.encryption.keys.SECRET_64-BIT_KEY" value="dW7SKzwdn0Q=" />

If the <password> element is using an encryption method that does not require a key,
such as base64, SHA1, or MD5, it is not using an encryption key. The KeyName attrib-
ute is ignored, and the SIFEncryption class will not look for a key in the agent prop-

OpenADK for Java – Developer’s Guide 2.4 90

erties by that name. To read the password, simple call readPassword(Authencac-
tionInfoPassword) method. If the password was stored as clear-text (base64) or en-
crypted, the plain-text password will be returned. If the password was stored as a
hash value, the hash value is returned, as is, from the element.

Here is an example Authentication object that might be received from a provider. Note
that the KeyName attribute references a key that must be present in the agent proper-
ties for the SIFEncryption class to automatically find it.

<Authentication RefId="558B19E4A85843A5B7ACB193BF8A190D"
 SifRefId="82B23671D6204FFE9E9C154E87017F83"
 SifRefIdType="StudentPersonal">
 <AuthenticationInfo>
 <System Type="Application">Sample SIF Application</System>
 <Username>example_user</Username>
 <DistinguishedName>cn=Example User, cn=Users, dc=sifinfo,
dc=org</DistinguishedName>
 <Password Algorithm="DES" KeyName="SECRET_64-BIT_KEY">
 6XSjrzAgkrd41Nzb61w5vwuqzKsQbybL</Password>
 </AuthenticationInfo>
</Authentication>

Here’s an example of a subscriber agent reading a password field:

 private void handleAuthenticationReceived(Authentication auth, Zone zone) {
 AuthenticationInfo[] infos = auth.getAuthenticationInfos();
 for (int a = 0; a < infos.length; a++) {
 try {
 SIFEncryption decryptor = SIFEncryption.getInstance(infos[a]
 .getPassword(), zone);
 System.out
 .println("Received AuthenticationInfo/Password " +
 + " using algorithm "
 + decryptor.getAlgorithm().value
 + " for user "
 + infos[a].getUsername()
 + ", password="
 + decryptor
 .readPassword(infos[a].getPassword()));
 } catch (NoSuchAlgorithmException nsae) {
 System.out
 .println("Received Password using algorithm "
 + infos[a].getPassword().getAlgorithm()
 + " for user "
 + infos[a].getUsername()
 + "but the cipher algorithm is not available");
 } catch (Exception ex) {
 System.out.println("Error processing object: "
 + ex.toString());
 }
 System.out.println();
 }
 }

Usage by Provider Agents
A provider of Authentication objects can choose to support one or more than one en-
cryption method when sending passwords using the ADK. The simplest manner of
providing password information is to start by specifying the default algorithm by call-
ing AgentProperties.setDefaultEncryptionAlgorithm(String algorithm) or
setting the property adk.encryption.algorithm in the agent’s configuration file.
Setting the value in the configuration file is more flexible and will allow the agent to
adapt to subscribers that expect passwords in a specific format.

OpenADK for Java – Developer’s Guide 2.4 91

To instantiate an instance of SIFEncryption for writing passwords, simply call the
getInstance(Zone) overload. This method searches for two properties in the
agent properties.

 adk.encryption.algorithm returns the default algorithm the agent uses for en-
cryption

 adk.encryption.key returns the name of the key to use for encryption, which, if
required, will be read from the adk.encryption.keys.[keyName] property.

The adk.encryption.keys.[keyName] property is not used or required for base64,
SHA1, and MD5. The adk.encryption.key property is required, even for encryption
methods that do not use a key. It is this value that will be written to the KeyName at-
tribute of the AuthenticationInfoPassword element.

Here is an example of an agent responding to a request for Authentication objects and
returning a single object. Depending on what algorithm was specified in the agent
properties, the result could be published as Base64, SHA1, MD5, RC2, DES, or
TripleDES.

public void onRequest(DataObjectOutputStream out,
Query query,
Zone zone,
MessageInfo info)
throws ADKException

{
 try
 {

AuthenticationInfo inf = new AuthenticationInfo(
new AuthenticationInfoSystem(
SystemType.APPLICATION,
"Sample SIF Application"));

inf.setDistinguishedName("cn=Example User,cn=Users,dc=sifinfo,dc=org");
inf.setUsername("example_user");
inf.setPassword(new AuthenticationInfoPassword());

try
{
SIFEncryption encryptor = SIFEncryption.getInstance(zone);
encryptor.writePassword(inf.getPassword(), "secret");

}
catch(Exception ex)
{
System.out.println(ex.toString());

}

Authentication auth = new Authentication(
ADK.makeGUID(),
ADK.makeGUID(),
AuthSifRefIdType.STAFFPERSONAL,
inf);

out.write(auth);
}
catch(Exception ex)
{

 System.out.println(ex.toString());
}

}

Limitations
The encryption algorithms available in the SIFEncryption class are dependent upon
the ciphers available in the version of Java that is being used. Please refer to the table

OpenADK for Java – Developer’s Guide 2.4 92

below to determine which encryption algorithms are available, by default, in each ver-
sion.

Java Version Algorithms Supported
Java 2 versions 1.2.x and 1.3.x
[requires Java Cryptography
Extension (JCE) 1.2.2]

Base64, SHA1, MD5, DES, TripleDES

Java 2 version 1.4.2.x Base64, SHA1, MD5, DES, TripleDES
Java 5 Base64, SHA1, MD5, DES, TripleDES, and RC2

NOTE: In this release, the OpenADK does not support the RSA or DSA encryption al-
gorithms defined by SIF.

12. Appendix A
Revisions
What’s New in 1.5.2.0

Enhancements to Request/Response

Setting Query State
The Query class now allows you to associate a small piece of state information with
the query by calling Query.setUserData. The only requirement of your state object is
that it needs to implement the Serializable interface. This state information will be
persisted by the ADK and available later on when the response messages are received.

Retrieving Query State
The state item that was stored when the Query was created can be retrieved in the SI-
FMessageInfo class that is returned in the response. To do so, call SIFMessageInfo.-
getRequestInfo() to retrieve a RequestInfo instance. To retrieve the state informa-
tion, simply call RequestInfo.getUserData(). The RequestInfo class also tracks
the date and time of the original request, which you can retrieve for statistical pur-
poses.

What’s New in 1.5.1.5

Data Model Classes

SIFElement Enhancements
The SIFElement class has some new methods that have been added to increase its
functionality:

OpenADK for Java – Developer’s Guide 2.4 93

 setChildren(ElementDef, Element[]) adds the specified children as an ar-
ray to the SIFElement object. All existing children that are defined as the same type as
the ElementDef parameter are removed and replaced with this list. Calling this meth-
od with the Element[] parameter set to null removes all children.

 addChild() methods were changed so that if the same child is added twice, it
will not throw an Exception.

 getId() and setId(string) methods were added to allow the application to get and set a unique identifier for

each SIFElement. These values are meant to support external object persistence frameworks and are not used internally by the

ADK.

 If setField(ElementDef id, String value) is called with a null value, the field
is removed from the list.

Changes to SIF Data Objects
 A new setter method was added for each repeatable element in all SIF data objects

that accepts an array of objects. For example, the method StudentPersonal.-
setEmails(Email[] emails) was added. This method completely replaces the
existing repeatable elements with the new list. If called with a null value, the re-
peatable elements are all removed.

 A new method,
setSIF_ExtendedElementsContainer(SIF_ExtendedElements) was added
to the SIFDataObject class.

Changes to Enum
The Enum class was changed to override the equals() and hashcode() methods so
that Enum instances can be compared directly.

The SIFEncryption Class
The SIF Authentication object allows usernames and passwords to be shared among
applications. To further secure the password, SIF requires that the password be either
obscured using BASE64 encoding or encrypted or hashed using a standard set of
cryptographic algorithms. The new SIFEncryption class in the OpenADK manages the
complexity of dealing with encrypted and obscured passwords and dealing with
shared keys between SIF-enabled applications.

Supported Algorithms
The SIF specification specifies a list of algorithms that can be used to obscure, hash, or
encrypt passwords. The ADK supports the following algorithms from that list.

 Base64. The passwords are encoded using the BASE64 encoding algorithm. Note
that in this mode, passwords are not encrypted and can be easily retrieved using a
BASE64 decoder.

 SHA1 and MD5. These algorithms create a “hash” of the password, which can be
used to authenticate a user by hashing the password that they use at login time
and comparing it to this value.

 DES, TripleDES, and RC2. These algorithms are known as symmetric encryption
algorithms and all for the password to be securely encrypted and decrypted using
a key that is shared between the applications. The actual encryption key is not
shared using SIF. The key must be pre-configured between the applications by an

OpenADK for Java – Developer’s Guide 2.4 94

administrator. The password cannot be decrypted without knowledge of the
secret key.

Usage by Subscriber Agents
To use the SIFEncryption class to read passwords from an Authentication provider,
you should typically call the SIFEncryption.getInstance(AuthencationIn-
foPassword, Zone) method. This method will create and initialize the appropriate
instance of the SIFEncryption class and return it. If the provider is using one of the
symmetric encryption methods, such as DES, TripleDES, or RC2, as shown above, the
private key needs to configured in the agent or zone properties. This can be done
either by modifying the agent’s configuration file as shown below (if you are using
the openadk.library.tools.AgentConfig class) or by calling agent.getProper-
ties().setEncryptionKey(keyName, key). An example of using the agent’s con-
figuration file is shown below.

<!-- The 128-bit key used for sending passwords -->
<property name="adk.encryption.keys.SECRET_64-BIT_KEY" value="dW7SKzwdn0Q=" />

If the <password> element is using an encryption method that does not require a key,
such as base64, SHA1, or MD5, it is not using an encryption key. The KeyName attrib-
ute is ignored, and the SIFEncryption class does not look for a key in the agent prop-
erties by that name. To read the password, simple call readPassword(Authencac-
tionInfoPassword). If the password was stored as clear-text (BASE64) or encrypted,
the plain-text password will be returned. If the password was stored as a hash value,
the hash value is returned, as is, from the element.

Here is an example Authentication object that might be received from a provider. Note
that the KeyName attribute references a key which must be present in the agent prop-
erties for the SIFEncryption class to automatically find it.

<Authentication RefId="558B19E4A85843A5B7ACB193BF8A190D"
 SifRefId="82B23671D6204FFE9E9C154E87017F83"
 SifRefIdType="StudentPersonal">

<AuthenticationInfo>
<System Type="Application">Sample SIF Application</System>
<Username>example_user</Username>
<DistinguishedName>cn=Example User, cn=Users, dc=sifinfo, dc=org</DistinguishedName>
<Password Algorithm="DES" KeyName="SECRET_64-BIT_KEY">6XSjrzAgkrd41Nzb61w5vwuqzK-

sQbybL</Password>
 </AuthenticationInfo>
</Authentication>

Here is an example of a subscriber agent reading a password field.

private void handleAuthenticationReceived(
Authentication auth, Zone zone)

{
AuthenticationInfo[] infos = auth.getAuthenticationInfos();

 for (int a = 0; a < infos.length; a++) {
 try {
 SIFEncryption decryptor =

SIFEncryption.getInstance(infos[a].getPassword(), zone);
 System.out.println(

"Received AuthenticationInfo/Password using algorithm "
 + decryptor.getAlgorithm().value
 + " for user "
 + infos[a].getUsername()
 + ", password="
 + decryptor.readPassword(infos[a].getPassword()));

} catch (NoSuchAlgorithmException nsae) {
 System.out.println(

"Received AuthenticationInfo/Password using algorithm "
+ infos[a].getPassword().getAlgorithm()

 + " for user "
 + infos[a].getUsername()
 + "but the cipher algorithm is not available on the system");

OpenADK for Java – Developer’s Guide 2.4 95

} catch (Exception ex) {
 System.out.println("Error processing object: " + ex.toString());

}
System.out.println();

}
}

Usage by Provider Agents
A provider of Authentication can choose to support one or more than one encryption
method when sending passwords using the ADK. The simplest manner of providing
password information is to start by specifying the default algorithm by calling Agent-
Properties.setDefaultEncryptionAlgorithm(String algorithm) or setting the
property adk.encryption.algorithm in the agent’s configuration file. Setting the
value in the configuration file is more flexible and will allow the agent to adapt to
subscribers that expect passwords in a specific format.

To instantiate an instance of SIFEncryption for writing passwords, simply call the
getInstance(Zone) overload. This method searches for two properties in the agent
properties.

 adk.encryption.algorithm returns the default algorithm the agent uses for en-
cryption

 adk.encryption.key returns the name of the key to use for encryption, which, if
required, will be read from the adk.encryption.keys.[keyName] property.

The adk.encryption.keys.[keyName] property is not used or required for base64,
SHA1, and MD5. The adk.encryption.key property is required, even for encryption
methods that do not use a key. It is this value that will be written to the @KeyName at-
tribute of the AuthenticationInfoPassword object.

Here is an example of an agent responding to a request for Authentication and return-
ing a single object. Depending on what algorithm was specified in the agent proper-
ties, the result could be published as Base64, SHA1, MD5, RC2, DES, or TripleDES.

public void onRequest(DataObjectOutputStream out,
Query query,
Zone zone,
MessageInfo info)
throws ADKException {

 try
 {

AuthenticationInfo inf = new AuthenticationInfo(
new AuthenticationInfoSystem(

SystemType.APPLICATION,
"Sample SIF Application"));

inf.setDistinguishedName("cn=Example User, cn=Users, dc=sifinfo, dc=org");
inf.setUsername("example_user");
inf.setPassword(new AuthenticationInfoPassword());
try
{

SIFEncryption encryptor = SIFEncryption.getInstance(zone);
encryptor.writePassword(inf.getPassword(), "secret");

}
catch(Exception ex) {

System.out.println(ex.toString());
}

Authentication auth = new Authentication(
ADK.makeGUID(),
ADK.makeGUID(),
AuthSifRefIdType.STAFFPERSONAL,
inf);

out.write(auth);

OpenADK for Java – Developer’s Guide 2.4 96

 }
 catch(Exception ex) {

System.out.println(ex.toString());
}

}

Limitations
The encryption algorithms available in the SIFEncryption class are dependent upon
the ciphers available in the version of Java that is being used. Please refer to the table
below to determine which encryption algorithms are available, by default, in each ver-
sion.

Java Version Algorithms Supported
Java 2 versions 1.2.x and 1.3.x
[requires Java Cryptography Exten-
sion (JCE) 1.2.2]

Base64, SHA1, MD5, DES, TripleDES

Java 2 version 1.4.2.x Base64, SHA1, MD5, DES, TripleDES
Java 5 Base64, SHA1, MD5, DES, TripleDES, and

RC2

NOTE: In this release, the OpenADK does not support the RSA or DSA encryption al-
gorithms defined by SIF.

What’s New in 1.5.1.0

SIF 1.5 Infrastructure Support
The ADK supports three new features of the SIF 1.5 infrastructure:

 SIF_ExtendedElement elements
 SIF_LogEntry objects
 SIF_SystemControl/SIF_GetZoneStatus messages (experimental)

SIF_ExtendedElement
Beginning with SIF 1.5, users can add custom extensions to any SIF Data Object by ap-
pending a SIF_ExtendedElements element to the end of the object. This element serves
as a container for one or more SIF_ExtendedElement children, which can be used to
pass mutually-defined field values among applications, experiment with extensions to
the SIF Data Object model, or enhance objects for custom integration projects.

To set the value of an extended element, call the new setExtendedElement method
on any SIFDataObject instance:

StudentPersonal sp = new StudentPersonal();
sp.setRefId(“…”);
sp.setExtendedElement(“InternetUsePolicy”, “accept”);
sp.setExtendedElement(“Thumbprint”, “19zl+aFFNa0192…”);
sp.setName(new Name(NameType.BIRTH, “Smith”,”Joe”));
sp.setOtherId(OtherIdType.SYSTEM, “1600001”);

The above calls would result in this StudentPersonal object:

<StudentPersonal RefId=”…”>
<OtherId Type=”06”>1600001</OtherId>

OpenADK for Java – Developer’s Guide 2.4 97

<Name Type=”01”>
<LastName>Smith</LastName>
<FirstName>Joe</FirstName>

</Name>
<SIF_ExtendedElements>

<SIF_ExtendedElement name=”InternetUsePolicy”>
accept

</SIF_ExtendedElement>
<SIF_ExtendedElement name=”Thumbprint”>

19zl+aFFNa0192…
</SIF_ExtendedElement>

</SIF_ExtendedElements>
</StudentPersonal>

To extract all SIF_ExtendedElements from a SIFDataObject, call this new method:

public SIF_ExtendedElement[] getExtendedElements();

To lookup a specific SIF_ExtendedElement by name, call this method:

public SIF_ExtendedElement getExtendedElement(String name);

For example, the following Subscriber.onEvent implementation for StudentPersonal ob-
jects first looks for a “InternetUsePolicy” extended element and saves its value to a
local variable. It then builds a Hashtable of all extended elements found in the Stu-
dentPersonal object.

public void onEvent(Event ev, Zone zone, MessageInfo info)
throws ADKException

{
DataObjectInputStream data = ev.getData();
while(data.isAvailable())
{

// Get next StudentPersonal from the input stream
StudentPersonal sp = (StudentPersonal)data.readDataObject();

// Look for InternetUsePolicy extended element
String usePcy = sp.getExtendedElement(“InternetUsePolicy”);
if(usePcy != null && usePcy.equals(“accept”))
{

// Do something with this value...
}

// Put all SIF_ExtendedElements in a hashtable
Hashtable extras = new Hashtable();
SIF_ExtendedElement[] ext = sdo.getSIFExtendedElements();
if(ext != null) {

for(int i = 0; i < ext.length; i++) {
String name = ext[i].getName();
String value = ext[i].getTextValue();
extras.put(name, value);

}
}

}
}

SIF_SystemControl/SIF_GetZoneStatus
By sending this message to a ZIS, an agent can obtain zone status synchronously. This
alleviates some of the chicken-egg problems vendors have experienced in obtaining

OpenADK for Java – Developer’s Guide 2.4 98

SIF_ZoneStatus objects with the asynchronous request and response model (for ex-
ample, an agent needs SIF_ZoneStatus to make logic decisions but pending messages
in the agent’s queue prevent it from receiving that object in time.)

To use this feature, set the “useZoneStatusSystemControl” agent property to a value
of true in your agent’s initialize method as shown below. This property is disabled by
default.

AgentProperties props = getProperties();
props.setUseZoneStatusSystemControl(true);

The above calls instruct the Zone.getZoneStatus method to issue a SIF_SystemCon-
trol message to obtain a zone status synchronously instead of sending a SIF_Request
and blocking the current thread until a SIF_Response is received.

NOTE: This feature is considered experimental by SIF and may not be implemented in
the specification. If adopted, we will reverse the default value of this property in a fu-
ture ADK so that it is enabled by default in the version it appears in the specification.

The ServerLog Class

The SIF_LogEntry Object
SIF 1.5 introduces the new SIF_LogEntry data object to provide agents with a means
of reporting diagnostic and error/warning messages back to a zone. These log entries
are sent independent of the SIF_Ack acknowledgements that accompany each
SIF_Message. They may be comprised of simple textual messages or can be more com-
plex in structure, referencing SIF_Messages and the data objects contained in them.

SIF_LogEntry is particularly useful when an agent processes a message at some point
in time after it has received the message from the server. In earlier versions of SIF,
there was no mechanism to report log information to a zone other than by returning a
SIF_Ack with an error code and description, which could only be accomplished at the
time the message was received by the agent. SIF_LogEntry addresses that limitation.
Another benefit of SIF_LogEntry is that it can reference SIF_Messages and SIF Data
Objects in its payload. Subscribers can use that information to reconstruct the path of
a message or data object from its publisher to the agents that received it, promoting
the development of log analysis features in zone integration servers.

SIF_LogEntry is designed to follow the normal publish and subscribe model of SIF.
When the ADK reports a SIF_LogEntry object to a zone, the zone integration server
will broadcast it to all subscribers. Similarly, agents can query a zone integration serv-
er for log information by issuing a SIF_Request for SIF_LogEntry objects. By design,
zone integration servers usually provide built-in support for this object type so that
log information can be recorded and published without any third-party agents. In the
ZIS, for example, all SIF_LogEntry objects reported to a zone are written to the agent’s
log file on the server.

The ServerLog Class
The ADK 1.5 introduces the concept of a “server log” to which SIF_LogEntry mes-
sages can be written. Every zone has a server log that represents a virtual log on the
zone integration server. Call the new Zone.getServerLog() function to obtain the
ServerLog instance for a zone, then call one of its log methods to send a SIF_LogEntry

OpenADK for Java – Developer’s Guide 2.4 99

object to the server. The version of the method you call depends on how much inform-
ation you want to send to the zone integration server, and whether or not that inform-
ation references SIF Messages and SIF Data Objects received by the agent.

When reporting log information that references a SIF Message and set of data objects
previously received by the agent, you can pass as parameters the SIFMessageInfo in-
stance from your message handler, and optionally an array of data objects to reference
in the log. The log method will package up the required information into a SIF_Lo-
gEntry object, and then report it to the zone via an Add event.

Since SIF_LogEntry is available only in SIF 1.5 and later, the ADK will not attempt to
send these objects if the agent is running in an earlier version. Instead, it will echo the
information to the local agent log. This enables you to code SIF_LogEntry into your
agent without having to worry about the version of SIF the agent is running against.

Logging Message-Independent Entries
To report log information independent of a SIF Message or SIF Data Objects – for ex-
ample, a notice to the zone that the agent has completed its synchronization process;
has run out of memory and will shut down; etc. – call the following forms of log.
These methods do not require that you pass any information about SIF Messages or
SIF Data Objects.

public void log(String message);

public void log(
LogLevel level,
String desc,
String extDesc,
String appCode);

public void log(
LogLevel level,
String desc,
String extDesc,
String appCode,
int category,
int code);

Logging Message-Dependent Entries
To report log information that references a SIF Message previously received by the
agent – for example, to report that a business rule has failed because the agent did not
receive enough information in a SIF_Event message – call the following forms of log.
These methods are identical to the above except they allow a SIFMessageInfo and ar-
ray of SIFDataObjects to be passed as parameters. You may pass a null value to the
SIFMessageInfo and SIFDataObject[] parameters. If the SIFDataObject[] para-
meter is non-null, the SIFMessageInfo parameter must be supplied.

public void log(
LogLevel level,
String message,
SIFMessageInfo info,
SIFDataObject[] objects);

public void log(
LogLevel level,

OpenADK for Java – Developer’s Guide 2.4 100

String desc,
String extDesc,
String appCode,
SIFMessageInfo info,
SIFDataObject[] objects);

public void log(
LogLevel level,
String desc,
String extDesc,
String appCode,
int category,
int code,
SIFMessageInfo info,
SIFDataObject[] objects);

New Features in the Mappings Classes

Automatic ValueSet Translation
The ValueSet class from the openadk.library.tools.mappings package offers a way
to build translation tables for converting codes and other constants used by an applic-
ation to codes used by SIF. For example, many agents must convert between the
standard Ethnicity, Language, and Grade Level codes defined in the SIF Specification
to equivalent codes used by the application. ValueSets let you build these translation
tables in your configuration file when using the Mappings classes.

In this release of the ADK, the Mappings classes have been enhanced to automatically
translate values if a ValueSet attribute is assigned to a FieldMapping. For example,
consider the following mapping rules in a configuration file:

<mappings id=”Default”>
<valueset id=”LanguageCodes”>

<value name=”EN” title=”English”>ENG</value>
<value name=”SP” title=”Spanish”>SPA</value>

</valueset>
<object object=”StudentPersonal”>

<field name=”LANG” valueset=”LanguageCodes”>
Demographics/Language

</field>
</object>

</mappings>

The new valueset attribute of the <field> rule instructs the Mappings.map function to
automatically lookup the ValueSet with an ID of “LanguageCodes”, and if found
translate the value of the Demographics/Language element using that table. The Map-
pings.map function calls ValueSet.translate or ValueSet.translateReverse de-
pending on which whether the mapping is for an inbound or outbound message.

Deferred Responses
By design, the ADK sends SIF_Response messages to the zone integration server after
it processes the SIF_Request and control has returned from the Publisher.onRequest
message handler. From the ADK perspective, the two messages are considered part of
the same logical operation. The new Deferred Response capability in ADK 1.5 lets
agent developers decouple SIF_Request processing from the sending of SIF_Response
messages.

OpenADK for Java – Developer’s Guide 2.4 101

Overview of Request & Response Handling in the ADK
When the ADK receives a SIF_Request message from a zone, it delegates the pro-
cessing of that message to a Publisher message handler selected from the message dis-
patch chain. The onRequest method is called and supplied with a DataObjectOutput-
Stream instance, to which one or more SIFDataObject instances and/or SIF_Error ele-
ments may be streamed.

As objects are written to this stream, the ADK renders them and packages them into
individual SIF_Response packets. This is done according to the SIF Version,
SIF_MaxBufferSize, and SIF_Element field restrictions specified in the SIF_Request
message. These packets are written to the local file system in the agent’s work direct-
ory pending delivery to the server. When onRequest returns successfully, a back-
ground thread is started to deliver the packets to the zone integration server in one or
more SIF_Response messages. The entire process occurs as one logical operation, with
a SIF_Request always met with one or more SIF_Responses.

Deferring Responses
While the ADK’s normal request/response behavior is very easy to use and appropri-
ate for most agents, there are times when it is necessary to decouple SIF_Request and
SIF_Response processing. For example, some agents may wish to record SIF_Requests
in a work queue and then processes them at a later time when data is available. In this
case, the ADK must not return SIF_Response messages to the requestor when control
returns from the Publisher.onRequest method. Another example might be an agent
that implements the SIF 1.5 StudentLocator message choreography, where SIF_Re-
sponses are usually sent at some point in the future after the initial SIF_Request for
StudentLocator is received.

Deferred Responses is a new feature of the ADK whereby agents can “defer” SIF_Re-
sponse messaging by calling the deferResponse method of the DataObjectOutput-
Stream. Calling this method instructs the ADK to ignore any SIFDataObjects that are
written to the stream, and to not send any SIF_Responses to the zone integration serv-
er when control is returned from the onRequest method. By calling deferResponse,
you’re in effect telling the framework that you will handle sending SIF_Responses at a
later time.

TODO

When the agent is ready to send SIF_Responses, it uses the new SIFResponseSender
class in the openadk.library package to stream SIFDataObjects and/or SIF_Error
elements to the zone.

The SIFResponseSender Class
The SIFResponseSender class follows the same general design and API as the Publish-
er.onRequest method for sending SIF_Response packets to a zone integration server.
When deferring responses as described above, an agent can use this class when it is
ready to send SIF_Response packets. Follow these steps:

1. Construct an instance of SIFResponseSender and call its open method

2. Stream one or more SIFDataObject instances by calling the write method. This is
similar to what an agent would normally do in the Publisher.onRequest meth-

OpenADK for Java – Developer’s Guide 2.4 102

od when data is streamed to the supplied DataObjectOutputStream. As with tra-
ditional processing, packets are rendered and cached on the local file system
pending delivery to the server.

3. To include a SIF_Error element in the response stream, call the version of write
that accepts a SIF_Error instance.

4. When you’re finished streaming data objects and/or a SIF_Error element to the
SIFResponseSender, call its close method. The ADK will begin delivering the
SIF_Response packets to the zone integration server. Note as with traditional pro-
cessing, this is handled in a background thread. If the agent shuts down before all
responses have been delivered it will automatically pick up where it left off the
next time the agent is started.

Miscellaneous

SIF_URL Hostname & Port
When registering with a zone in Push mode, the ADK binds to a local IP address and
port to listen for incoming messages from the zone integration server. It uses the Host
and Port properties from the TransportProperties object when binding the socket. You
set these values by obtaining the HttpProperties object from the agent and then calling
the setHost and setPort methods as needed. The SIF_Protocol/SIF_URL element in-
cluded with each zone’s SIF_Register message is automatically prepared by the ADK
in the following format, using these same hostname and port values.

protocol://host:port/zone/ZoneId

Consider the following code in an agent’s initialize method:

// Set the messaging mode to Push
AgentProperties props = getProperties();
props.setMessagingMode(AgentProperties.PUSH_MODE);

// Set up the HTTP properties
HttpProperties http = getDefaultHttpProperties();
http.setHost(“agent.edustructures.com”);
http.setPort(12345);

// Connect to a zone
Zone testZone = getZoneFactory().getInstance(

“Test”, “http://zis:7080/Test”);
testZone.connect(ADKFlags.PROV_REGISTER);

When connecting to the zone, the ADK would bind to the port 12345 on the local ma-
chine at address “agent.edustructures.com”. The SIF_Register/SIF_Protocol/SIF_URL
element sent to the zone would be formatted as follows:

<SIF_URL>http://agent.edustructures.com:12345/zone/Test</SIF_URL>

In some cases it is necessary to specify a different SIF_URL hostname and port than
those used to bind the local socket. With the 1.5 version of the ADK you can achieve
this by calling two new methods of the HttpTransport class: setPushHost and set-
PushPort.

OpenADK for Java – Developer’s Guide 2.4 103

For example,

HttpProperties http = getDefaultHttpProperties();
http.setHost(“localhost”);
http.setPushHost(“agents01.edustructures.com”);
http.setPort(12345);
http.setPushPort(12345);

This code would cause the agent to bind on the local address “localhost:12345”, but
would send a SIF_URL value with “agents01.edustructures.com:12345” as the host-
name and port the zone integration server will use to contact the agent.

<SIF_URL>http://agent01.edustructures.com:12345/zone/Test</SIF_URL>

13. Appendix B
Known Issues
Docs and Examples

The Developer Documentation and Example agents are still in a preliminary state.
However, there are a few examples agents that are part of this release and the javadoc
is up to date.

Issues with SIF 2.x Support

Features Not Yet Implemented
The following SIF 2.0 features are not yet supported in the ADK.

• SIF_ExtendedQuery

• The XML data type (used in <SIF_ExtendedElement> and other elements that
support embedded XML)

Issues with SIF 1.x support
The OpenADK can parse and write objects in both SIF 1.x and 2.x formats. However,
at this time, there are a number of objects that have known issues in supporting their
1.x format. Here is the list, by package name, of classes that have incomplete support
for SIF 1.x

openadk.library.food package

FoodServiceReimbursementRates

openadk.library.hrfin package

Purchasing, FinancialIncomeStatement

openadk.library.instr package

Assignment, CurriculumStructure

OpenADK for Java – Developer’s Guide 2.4 104

openadk.library.library package

LibraryPatronStatus

openadk.library.trans package

StudentTransportInfo

Objects Not Supported
The ADK does not support a small number of objects from the SIF 1.5r1 specification.
These objects have been completely redesigned in the SIF 2.0 and are not expected to
be widely used in a SIF 1.5r1 environment.

The list of SIF 1.5 objects not supported are:

• Assessment

• AssessmentSection

• AssessmentItem

• AssessmentSubTest

• StudentResultSet

14. Appendix C
Upgrading from 1.5

The OpenADK has had some minor changes to some of its core APIs to better support
SIF 2.0 and Java 5. An agent that was built using the 1.5 ADK will need to have some
minor code changes to correct compiler errors before it will compile against the 2.0
edition of the ADK. This section highlights many of the code changes that may need
to be done to agents written using prior versions of the ADK.

Changes to SIF Versions supported
The 2.0 ADK has removed support for the 1.0r1 and 1.0r2 versions of SIF. This edition
of the ADK fully all previous certified versions of SIF, which include SIF 1.1 and SIF
1.5r1. The ADK also supports SIF 2.0 and all 2.x versions of SIF.

Agent Provisioning Changes

ADK Initialization
Agents that call ADK.initialize() with a specific SIFVersion and set of SDO libraries, will
need to change the second argument. The constants identifying each available SDO
library have moved from the SDO class to the SIFDTD class. The SDO class has also
been removed from the ADK and will need to be removed if it has been explicitly im-
ported. Here is an example.

OpenADK for Java – Developer’s Guide 2.4 105

// ADK 1.5 code
ADK.initialize(ADKExamples.Version, SDO.STUDENT);

// ADK 2.0 code
ADK.initialize(ADKExamples.Version, SIFDTD.SDO_STUDENT);

SIFDTD ElementDef constants
In the 1.5 version of the ADK, the SIFDTD class contained a const field that held the
ElementDef for each Element or Attribute in the SIF Specification. These constants have
been moved to DTD classes within each package. For example, if you referenced SIF-
DTD.STUDENTPERSONAL in your code, the corresponding constant is now at Student-
DTD.STUDENTPERSONAL.

Provisioning Changes
In the 1.5 version of the ADK, the provisioning APIS, such as zone.setSubscriber() and
zone.setProvider(), accepted three arguments. The third argument was a constant from
the ADKFlags class that further defined the provisioning options. In the 2.0 version of
the ADK, the second argument has changed to accept a specific ProvisioningOptions in-
stance, such as PublishingOptions.

OpenADK for Java – Developer’s Guide 2.4 106

Here is an example.

Example: zone.setPublisher()

//
// ADK 1.5 code
//

zone.setPublisher(this,
SIFDTD.STUDENTPERSONAL,
ADKFlags.PROV_PROVIDE);

//
// ADK 2.0 code
//

zone.setPublisher(this,
StudentDTD.STUDENTPERSONAL,
new PublishingOptions(true));

Example: zone.setQueryResults()

//
// ADK 1.5 code
//

zone.setQueryResults(this,
SIFDTD.STUDENTPERSONAL);

//
// ADK 2.0 code
//

zone. setQueryResults (this,
StudentDTD.STUDENTPERSONAL,
new QueryResultsOptions());

Message Processing Changes

Changes to The SIFMessageInfo class
The SIFMessageInfo class Encapsulates information about a SIF_Message. In SIF 2.0, a
few changes have been made to SIF_Request and SIF_Response messages that have
caused changes to the SIFMessageInfo class.

 getSIFRequestVersion() has been changed to getLatestSIFRequestVersion(). This method ex-
amines the list of SIF_Versions requested and returns the latest SIFVersion supported
by the agent, according to it’s current provisioning settings. To get the complete list
of all SIF_Versions requested, call getSIFRequestVersions().

Changes to the Event class
ADK 2.0 has created an Enum called EventAction, which has values for ADD, CHANGE,
and DELETE. The corresponding ADD, CHANGE, and DELETE constants have been re-
moved from the Event class.

OpenADK for Java – Developer’s Guide 2.4 107

New Enums for Query operators
The Condition class has been removed from the ADK and is now represented as two
separate Enum classes. A new Enum, GroupOperators, has been created to represent the
And, Or, and None values associated with a SIF_Condition. Another Enum, ComparisonOper-
ators, has been created to represent the values that can be present in a SIF_Operator ele-
ment. All of the APIs that use these values have been updated to expect the associated
Enum constant, rather than an int from the Condition class.

Changes to Mappings
ADK 2.0 has made changes to the Mappings class to allow for more sophisticated
mappings strategies to be implemented. The Mappings.map() methods that used to ac-
cept an instance of a class implementing the Map interface have been changed to in-
stead require a FieldAdaptor instance. The ADK includes a FieldAdaptor class that uses a
Map and is compatible with how the Mappings class worked in ADK 1.5 This class is
called the StringMapAdaptor. Here is an example.

//
// ADK 1.5 code
//

mappings.map(hashMap, datObject);

//
// ADK 2.0 code
//

StringMapAdaptor sma = new StringMapAdaptor(hashMap);
mappings.map(sma, datObject);

SIF Data Object Changes
The SIF Data Object (SDO) classes that represent Objects and Elements in the SIF data
model have been changed to better represent the SIF 2.0 strongly-typed data model. In
SIF 2.0, some fields have been changed to use XSD datatypes, which are strongly-
typed representations of data. The ADK has also updated all of its APIs to match the
strongly-typed representation of that data.

For example, the StudentSchoolEnrollment object has a getEntryDate() method. In the 1.5
ADK, this method returned a string, which represented the entry date of the student as
a date formatted as “yyyyMMdd”. The 2.0 ADK represents this value as a strongly-
typed value and getEntryDate() returns a Calendar instance.

Using Dates in the ADK
The 2.0 ADK has implemented support for dates consistently by using the Java Calen-
dar object for all APIs that represent a date. For example, the SIFMessageInfo.get-
Timestamp() method, which returns the value of the SIF_Timestamp element, now returns
a Calendar object. All APIs that represent dates are implemented using Calendar objects.

The SIFDate class was used in the 1.5 ADK to both represent a date and convert a date
to and from a string. However the pattern in the 2.0 ADK is to represent all dates as
Calendar instances. Conversion to and from a string, where necessary, is handled by
instances of SIFFormatter for each version of SIF supported by the ADK. Here are some
examples of differences in date conversions between the 1.5 and 2.0 editions of the
ADK.

OpenADK for Java – Developer’s Guide 2.4 108

Retrieving a date from a SIF Object

//
// ADK 1.5: Retrieve EntryDate as a Date
// in ADK 1.5, StudentSchoolEnrollment.getEntryDate()
// returned a SIFDate
//

SIFDate entryDate = studentSchoolEnrollment.getEntryDate();
Date date = entryDate.toDate();

//
// ADK 2.0: Retrieve EntryDate as a Date
// in ADK 2.x, StudentSchoolEnrollment.getEntryDate()
// returns a Calendar
//

Calendar entryDate = studentSchoolEnrollment.getEntryDate();
Date date = entryDate.getTime();

Setting a date to a SIF Object from a string representation

//
// ADK 1.5: Set EntryDate from a String
//

String entryDate = "19960901";
SIFDate sifDate = new SIFDate(entryDate);
studentSchoolEnrollment.setEntryDate(sifDate);

//
// ADK 2.0: Set EntryDate from a String
//

String entryDate = "1996-09-01";
SIFFormatter formatter = ADK.DTD().getFormatter(SIFVersion.SIF20);
Calendar calEntry = formatter.toDate(entryDate);
studentSchoolEnrollment.setEntryDate(calEntry);

Converting a date from its SIF format to a String

//
// ADK 1.5: Retrieve EntryDate as a String
//

SIFDate entryDate = studentSchoolEnrollment.getEntryDate();
// SIFDate.toString() returns a string in the SIF 1.x format,
// "yyyyMMdd"
String date = entryDate.toString();

//
// ADK 2.0: Retrieve EntryDate as a String
//

StudentSchoolEnrollment studentSchoolEnrollment;
Calendar entryDate = studentSchoolEnrollment.getEntryDate();

// Retrieve the date in SIF 1.x format "yyyyMMDD"
SIFFormatter formatter = ADK.DTD().getFormatter(SIFVersion.SIF11);
String date = formatter.toDateString(entryDate);

// Retrieve the date in SIF 2.x format "yyyyMMDD"
formatter = ADK.DTD().getFormatter(SIFVersion.SIF20);
date = formatter.toDateString(entryDate);

OpenADK for Java – Developer’s Guide 2.4 109

Index
ADK.. 14

ADK Class..43

ADK Class Framework...................................... 10

Agent.. 14

Agent and Transport Properties.......................15

Agent Class..46

Agent Constructor.. 47

Agent Initialization...47

Agent Properties... 48

Agent Responsibilities.......................................10

Appendix A... 93

Appendix B..104

Appendix C... 105

Attaching User Data to a Zone.........................60

Building SIF Data Objects Dynamically..........23

Class Constructors..19

Common Properties...49

Concepts...10

Connect to SIF Zones..11

Connecting to Zones..58

Core Classes...43

Core Classes and Interfaces...............................14

Creating & Manipulating SIFDataObjects......20

Customizing the Default Transport Properties
for a Zone... 52

DataObjectOutputStream Parameter...............67

Dates and Times..25

Debug Output... 44

Default HTTP Properties...................................51

Default HTTPS Properties................................. 51

Default Version..38

Developerís Guide..8

Directed Queries... 84

Directory Contents...8

Disabling XML Encoding..................................28

Documentation..8

Dynamic SIFDataObject Construction.............19

Echoing SIF_LogEntry to the Agent Log.........41

Elementís Tag Name...22

Encoding XML Character Entities....................28

Enumerated Types.. 24

Event Objects...75

Object Type.. 75

Event Reporting.. 11, 78

Executing Queries from Subscriber.onEvent. .77

Handling Query Results (SIF_Response Mes-
sages).. 85

OpenADK for Java – Developer’s Guide 2.4 110

How the ADK Registers Multiple Versions
with a Zone..38

How to Report Events..79

Implement an Agent Class................................10

Implement Message Handler Interfaces..........32

Implement Message Handlers..........................10

Implementing onQueryResults........................86

Initialize..44

Initializing the Class Framework.....................43

Inspecting the ElementDef of a SIFDataObject
... 22

Installation... 8

Installing the ADK..8

Introduction...6

Java Classpath... 9

Java Command-Line...51

Java Packages...11, 18

Java Requirements.. 7

Javadoc... 8

Joining Zones with Topics.................................64

Journaling.. 80

License & Redistribution.....................................7

Lifecycle Considerations....................................52

Limitations...92

Logging References to SIF Messages & SIF
Data Objects...40

Managing RefIds...25

Managing SIF RefIds.. 11

Mapping SIF Attributes to Local Field Names
... 71

Mapping SIF Values...72

Message Dispatching...32

Message Handlers..30

Multiple SIF Versions... 7

Multiple Versions of SIF.....................................37

Organization of SIF Data Object Classes.........17

Other ADK Static Methods................................46

Other Ways to Redirect Debug Output...........45

Placing Field Restrictions on a Query..............84

Preparing SIFDataObjects for Event Reporting
... 80

Preventing the Main Thread from Ending......53

Properties on the Java Command-Line...........48

Provisioning SIF Zones...................................... 36

Public Interface..55, 64

Publisher Interface..35

Publishers...16

Publishing.. 65

Queries and QueryResults................................16

Query Parameter...67

Evaluation Conditions...................................68

Object Type.. 69

QueryFormatter Classes....................................71

10.Querying... 81

MessageInfoParameter..................................89

Zone Parameter...88

OpenADK for Java – Developer’s Guide 2.4 111

Querying for a Specific Object by RefId..........83

Querying for All Objects....................................82

Querying for Data...82

Querying in Response to SIF Events................89

QueryResults Interface.................................35, 85

Redirecting Debug Output to a Log File.........45

RefIds for SIF Data Objects................................25

Registering Message Handlers with Topics...34,
63

Registering Message Handlers with Zones....33

ReportPublisher Interface..................................35

Requirements...7

Selective Message Blocking and the ADK.......78

Server Logging.. 39

ServerLog Class...40

Shutdown...52

SIF Data Objects.. 18

SIF Data Objects (SDO) Libraries.....................15

SIF Data Objects Library....................................17

SIF Infrastructure Messages..............................29

SIF Messages..30

SIF Requirements..7

SIF Versions Supported..6

SIF XML..27

SIF_Error Parameter...88

SIF_Provide & SIF_Unprovide Messages........37

SIF_Register & SIF_Unregister Messages........36

SIF_Subscribe & SIF_Unsubscribe Messages..37

SIF_ZoneStatus Object.......................................60

SIFDTD Class.. 21

SIFDTD Constants for Elements & Attributes21

SIFElement & SIFDataObject Classes..............18

11.SIFEncryption... 90

Usage by Provider Agents.............................91

Usage by Subscriber Agents..........................90

SIFMessageInfo Parameter..........................74, 77

SIFParser Class..27

SIFWriter Class..27

Strategies for Event Reporting..........................79

Subscriber Interface...................................... 34, 75

Subscribers...16

Subscribing.. 75

Tech Notes..8

Technical Support... 8

Throwing Exceptions from Message Handlers
... 36

Topic Objects..63

Topics..15

Topics Summary...65

Tracking the Progress of Queries......................89

Transport Protocols...50

Using ServerLog with Versions of SIF Prior to
1.5.. 41

When to Report Events...................................... 78

Work Directory..42

OpenADK for Java – Developer’s Guide 2.4 112

XML..

Sending Raw XML..67

Zone IDs and URLs.. 57

Zone Objects.. 57

Zone Parameter...74, 77

Zone Properties... 59

Zones.. 14

6.Zones & Topics...57

About Topics..63

Public Interface..60

Zones Summary.. 62

OpenADK for Java – Developer’s Guide 2.4 113

	1. Introduction
	2. Installation
	3. Concepts
	4. The ADK Class
	5. The Agent Class
	6. Zones & Topics
	7. Publishing
	8. Subscribing
	9. Event Reporting
	10. Querying
	11. Using SIFEncryption
	12. Appendix A
Revisions
	13. Appendix B
Known Issues
	14. Appendix C
Upgrading from 1.5
	Index

