
15.05.2012 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

AIM3 – Scalable Data Analysis and Data
Mining

06 – Dimensionality Reduction

Sebastian Schelter, Christoph Boden, Volker Markl

15.05.2012 DIMA – TU Berlin 2

think of data in terms of

vectors and matrices

15.05.2012 DIMA – TU Berlin 3

■ think of data in terms of vectors and matrices

□ Text

 documents x terms

□ Ratings

 users x items

□ Graphs

 vertices x vertices

■ in a lot of use cases this data is extremely high dimensional
→ „Curse of dimensionality“

□ extremely sparse matrices

□ nearest neighbor search

■ goal: reduce the data to the „interesting“ dimensions

Representing data as matrices

15.05.2012 DIMA – TU Berlin 4

A concrete example:

Latent Semantic Indexing

15.05.2012 DIMA – TU Berlin 5

The problems with lexical matching

■ Imagine a corpus with only three very simple documents:

□ doc1 : „bike“

□ doc2: „harley bike“

□ doc3: „berlin“

■ Now we search for „harley“:

□ only doc2 is found, although doc1 might be relevant too!

■ General drawbacks of lexical matching

□ Synonymy: huge diversity in the words people use for
describing a document (think of reformulating Google
queries...)

□ Polysemy: words with multiple meanings might match
irrelevant documents (query about the planet mars like
„size of mars“ might return documents about the chocolate
bar)

15.05.2012 DIMA – TU Berlin 6

Possible solutions: query expansion

■ Create custom taxonomies of
weighted relations

□ „harley-> bike 0.5“

■ Manually expand queries

□ query “harley“ becomes „harley bike^0.5“

■ Drawbacks

□ crafting these lists is a lot of work, as they are domain-
dependent!

□ might lead to very long queries (expensive!)

□ result quality is hard to predict

15.05.2012 DIMA – TU Berlin 7

Possible solutions: query suggestions

■ Detect queries that can profit from reformulation
and suggest refinements

■ Drawbacks

□ bad user experience: more clicks and decisions
necessary

□ needs a sufficient amount of training data

□ qenerates a lot of queries

15.05.2012 DIMA – TU Berlin 8

Possible solutions: learn to rank

■ Use additional data to learn an optimal ranking of the
search results

□ user feedback
(relevance feedback)

□ link structure of
the documents
(PageRank)

■ Drawbacks

□ complex

□ might need a sufficient amount of training data

15.05.2012 DIMA – TU Berlin 9

Can‘t we do better?

■ Intuition suggests:

□ there is already some kind of
structure contained in the corpus
that describes the relations
among terms and documents

□ we just can‘t see it!

■ Say terms and documents belong to „concepts“, then:

□ a single term describing a particular „concept“ will occur
in documents about that „concept“

□ terms describing the same concept will co-occur in
documents about that „concept“

□ documents about a particular „concept“ will share a set
of characteristic terms

15.05.2012 DIMA – TU Berlin 10

The Linear Algebra view of search

■ Simplified model:
□ corpus is represented as document x term

matrix
□ a cell m,n is 1 if document m contains term n

and 0 otherwise

□ queries „harley“ and „harley bike“ are just vectors in the term
space

100

011

001

doc3

doc2A

doc1

berlinharleybike



010
1
q

berlinharleybike

011
2
q

berlinharleybike

15.05.2012 DIMA – TU Berlin 11

Search as matrix-vector multiplication

■ Let‘s use the number of shared terms as similarity
measure between queries and documents

□ searching becomes
matrix-vector multiplication!

□ examples: search for „harley“ and „harley bike“

010
1
q

berlinharleybike

011
2
q

berlinharleybike

T
qA

doc3

doc2

doc1

qA
T

































































0

1

0

0

1

0

100

011

001

1

doc3

doc2

doc1

qA
T

































































0

2

1

0

1

1

100

011

001

2

15.05.2012 DIMA – TU Berlin 12

Exploring our corpus with Linear Algebra

■ AAT document similarities

□ a cell m,n holds the number of
terms shared by documents
m and n

→ doc1 and doc2 are similar

■ AT A term co-occurrences

□ a cell m,n holds the number
of documents in which terms
m and n occur together

→ „harley“ and „bike“ related

100

021

011

doc3

doc2AA

doc1

doc3doc2doc1

T


100

011

012

berlin

harleyAA

bike

berlinharleybike

T


15.05.2012 DIMA – TU Berlin 13

Singular Value Decomposition (SVD)

■ Singular Value Decomposition of a real m x n matrix A:

□ U (m x m) and V (n x n) are orthogonal,
∑ (m x n) is diagonal

□ ∑ has the square roots of the eigenvalues
of ATA and AAT on its diagonal in descending
order (singular values)

□ columns of U are the corresponding
eigenvectors of AAT (left singular vectors)

□ columns of V are the corresponding
eigenvectors of ATA (right singular vectors)

□ if we only keep the top k singular values of
A, we get the optimal rank k approximation
Ak of A

T
VUA 

T

kkkk
VUA 

15.05.2012 DIMA – TU Berlin 14

Interpreting the SVD

■ Let‘s have a look at the rank-2 decomposition of A

□ rows of A (documents) and columns of A (terms) are
projected onto a 2-dimensional space, the concept space

□ notice that „bike“ and „harley“ as well as doc1 and doc2
point into the same direction (and „berlin“ and doc3 point
into a perpendicular direction)

□ the dimensions of the space correspond to concepts hidden
in the corpus („motorcycles“ and „berlin“ in our example)

□ documents and terms are replaced with vectors that
represent their association to the concepts

□ the singular values denote the importance of the concepts






























































10

053.

085.

10

062.1

10

085.

053.

222

berlin

harley

bike

V

doc3

doc2U

doc1

15.05.2012 DIMA – TU Berlin 15

Latent Semantic Analysis

■ concept space

□ dimensions represent „concepts“ (might be hard to
interpret)

□ conceptually similar documents and terms are near to
each other (cosine)

doc3: „berlin“

doc 1: „bike“

doc 2: „bike harley“

berlin

harley

bike

documents terms

15.05.2012 DIMA – TU Berlin 16

Latent Semantic Indexing (LSI)

■ Search in the concept space

□ project the query onto the concept space (fold-in)

□ compare the projected query to the document concept
vectors

→ query matches doc1 although it does not contain
the term „harley“

010q

berlinharleybike

 085.ˆ
1




Vqq

doc3

doc2

doc1

qU
T

























































0

72.0

45.0

0

85.

10

085.

053.

ˆ
2

15.05.2012 DIMA – TU Berlin 17

Drawbacks of LSI

■ Lack of solid statistical foundation
□ assumes Gaussian distribution of terms (wrong!)
□ has led to the development of Probabilistic Latent Semantic

Indexing (pLSI) and Latent Dirichlet Allocation (LDA)

■ Computing the SVD of a large corpus is computationally
expensive
□ but an interesting research problem 

□ needs updating for new documents

■ Hard to scale
□ at query time each document needs to be inspected

■ mainly a solution for synonymy not polysemy

15.05.2012 DIMA – TU Berlin 18

Estimating the number of triangles
in a graph

15.05.2012 DIMA – TU Berlin 19

■ social graphs
□ vertices are users

□ edges are connections between
users such as friendships,
followings, etc

■ triangle
□ a triple of completely inter-

connected users

□ social graphs often grow
by closing triangles

■ local clustering coefficient
□ number of existing triangles around a

vertex divided by the number of
possible vertices around it

□ a measure of its local „connectedness“

Counting triangles in social graphs

15.05.2012 DIMA – TU Berlin 20

■ create the adjacency matrix A of a graph
□ aij is 1 if there is an edge between vertices i and j, 0 otherwise

■ multiplying A by itself reveals information about the
connectivity of the graph
□ each entry of A3 holds the number of paths of length 3

from vertex i to vertex j

□ that means the diagonal of A3 holds the number of triangles
for each vertex!

□ unfortunately multiplying large matrices is unfeasible...

■ but we can use the diagonalization of A to estimate the
number of triangles!

Counting triangles in (undirected)
social graphs

3

ij
a

TTTT

T

QQQQQQQQA

QQA

33




15.05.2012 DIMA – TU Berlin 21

Principal Component Analysis (PCA)

15.05.2012 DIMA – TU Berlin 22

■ mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly
uncorrelated variables called principal components

■ Algorithm
□ center the data

□ compute the covariance matrix

□ compute an eigenvalue decomposition
of the covariance matrix

■ PCA is extremely hard to scale
because of the density of the
original matrix after centering!
□ unfeasible to compute the covariances

of large dense matrices

Principal Component Analysis

15.05.2012 DIMA – TU Berlin 23

Decomposing large matrices

15.05.2012 DIMA – TU Berlin 24

■ basic idea
□ iteratively multiply the matrix A

with a random initial basis vector

□ reorthogonalize the resulting vectors
to a basis of the so called Krylov
subspace of A

□ use these to create tridiagonal matrix
Tmm whose eigenvalues/eigenvectors are
a good approximation of the
eigenvalues/eigenvectors of A

■ main operation that needs to be
parallelized:

matrix vector multiplication

Lanczos algorithm for computing the SVD

11

1

1

0

0

1

/

),(

to1for

0

0

1normwithvectorrandomv

























jjj

jj

jjjj

jjj

jjjj

ßwv

wß

vww

vw

vAvw

mj

ß

v

































mm

m

mm

ß

ßß

ßß

ß

T







0

...

0

3

322

21

15.05.2012 DIMA – TU Berlin 25

Parallelizing Ay = x

□ Matrix A is partitioned by rows (in distributed filesystem)

□ Hadoop: broadcast y to all machines, MAP computes
the m-th component of x by multiplying the m-th row of A
with y, REDUCE collects all components of x

□ Stratosphere: row-wise multiplication in a CROSS

between rows of A and y, REDUCE again collects all
components of x

row 1 of A

y

row m of A

x
row 2 of A

x1

x2

xm

∙

∙

∙

15.05.2012 DIMA – TU Berlin 26

■ a randomized, non-iterative algorithm for computing the
SVD of large matrices

■ draw a random n x k matrix

■ compute an n x k random sample
matrix Y, whose columns form
a basis for the range of A

■ form an n x k matrix Q whose
columns form an orthonormal
basis for the columns of Y

■ form the small k x n matrix B

■ decompose B on a single machine

■ use this to compute U

Stochastic SVD

UQU

VUB

AQB

YQ

AY

VUA

T

T

T

ˆ

ˆ

)qr(













