
25.04.2012 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

AIM3 – Scalable Data Analysis and Data
Mining

03 – Hadoop, Parallel Joins, Ecosystem

Sebastian Schelter, Christoph Boden, Volker Markl

25.04.2012 DIMA – TU Berlin 2

Scalability

Scalability

25.04.2012 DIMA – TU Berlin 3

Parallel Speedup

■

25.04.2012 DIMA – TU Berlin 4

Parallel Speedup

25.04.2012 DIMA – TU Berlin 5

need for scalable algorithms

25.04.2012 DIMA – TU Berlin 6

from sequential to parallel

25.04.2012 DIMA – TU Berlin 7

Hadoop in Detail

25.04.2012 DIMA – TU Berlin 8

■ network is typically the most scarce resource in a
distributed environment

■ remember the wordcount example:
□ for each document, emit (word,1) tuples from the mapper

□ the reducer sums up all counts per word

□ → unnecessary network traffic, we could pre-aggregate all the tuples

sent from a single mapper-instance

■ MapReduce offers a third optional function combine

(k, list(v)) → (k,list(v))

□ implementation must be idempotent

□ no guarantee that combine will see each tuple

□ very often, the reducer can also be used as combiner

combine – a third function

25.04.2012 DIMA – TU Berlin 9

■ Jobs are executed like a Unix pipeline:
□ cat * | grep | sort | uniq -c | cat > output

□ Input | Map | Shuffle & Sort | Reduce | Output

■ Workflow
□ input phase: generates a number of FileSplits from input files (one per

Map task)

□ map phase: executes a user function to transform input kv-pairs into a
new set of kv-pairs

□ sort & shuffle: sort and distribute the kv-pairs to output nodes

□ reduce phase: combines all kv-pairs with the same key into new kv-
pairs

□ output phase writes the resulting pairs to files

■ All phases are distributed with many tasks doing the work
□ Framework handles scheduling of tasks on cluster

□ Framework handles recovery when a node fails

Hadoop Map/Reduce Engine

25.04.2012 DIMA – TU Berlin 10

Hadoop Map/Reduce Engine

User defined

25.04.2012 DIMA – TU Berlin 11

shuffle and sort

map reduce

input
split

buffer in
memory

partition, sort,
spill to disk

merge
on disk

other reduces
other maps

merge

merge

output

fetch

map task reduce task

Copy phase „Sort“ phase Reduce phase

25.04.2012 DIMA – TU Berlin 12

■ suppose we run a large search engine and would like to find
the top ten search queries per city from a file holding
(city, query, count) tuples

■ we would emit (city, {query, count}) pairs in the mapper,
but how would we find the the top ten queries in the
reducer?
□ as we don‘t know in which order the {query, count} values arrive, we

would have to buffer the ten best and iterate through all values 

■ Hadoop‘s Secondary Sort capabilities solve that problem!

□ create a combined key in the mapper ({city, count}, {query, count})

□ Hadoop supports using different comparators for grouping and sorting

□ for grouping we only use the first key attribute: {city, count}

□ For sorting we use both {city, count}

Secondary Sort

25.04.2012 DIMA – TU Berlin 13

Parallel Joins in MapReduce

25.04.2012 DIMA – TU Berlin 14

■ Equi-Join: L(A,X) R(X,C)
□ assumption: |L| << |R|

■ Idea
□ broadcast L to each node completely before

the map phase begins

□ Utilities like Hadoop's distributed cache can take this part

■ Mapper
□ only over R

□ step 1: read assigned input split of R into a hash-table (build phase)

□ step 2: scan local copy of L and find matching R tuples (probe)

□ step 3: emit each such pair

□ Alternatively read L into Hash-Table, then read R and probe

■ No need for partition / sort / reduce processing
□ Mapper outputs the final join result

Broadcast Join

M M M

L R R R

25.04.2012 DIMA – TU Berlin 15

■ Equi-Join: L(A,X) R(X,C)
□ assumption: |L| < |R|

■ Mapper L(A,X) R(X,C)
□ identical processing logic for L and R

□ evaluate local predicates to filter
unneeded tuples (optional)

□ emits each tuple once

□ the intermediate key is a pair of
 the value of the actual join key X

 an annotation identifying to which relation the tuple belongs to (L or R)

■ Partition and sort
□ modulo division of the join key hash value

□ input is sorted primary on the join key, secondary on the relation name

□ output: a sequence of L(i), R(i) blocks of tuples for ascending join key i

■ Reduce
□ collect all L-tuples for the current L(i) block in a hash map

□ combine them with each R-tuple of the subsequent R(i)-tuple block

Repartition Join (Reduce-side Join)

M M M

L R RLRL

R R R

L R L R L R

read

h(key) % n

build L

25.04.2012 DIMA – TU Berlin 16

Hadoop Ecosystem

25.04.2012 DIMA – TU Berlin 17

■ Data warehouse infrastructure built on top of Hadoop,
providing:
□ Data Summarization

□ Ad hoc querying

■ Simple query language: Hive QL (based on SQL)

■ Extendable via custom mappers and reducers

■ Subproject of Hadoop

■ No „Hive format“

■ http://hadoop.apache.org/hive/

Hive

http://hadoop.apache.org/hive/

25.04.2012 DIMA – TU Berlin 18

Hive - Example

LOAD DATA INPATH `/data/visits` INTO TABLE visits

INSERT OVERWRITE TABLE visitCounts

SELECT url, category, count(*)

FROM visits

GROUP BY url, category;

LOAD DATA INPATH „/data/urlInfo‟ INTO TABLE urlInfo

INSERT OVERWRITE TABLE visitCounts

SELECT vc.*, ui.*

FROM visitCounts vc JOIN urlInfo ui ON (vc.url = ui.url);

INSERT OVERWRITE TABLE gCategories

SELECT category, count(*)

FROM visitCounts

GROUP BY category;

INSERT OVERWRITE TABLE topUrls

SELECT TRANSFORM (visitCounts) USING „top10‟;

25.04.2012 DIMA – TU Berlin 19

■ Higher level query language for JSON documents

■ Developed at IBM‘s Almaden research center

■ Supports several operations known from SQL
□ Grouping, Joining, Sorting

■ Built-in support for
□ Loops, Conditionals, Recursion

■ Custom Java methods extend JAQL

■ JAQL scripts are compiled to MapReduce jobs

■ Various I/O
□ Local FS, HDFS, Hbase, Custom I/O adapters

■ http://www.jaql.org/

JAQL

http://www.jaql.org/

25.04.2012 DIMA – TU Berlin 20

JAQL - Example

registerFunction(„top“, „de.tuberlin.cs.dima.jaqlextensions.top10“);

$visits = hdfsRead(„/data/visits“);

$visitCounts =

$visits

-> group by $url = $

into { $url, num: count($)};

$urlInfo = hdfsRead(„data/urlInfo“);

$visitCounts =

join $visitCounts, $urlInfo

where $visitCounts.url == $urlInfo.url;

$gCategories =

$visitCounts

-> group by $category = $

into {$category, num: count($)};

$topUrls = top10($gCategories);

hdfsWrite(“/data/topUrls”, $topUrls);

25.04.2012 DIMA – TU Berlin 21

■ A platform for analyzing large data sets

■ Pig consists of two parts:
□ PigLatin: A Data Processing Language

□ Pig Infrastructure: An Evaluator for PigLatin programs

□ Pig compiles Pig Latin into physical plans

□ Plans are to be executed over Hadoop

■ Interface between the declarative style of SQL and low-
level, procedural style of MapReduce

■ http://hadoop.apache.org/pig/

Pig

http://hadoop.apache.org/pig/

25.04.2012 DIMA – TU Berlin 22

Pig - Example

visits = load „/data/visits‟ as (user, url, time);

visitCounts = foreach visits generate url, count(visits);

urlInfo = load „/data/urlInfo‟

as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories

generate top(visitCounts,10);

store topUrls into „/data/topUrls‟;

Example taken from:
“Pig Latin: A Not-So-Foreign Language For Data Processing” Talk, Sigmod 2008

25.04.2012 DIMA – TU Berlin 23

■ a scalable machine learning library

■ Scalable to reasonably large data sets: the core algorithms
are implemented on top of Apache Hadoop using the
map/reduce paradigm.

■ Currently Mahout supports mainly four use cases:
□ Recommendation mining takes users' behavior and from that tries to

find items users might like.

□ Clustering takes e.g. text documents and groups them into groups of
topically related documents.

□ Classification learns from exisiting categorized documents what
documents of a specific category look like and is able to assign
unlabelled documents to the (hopefully) correct category.

□ Frequent itemset mining takes a set of item groups (terms in a query
session, shopping cart content) and identifies, which individual items
usually appear together.

Mahout

25.04.2012 DIMA – TU Berlin 24

■ open-source server which enables
highly reliable distributed coordination.

■ a centralized service for maintaining configuration
information, naming, providing distributed synchronization,
and providing group services. All of these kinds of services
are used in some form or another by distributed
applications.

ZooKeeper

25.04.2012 DIMA – TU Berlin 25

■ HBase is open-source, distributed,
versioned, column-oriented store
modeled after Google's Bigtable

■ features
□ random, realtime read/write access to your Big Data.

□ hosting of very large tables -- billions of rows X millions of columns --
atop clusters of commodity hardware

□ provides Bigtable-like capabilities on top of Hadoop and HDFS

HBase

25.04.2012 DIMA – TU Berlin 26

■ Large scale graph processing system ontop of Hadoop

■ implementation of Google Pregel

■ adds fault-tolerance with the use of
ZooKeeper as its centralized coordination
service.

■ Giraph follows the bulk-synchronous parallel model relative
to graphs where vertices can send messages to other
vertices during a given superstep.

Giraph

