
09.05.2012 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

AIM3 – Scalable Data Analysis and Data
Mining

05 – Clustering

Sebastian Schelter, Christoph Boden, Volker Markl
Includes Material from: Jeff Ullman, Jure Leskovec (Stanford University),

Sriram Sankararaman (UC Berkeley)

09.05.2012 DIMA – TU Berlin 2

Agenda

■ Topics of the course

□ Motivation, Overview

□ MapReduce & Distributed filesystems

□ MapReduce: Joins, Patterns & Extensions

□ Stratosphere

□ Clustering

□ Dimensionality Reduction

□ Data Stream Mining

□ Graph Processing & Social Network Analysis

□ Graph Processing: Google Pregel

□ Collaborative Filtering: Neighborhood Methods

□ Collaborative Filtering: Latent Factor Models

□ Classification

□ Textmining

□ Specialized Machine Learning approaches

09.05.2012 DIMA – TU Berlin 3

Supervised learning vs. unsupervised learning

■ Supervised learning: discover patterns in the data
that relate data attributes with a target (class)
attribute.

□ These patterns are then utilized to predict the values of
the target attribute in future data instances.

□ e.g.: Email marked „SPAM“, Image with Keywords, Face
with Name, DNA with Genes marked, …

■ Unsupervised learning: The data have no target
attribute.

□ We want to explore the data to find some intrinsic
structures in them.

09.05.2012 DIMA – TU Berlin 4

■ Given a set of points, with a notion of distance
between points, group the points into some
number of clusters, so that

□ Members of a cluster are close/similar to each other

□ Members of different clusters are dissimilar

■ Usually:

□ Points are in a high-dimensional space

□ Similarity is defined using a distance measure

□ Euclidean, Cosine, Jaccard, edit distance, …

Clustering: Problem definition

09.05.2012 DIMA – TU Berlin 5

Example

09.05.2012 DIMA – TU Berlin 6

Application: Image Segmentation

09.05.2012 DIMA – TU Berlin 7

Problems With Clustering

■ Clustering in two dimensions looks easy.

■ Clustering small amounts of data looks easy.

■ And in most cases, looks are not deceiving.

■ But: Many applications involve not 2, but 10 or 10,000
dimensions.

■ High-dimensional spaces look different: almost all pairs of
points are at about the same distance.

09.05.2012 DIMA – TU Berlin 8

■ Assume random points within a bounding box

□ e.g., values between 0 and 1 in each dimension.

■ In 2 dimensions

□ a variety of distances between 0 and 1.41.

■ In 10,000 dimensions

□ the difference in any one dimension is distributed as a triangle.

■ The law of large numbers applies

■ Actual distance between two random points is the sqrt of the
sum of squares of essentially the same set of differences

Example: Curse of Dimensionality

09.05.2012 DIMA – TU Berlin 9

The curse of dimensionality

09.05.2012 DIMA – TU Berlin 10

■ A catalog of 2 billion “sky objects” represents objects by
their radiation in 7 dimensions (frequency bands).

■ Problem: cluster into similar objects, e.g., galaxies, nearby
stars, quasars, etc.

■ Sloan Sky Survey is a newer, better version.

Example: SkyCat

09.05.2012 DIMA – TU Berlin 11

■ Intuitively: music divides into categories, and customers
prefer a few categories.

□ But what are categories really?

■ Represent a CD by the customers who bought it.

■ Similar CD’s have similar sets of customers, and vice-versa.

Example: Clustering CD’s

09.05.2012 DIMA – TU Berlin 12

■ Think of a space with one dimension for each customer.

□ Values in a dimension may be 0 or 1 only.

■ A CD’s point in this space is (x1, x2,…, xk), where xi = 1 iff
the i th customer bought the CD.

□ Compare with boolean matrix: rows = customers; cols. = CD’s.

■ For Amazon, the dimension count is tens of millions.

■ An alternative: use minhashing/LSH to get Jaccard similarity
between “close” CD’s.

■ 1 minus Jaccard similarity can serve as a (non-Euclidean)
distance.

Example: Clustering CD‘s (II)

09.05.2012 DIMA – TU Berlin 13

■ Represent a document by a vector (x1, x2,…, xk), where xi
= 1 iff the i th word (in some order) appears in the
document.

□ It actually doesn’t matter if k is infinite; i.e., we don’t limit the
set of words.

■ Documents with similar sets of words may be about the
same topic.

Example: Clusters of Documentsd

09.05.2012 DIMA – TU Berlin 14

■ As with CD’s we have a choice when we think of
documents as sets of words or shingles:

□ Sets as vectors: measure similarity by the cosine distance.

𝑑𝐶𝑜𝑠𝑖𝑛𝑒 =
𝑥 ∙ 𝑦

 𝑥𝑖²𝑖 𝑦𝑖
²

𝑖

□ Sets as sets: measure similarity by the Jaccard distance.

𝑑𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
(𝐴 ∩ 𝐵)

(𝐴 ∪ 𝐵)

□ Sets as points: measure similarity by Euclidean distance.

Aside: Cosine, Jaccard, and Euclidean Distances

09.05.2012 DIMA – TU Berlin 15

■ d(x, y) ≥ 0 (no negative distances)

■ d(x, y) = 0 if and only if x = y (distances are positive,
except for the distance from a point to itself)

■ d(x, y) = d(y, x) (distance is symmetric)

■ d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality)

Distance Meassures

09.05.2012 DIMA – TU Berlin 16

Example: DNA Sequences

■ Objects are sequences of {C,A,T,G}.

■ Distance between sequences is edit distance, the minimum
number of inserts and deletes needed to turn one into the
other.

■ Note there is a “distance,” but no convenient space in which
points “live.”

09.05.2012 DIMA – TU Berlin 17

■ Clustering, in itself, is often not the primary problem

□ Exploratory analysis is rarely needed

■ Methods are often tied to the “final” goal

■ E.g.: Query Refinement

□ User inputs ambiguous query (“madonna”)

□ Search engine asks:

□ “Did you mean: songs, videos, pictures?”

In the Web Context

09.05.2012 DIMA – TU Berlin 18

Methods of Clustering

■ Hierarchical (Agglomerative):

□ Agglomerative (bottom up):

 Initially, each point is a cluster

 Repeatedly combine the two “nearest”
clusters into one.

□ Divisive (top down):

 Start with one cluster and recursively
split it

■ Point Assignment:

□ Maintain a set of clusters.

□ Place points into their “nearest” cluster.

09.05.2012 DIMA – TU Berlin 19

Hierarchical Clustering

■ Key operation: Repeatedly combine two nearest clusters

■ Three important questions:

□ How do you represent a cluster of more than one point?

□ How do you determine the “nearness” of clusters?

□ When to stop combining clusters?

■ Key problem: as you build clusters, how do you represent
the location of each cluster, to tell which pair of clusters is
closest?

■ Euclidean case: each cluster has a centroid = average of its
points.
□ Measure intercluster distances by distances of centroids.

09.05.2012 DIMA – TU Berlin 20

Example: Hierarchical Clustering

09.05.2012 DIMA – TU Berlin 21

■ The only “locations” we can talk about are the points
themselves.

□ I.e., there is no “average” of two points.

■ Approach 1: clustroid = point “closest” to other points.

□ Treat clustroid as if it were centroid, when computing
intercluster distances.

□ E.g.: using edit distance, we decide to merge the strings
abcd and aecdb

□ edit distance = 3

□ there is no string that represents their averages

And in the Non-Euclidean Case?

09.05.2012 DIMA – TU Berlin 22

“Closest” Point?

■ Possible meanings of “closest”:

□ Smallest maximum distance to the other points.

□ Smallest average distance to other points.

□ Smallest sum of squares of distances to other points.

 For distance metric d clustroid c of cluster C is:

09.05.2012 DIMA – TU Berlin 23

■ Approach 2: intercluster distance = minimum of the
distances between any two points, one from each cluster.

■ Approach 3: Pick a notion of “cohesion” of clusters, e.g.,
maximum distance from the clustroid.

□ Merge clusters whose union is most cohesive.

Defining „nearness“ of Clusters

09.05.2012 DIMA – TU Berlin 24

Cohesion

■ Approach 1: Use the diameter of the merged cluster =
maximum distance between points in the cluster.

■ Approach 2: Use the average distance between points in the
cluster.

■ Approach 3: Use a density-based approach: take the
diameter or average distance, e.g., and divide by the
number of points in the cluster.

□ Perhaps raise the number of points to a power first, e.g.,
square-root.

09.05.2012 DIMA – TU Berlin 25

■ Naïve implementation of hierarchical clustering:

□ At each step, compute pairwise distances between all
pairs of clusters, then merge

□ O(N3)

■ Careful implementation using priority queue can
reduce time to O(N2 log N)

□ Still too expensive for really big datasets that do not fit
in memory

Implementation

09.05.2012 DIMA – TU Berlin 26

k – Means Algorithm(s)

■ Assumes Euclidean space.

■ Start by picking k, the number of clusters.

■ Initialize clusters by picking one point per cluster.

□ Example: pick one point at random, then k -1 other
points, each as far away as possible from the previous
points.

09.05.2012 DIMA – TU Berlin 27

Populating Clusters

■ For each point, place it in the cluster whose
current centroid it is nearest.

■ After all points are assigned, fix the centroids of
the k clusters.

■ Optional: reassign all points to their closest
centroid.

□ Sometimes moves points between clusters.

09.05.2012 DIMA – TU Berlin 28

Algorithm k-means(k, D)

 choose k data points as the initial centroids (cluster centers)

 repeat

 for each data point x ∈ D do

 compute the distance from x to each centroid;

 assign x to the closest centroid

 endfor

 re-compute the centroid using the current cluster memberships

 until the stopping criterion is met

K-Means Algorithm

09.05.2012 DIMA – TU Berlin 29

Example: Assigning Clusters

1

2

3

4

5

6

7 8 x

x

Clusters after first round

Reassigned
points

09.05.2012 DIMA – TU Berlin 30

■ How to select k?

□ Try different k, looking at the change in the average
distance to centroid, as k increases.

□ Average falls rapidly until right k, then changes little

Getting the k right

09.05.2012 DIMA – TU Berlin 31

Example: Picking k

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

Too few;
many long
distances
to centroid.

09.05.2012 DIMA – TU Berlin 32

Example: Picking k

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

Just right;
distances
rather short.

09.05.2012 DIMA – TU Berlin 33

Example: Picking k

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

Too many;
little improvement
in average
distance.

09.05.2012 DIMA – TU Berlin 34

■ How would you implement K-Means in MapReduce?

■ Take a set of seed centroids
□ can be generated using other algorithms e.g. Canopy Clustering

■ Compute distance to centroids and determine the closest
centroid for each data point in a Mapper

■ Combine data points in similar clusters

■ Recompute new centroids in reduce task

K-means in MapReduce

09.05.2012 DIMA – TU Berlin 35

Algorithm 1. map (key, value)

Input: centroids, the offset key, the sample value

Output: <key’, value’> pair, where the key’ is the index of the closest center point and
value’ is a string comprise of sample information

1. Construct the sample instance from value;

2. minDis = Double.MAX VALUE;

3. index = -1;

4. For i=0 to centers.length do

 dis= ComputeDist(instance, centers[i]);

 If dis < minDis {

 minDis = dis;

 index = i;

 }

5. End For

6. Take index as key’;

7. Construct value’ as a string comprise of the values of different dimensions;

8. output <key, value> pair;

Map

09.05.2012 DIMA – TU Berlin 36

Algorithm 2. combine (key, V)
Input: key is the index of the cluster, V is the list of the samples assigned to the same
cluster
Output: < key, value> pair, where the key’ is the index of the cluster, value’ is a string
comprised of sum of the samples in the same cluster and the sample number

1. Initialize one array to record the sum of value of each dimensions of the samples

contained in the same cluster, i.e. the samples in the list V;

2. Initialize a counter num as 0 to record the sum of sample number in the same

cluster;

3. while(V.hasNext()){

 Construct the sample instance from V.next();

 Add the values of different dimensions of instance to the array

 num++;

4. }

5. Take key as key’;

6. Construct value’ as a string comprised of the sum values of different dimensions and

num;

7. output < key, value> pair;

Combine

09.05.2012 DIMA – TU Berlin 37

Algorithm 3. reduce (key, V)
Input: key is the index of the cluster, V is the list of the partial sums from different host
Output: <key, value> pair, where the key’ is the index of the cluster, value’ is a string
representing the new center

1. Initialize one array record the sum of value of each dimensions of the samples

contained in the same cluster, e.g. the samples in the list V;

2. Initialize a counter NUM as 0 to record the sum of sample number in the same

cluster;

3. while(V.hasNext()){

 Construct the sample instance from V.next();

 Add the values of different dimensions of instance to the array

 NUM += num;

}

4. Divide the entries of the array by NUM to get the new center’s coordinates;

5. Take key as key’;

6. Construct value’ as a string comprise of the center’s coordinates;

7. output <key, value> pair;

Reduce

09.05.2012 DIMA – TU Berlin 38

SpeedUp of parallel k-means

• keep the dataset constant and increase the number of nodes

09.05.2012 DIMA – TU Berlin 39

Initialization: k -Means

■ Possible initialization strategies of the k cluster
centers:

□ Take a small random sample and cluster optimally.

□ Take a sample; pick a random point, and then k – 1 more
points, each as far from the previously selected points as
possible.

□ (Canopy Clustering)

09.05.2012 DIMA – TU Berlin 40

■ very simple and fast method for grouping objects into clusters

■ uses a fast approximate distance metric and two distance
thresholds T1 > T2 for processing.

Algorithm:

□ begin with a set of points and remove one at random.

□ Create a Canopy containing this point and iterate through the remainder of
the point set.

□ At each point, if its distance from the first point is < T1, then add the point
to the cluster.

□ If, in addition, the distance is < T2, then remove the point from the set.

In MapReduce:

□ The data is massaged into suitable input format

□ Each mapper performs canopy clustering on the points in its input set and
outputs its canopies' centers

□ The reducer clusters the canopy centers to produce the final canopy centers

□ The points are then clustered into these final canopies

Canopy Clustering

09.05.2012 DIMA – TU Berlin 41

BFR Algorithm

■ BFR (Bradley-Fayyad-Reina) is a variant of k -means
designed to handle very large (disk-resident) data sets.

■ It assumes that clusters are normally distributed around a
centroid in a Euclidean space.

□ Standard deviations in different dimensions may vary.

■ Points are read one main-memory-full at a time.

■ Most points from previous memory loads are summarized
by simple statistics.

■ To begin, from the initial load we select the initial k
centroids by some sensible approach.

09.05.2012 DIMA – TU Berlin 42

Three Classes of Points

■ discard set (DS):

□ points close enough to a centroid to be summarized.

■ compression set (CS):

□ groups of points that are close together but not close to
any centroid. They are summarized, but not assigned to
a cluster.

■ retained set (RS):

□ isolated points.

09.05.2012 DIMA – TU Berlin 43

The „Galaxies“ Picture

09.05.2012 DIMA – TU Berlin 44

Summarizing Sets of Points

■ For each cluster, the discard set is summarized by:

□ The number of points, N.

□ The vector SUM, whose i th component is the sum of the
coordinates of the points in the i th dimension.

□ The vector SUMSQ: i th component = sum of squares of
coordinates in i th dimension.

09.05.2012 DIMA – TU Berlin 45

Summarizing Points: Comments

■ 2d + 1 values represent any number of points.

□ d = number of dimensions.

■ Averages in each dimension (centroid coordinates) can be
calculated easily as SUMi /N.

□ SUMi = i th component of SUM.

■ Variance of a cluster’s discard set in dimension i can be

computed by:
□ (SUMSQi /N) – (SUMi /N)2

□ And the standard deviation is the square root of that.

■ The same statistics can represent any compression set.

09.05.2012 DIMA – TU Berlin 46

Processing the “Memory-Load” of points:

■ Find those points that are “sufficiently close” to a cluster
centroid; add those points to that cluster and the DS.

■ Use any main-memory clustering algorithm to cluster the
remaining points and the old RS.

□ Clusters go to the CS; outlying points to the RS.

■ Adjust statistics of the clusters to account for the new points
□ Add N’s, SUM’s, SUMSQ’s.

■ Consider merging compressed sets in the CS.

■ If this is the last round, merge all compressed sets in the
CS and all RS points into their nearest cluster.

The “Memory-Load” of Points

09.05.2012 DIMA – TU Berlin 47

A Few Details . . .

■ How do we decide if a point is “close enough” to a cluster
that we will add the point to that cluster?

■ How do we decide whether two compressed sets deserve to
be combined into one?

09.05.2012 DIMA – TU Berlin 48

How Close is Close Enough?

■ We need a way to decide whether to put a new point into
a cluster.

■ BFR suggest two ways:

□ The Mahalanobis distance is less than a threshold.

□ Low likelihood of the currently nearest centroid changing.

09.05.2012 DIMA – TU Berlin 49

■ Normalized Euclidean distance from centroid.

■ For point (x1,…,xk) and centroid (c1,…,ck):

□ Normalize in each dimension: yi = (xi -ci)/i

□ Take sum of the squares of the yi ’s.

□ Take the square root:

Mahalanobis Distance

09.05.2012 DIMA – TU Berlin 50

Mahalanobis Distance – (2)

■ If clusters are normally distributed in d
dimensions, then after transformation, one
standard deviation = d.

□ I.e., 68% of the points of the cluster will have a
Mahalanobis distance < d.

■ Accept a point for a cluster if its M.D. is < some
threshold, e.g. 4 standard deviations.

09.05.2012 DIMA – TU Berlin 51

Picture: Equal M.D. Regions



2

09.05.2012 DIMA – TU Berlin 52

Should Two CS Subclusters Be Combined?

■ Compute the variance of the combined subcluster.
□ N, SUM, and SUMSQ allow us to make that calculation quickly.

■ Combine if the variance is below some threshold.

■ Many alternatives: treat dimensions differently,
consider density.

09.05.2012 DIMA – TU Berlin 53

The CURE Algorithm

■ Problem with BFR/k -means:

□ Assumes clusters are normally distributed in each dimension.

□ And axes are fixed – ellipses at an angle are not OK.

■ CURE:

□ Assumes a Euclidean distance.

□ Allows clusters to assume any shape.

09.05.2012 DIMA – TU Berlin 54

Example: Stanford Faculty Salaries

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

09.05.2012 DIMA – TU Berlin 55

Starting CURE

■ Pick a random sample of points that fit in main memory.

■ Cluster these points hierarchically – group nearest
points/clusters.

■ For each cluster, pick a sample of points, as dispersed
as possible.

■ From the sample, pick representatives by moving them
(say) 20% toward the centroid of the cluster.

09.05.2012 DIMA – TU Berlin 56

Example: Initial Clusters

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

09.05.2012 DIMA – TU Berlin 57

Example: Pick Dispersed Points

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

Pick (say) 4
remote points
for each
cluster.

09.05.2012 DIMA – TU Berlin 58

Example: Pick Dispersed Points

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

Move points
(say) 20%
toward the
centroid.

09.05.2012 DIMA – TU Berlin 59

Finishing CURE

■ Now, visit each point p in the data set.

■ Place it in the “closest cluster.”

□ Normal definition of “closest”: that cluster with the
closest (to p) among all the sample points of all the
clusters.

09.05.2012 DIMA – TU Berlin 60

■ Represent datapoints as vertices V of a graph G.

■ Each pair of vertices is connected by an edge.

■ Edges have weights W. Large weights mean that adjacent
vertices are similar.

■ The graph construction depends on the application.

Spectral Clustering

09.05.2012 DIMA – TU Berlin 61

■ Build a weighted graph G = (V,E,W).

■ Construct a matrix L = f (W) (different variants of spectral
clustering result from different functions f .

■ Compute the eigenvectors of the k smallest eigenvalues of
L. These provide a new representation of the original data
points.

■ Cluster the points in this new representation (e.g. using K-
means).

Graph Partitioning

09.05.2012 DIMA – TU Berlin 62

■ Clustering
□ Clusters are often a useful summary of data that is in the form of

points in some space. To cluster points, we need a distance measure
on that space. Ideally, points in the same cluster have small distances
between them, while points in different clusters have large distances

between them.

■ The Curse of Dimensionality
□ Points in high-dimensional Euclidean spaces, as well as points in non-

Euclidean spaces often behave unintuitively. Two unexpected properties
of these spaces are that random points are almost always at about the
same distance, and random vectors are almost always orthogonal.

■ K-Means Algorithms:
□ This family of algorithms is of the point-assignment type and assumes

a Euclidean space. It is assumed that there are exactly k clusters for
some known k. After picking k initial cluster centroids, the points are
considered one at a time and assigned to the closest centroid. The
centroid of a cluster can migrate during point assignment, and an
optional last step is to reassign all the points, while holding the
centroids fixed at their final values obtained during the first pass.

Summary

09.05.2012 DIMA – TU Berlin 63

■ The BFR Algorithm

□ A version of k-means designed to handle data that is too large
to fit in main memory. It assumes clusters are normally
distributed about the axes

■ The CURE Algorithm

□ This algorithm is of the point-assignment type. It is designed
for a Euclidean space, but clusters can have any shape. It
handles data that is too large to fit in main memory.

■ Clustering Using Map-Reduce

□ We can divide the data into chunks and cluster each chunk in
parallel, using a Map task. The clusters from each Map task can
be further clustered in a single Reduce task.

Summary (II)

09.05.2012 DIMA – TU Berlin 64

