
15.05.2012 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

AIM3 – Scalable Data Analysis and Data 
Mining

06 – Dimensionality Reduction

Sebastian Schelter, Christoph Boden, Volker Markl



15.05.2012 DIMA – TU Berlin 2

think of data in terms of

vectors and matrices
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■ think of data in terms of vectors and matrices

□ Text

 documents x terms

□ Ratings

 users x items

□ Graphs

 vertices x vertices

■ in a lot of use cases this data is extremely high dimensional
→ „Curse of dimensionality“

□ extremely sparse matrices

□ nearest neighbor search

■ goal: reduce the data to the „interesting“ dimensions

Representing data as matrices
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A concrete example:

Latent Semantic Indexing
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The problems with lexical matching

■ Imagine a corpus with only three very simple documents:

□ doc1 : „bike“

□ doc2: „harley bike“

□ doc3: „berlin“

■ Now we search for „harley“:

□ only doc2 is found, although doc1 might be relevant too!

■ General drawbacks of lexical matching

□ Synonymy: huge diversity in the words people use for 
describing a document (think of reformulating Google 
queries...)

□ Polysemy: words with multiple meanings might match 
irrelevant documents (query about the planet mars like 
„size of mars“ might return documents about the chocolate 
bar)
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Possible solutions: query expansion

■ Create custom taxonomies of 
weighted relations

□ „harley-> bike 0.5“

■ Manually expand queries

□ query “harley“ becomes „harley bike^0.5“

■ Drawbacks

□ crafting these lists is a lot of work, as they are domain-
dependent!

□ might lead to very long queries (expensive!)

□ result quality is hard to predict
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Possible solutions: query suggestions

■ Detect queries  that can profit from reformulation 
and suggest refinements

■ Drawbacks

□ bad user experience: more clicks and decisions 
necessary

□ needs a sufficient amount of training data

□ qenerates a lot of queries
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Possible solutions: learn to rank

■ Use additional data to learn an optimal ranking of the 
search results

□ user feedback 
(relevance feedback)

□ link structure of
the documents 
(PageRank)

■ Drawbacks

□ complex

□ might need a sufficient amount of training data
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Can‘t we do better?

■ Intuition suggests:

□ there is already some kind of 
structure contained in the corpus 
that describes the relations 
among terms and documents 

□ we just can‘t see it!

■ Say terms and documents belong to „concepts“,  then:

□ a single term describing a particular „concept“ will occur 
in documents about that „concept“

□ terms describing the same concept will co-occur in 
documents about that „concept“

□ documents about a particular „concept“ will share a set 
of characteristic terms



15.05.2012 DIMA – TU Berlin 10

The Linear Algebra view of search

■ Simplified model:
□ corpus is represented as document x term 

matrix
□ a cell m,n is 1 if document m contains term n

and 0 otherwise 

□ queries „harley“ and „harley bike“ are just vectors in the term 
space
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Search as matrix-vector multiplication

■ Let‘s use the number of shared terms as similarity 
measure between queries and documents

□ searching becomes 
matrix-vector multiplication!

□ examples: search for „harley“ and „harley bike“
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Exploring our corpus with Linear Algebra

■ AAT document similarities

□ a cell m,n holds the number of 
terms shared by documents 
m and n

→ doc1 and doc2 are similar

■ AT A  term co-occurrences

□ a cell m,n holds the number 
of documents in which terms 
m and n occur together

→ „harley“ and „bike“ related
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Singular Value Decomposition (SVD)

■ Singular Value Decomposition of a real m x n matrix A:

□ U (m x m) and V (n x n) are orthogonal, 
∑ (m x n) is diagonal

□ ∑  has the square roots of the eigenvalues 
of ATA and AAT on its diagonal in descending 
order (singular values)

□ columns of U are the corresponding 
eigenvectors of AAT (left singular vectors)

□ columns of V are the corresponding
eigenvectors of ATA (right singular vectors)

□ if we only keep the top k singular values of 
A, we get the optimal rank k approximation 
Ak of A

T
VUA 

T

kkkk
VUA 



15.05.2012 DIMA – TU Berlin 14

Interpreting the SVD

■ Let‘s have a look at the rank-2 decomposition of A

□ rows of A (documents) and columns of A (terms) are 
projected onto a 2-dimensional space, the concept space

□ notice that „bike“ and „harley“ as well as doc1 and doc2
point into the same direction (and „berlin“ and doc3 point 
into a perpendicular direction)

□ the dimensions of the space correspond to concepts hidden 
in the corpus („motorcycles“ and „berlin“ in our example)

□ documents and terms are replaced with vectors that 
represent their association to the concepts

□ the singular values denote the importance of the concepts
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Latent Semantic Analysis

■ concept space

□ dimensions represent „concepts“ (might be hard to 
interpret)

□ conceptually similar documents and terms are near to 
each other (cosine)

doc3: „berlin“

doc 1: „bike“

doc 2: „bike harley“

berlin

harley

bike

documents terms
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Latent Semantic Indexing (LSI)

■ Search in the concept space

□ project the query onto the concept space (fold-in)

□ compare the projected query to the document concept 
vectors

→ query matches doc1 although it does not contain 
the term „harley“
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Drawbacks of LSI

■ Lack of solid statistical foundation
□ assumes Gaussian distribution of terms (wrong!)
□ has led to the development of Probabilistic Latent Semantic 

Indexing (pLSI) and Latent Dirichlet Allocation (LDA)

■ Computing the SVD of a large corpus is computationally 
expensive
□ but an interesting research problem 

□ needs updating for new documents

■ Hard to scale
□ at query time each document needs to be inspected

■ mainly a solution for synonymy not polysemy
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Estimating the number of triangles 
in a graph
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■ social graphs
□ vertices are users

□ edges are connections between 
users such as friendships, 
followings, etc

■ triangle
□ a triple of completely inter-

connected users

□ social graphs often grow 
by closing triangles

■ local clustering coefficient
□ number of existing triangles around a 

vertex divided by the number of 
possible vertices around it

□ a measure of its local „connectedness“

Counting triangles in social graphs
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■ create the adjacency matrix A of a graph
□ aij is 1 if there is an edge between vertices i and j, 0 otherwise

■ multiplying A by itself reveals information about the 
connectivity of the graph
□ each entry      of A3 holds the number of paths of length 3 

from vertex i to vertex j 

□ that means the diagonal of A3 holds the number of triangles 
for each vertex!

□ unfortunately multiplying large matrices is unfeasible...

■ but we can use the diagonalization of A to estimate the 
number of triangles!

Counting triangles in (undirected) 
social graphs
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Principal Component Analysis (PCA)
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■ mathematical procedure that uses an orthogonal 
transformation to convert a set of observations of possibly 
correlated variables into a set of values of linearly 
uncorrelated variables called principal components

■ Algorithm
□ center the data

□ compute the covariance matrix

□ compute an eigenvalue decomposition 
of the covariance matrix

■ PCA is extremely hard to scale 
because of the density of the 
original matrix after centering!
□ unfeasible to compute the covariances 

of large dense matrices

Principal Component Analysis
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Decomposing large matrices
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■ basic idea 
□ iteratively multiply the matrix A 

with a random initial basis vector

□ reorthogonalize the resulting vectors 
to a basis of the so called Krylov
subspace of A

□ use these to create tridiagonal matrix 
Tmm whose eigenvalues/eigenvectors are 
a good approximation of the
eigenvalues/eigenvectors of A

■ main operation that needs to be 
parallelized: 

matrix vector multiplication

Lanczos algorithm for computing the SVD
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Parallelizing Ay = x

□ Matrix A is partitioned by rows (in distributed filesystem)

□ Hadoop: broadcast y to all machines, MAP computes 
the m-th component of x by multiplying the m-th row of A 
with y, REDUCE collects all components of x

□ Stratosphere: row-wise multiplication in a CROSS

between rows of A and y, REDUCE again collects all 
components of x
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■ a randomized, non-iterative algorithm for computing the 
SVD of large matrices

■ draw a random n x k matrix

■ compute an n x k random sample 
matrix Y, whose columns form 
a basis for the range of A 

■ form an n x k matrix Q whose 
columns form an orthonormal 
basis for the columns of Y

■ form the small k x n matrix B

■ decompose B on a single machine

■ use this to compute U

Stochastic SVD
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