AIM3 - Scalable Data Mining and Data
Analysis

02 - Distributed filesystems and MapReduce
Sebastian Schelter, Christoph Boden, Volker Markl

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universitat Berlin

http://www.dima.tu-berlin.de/

o ’ Recapitulation

Recap

| 16.04.2012 DIMA — TU Berlin 2 |

ond
E“\E

ksyst,
20 &
b“or\sma ,,6;?)@

0

\’/Q"”] 7]

%eq

L

D A new set of tools

m Distributed filesystems
o store petabytes of data in the cluster
o transparently handle reads, writes and replication

m Parallel processing platforms
o offer a parallel programming model to allow
developers to write distributed applications
0 move computation to data, not data to computation
o relieve the developer from handling concurrency,
network communication and machine failures

DIMA — TU Berlin

CrhERbE

@ StratoSphere
Above the Couds
.,\,

%

16.04.2012

ks
‘oa“ Sys t@,})

L

3 Our algorithms have to change

"ieG

m Each machine will only see a small portion of the data
O we cannot use random access anymore, we must always work on

partitioned data
o joining data become very costly as lots of machines will be involved

m Communication via network and disk becomes the

bottleneck
o our algorithms must try to locally aggregate as much as possible
o minimizing network traffic becomes the key to scaling out algorithms

m Concurrency and recovery must be hidden from the

developer
o algorithms must fit into a simple, parallelizable programming model
o the system (not the developer) handles concurrency and recovery

| 16.04.2012 DIMA — TU Berlin 4 |

ond
@ oent
S m
[
=E A n
9, %,
uj

m Topics of the course

Motivation, Overview

MapReduce & Distributed filesystems
MapReduce: Joins, Patterns & Extensions
Stratosphere

Clustering

Dimensionality Reduction

Data Stream Mining

Graph Processing & Social Network Analysis
Graph Processing: Google Pregel
Collaborative Filtering: Neighborhood Methods
Collaborative Filtering: Latent Factor Models
Classification

Textmining

Specialized Machine Learning approaches

o o oo oo oo o oo oo oo

16.04.2012 DIMA —TU Berlin 5

L

i ’ Tasks in the course

m 3 two week homework assignments

o available as Java project on github
o implement your solution and send us a patch

o present your solution in the course

m SiX week project (in groups of 2-3 students)
o implement a data mining algorithm on a parallel processing platform

o demonstrate your solution on a real world dataset
o 3 ten minute presentations: problem and planned solution, prototypical

implementation, final presentation with results on real world data

m oral exam

| 16.04.2012 DIMA — TU Berlin 6 |

D Literature I'E

[T T T

m Mining of Massive Datasets _ Mining of
. Massive Datasets
(Rajaraman, Ullman) oK

free PDF version available at:
http://infolab.stanford.edu/~ullman/mmds.html

m Hadoop: The definitive guide
(White)

OREILLY" YAHOO! reess

| 16.04.2012 DIMA — TU Berlin |

http://infolab.stanford.edu/~ullman/mmds.html

ksy:.

ond
& qent
S m
R -
"':—% I e S O u C e S
0,
9, Ul
iQG

m ISIS course page
https://www.isis.tu-berlin.de/course/view.php?id=6535

m mailinglist for the lecture
aim3@dima.tu-berlin.de

m source code for the homework
https://qgithub.com/dimalabs/scalable-datamining-class

16.04.2012 DIMA —TU Berlin 8

https://www.isis.tu-berlin.de/course/view.php?id=6535
https://www.isis.tu-berlin.de/course/view.php?id=6535
https://www.isis.tu-berlin.de/course/view.php?id=6535
https://www.isis.tu-berlin.de/course/view.php?id=6535
mailto:aim3@dima.tu-berlin.de
mailto:aim3@dima.tu-berlin.de
mailto:aim3@dima.tu-berlin.de
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class

| ’ Distributed filesystems I'E

Distributed filesystems

16.04.2012 DIMA —TU Berlin 9

Google 1997: one machine is not enough...

10

| 16.04.2012 DIMA — TU Berlin

ond
& qent
SO
&

D Motivation for having distributed systems I'E

%
¢ o,
‘;,Zglg

m Economic and technical drivers for distributed systems

o Costs: better price/performance as long as commodity hardware is
used for the component computers

o Performance: by using the combined processing and storage capacity
of many nodes, performance levels can be reached that are out of the
scope of centralized machines

o Scalability/Elasticity: resources such as processing and storage
capacity can be increased incrementally

o Availability: by having redundant components, the impact of
hardware and software faults on users can be reduced

16.04.2012 DIMA —TU Berlin 11

D Google Servers in the early days

9,290

&@
>.
L
%

m Each server rack holds 40 to 80
commodity-class x86 PC servers

with custom Linux
each server runs slightly outdated hardware

O
o each system has its own 12V battery
to counter unstable power supplies
no cases used, racks are setup in standard

O
shipping containers and are just wired

together

m very unstable, but also very cheap
- high “bang-for-buck” ratio

| 16.04.2012 DIMA — TU Berlin 12 |

i Typical first year for a new cluster (consisting ﬂE
of several racks)

o ~0.5 overheating (power down most machines
in <5 mins, ~1-2 days to recover)

o ~1 PDU (power distribution unit) failure
(~500-1000 machines suddenly disappear,
~6 hours to come back)

o ~1 rack-move (plenty of warning, ~500-1000
machines powered down, ~6 hours)

o ~1 network rewiring (rolling ~5% of machines
down over 2-day span)

o ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to
get back)

~5 racks go wonky (40-80 machines see 50% packet loss)

~8 network maintenances (might cause ~30-minute random
connectivity losses)

o ~12 router reloads (takes out DNS and external VIPs for a couple
minutes)

~3 router failures (traffic immediately pulled for an hour)
~dozens of minor 30-second DNS blips
~1000 individual machine failures

thousands of hard drive failures, countless slow disks, bad
memory, misconfigured machines, etc.

o o o o

16.04.2012 DIMA —TU Berlin 13

1 ’ Challenges to data center software I'E

m Challenges to the data center software

o deal with all these hardware failures while avoiding any data loss and
~100% global uptime

0 decrease maintenance costs to minimum
o allow flexible extension of data centers

m Solution
o use cloud technologies
o GFS (Google File System)

o HDFS (Hadoop Distributed File System), an open source
implementation of GFS

16.04.2012 DIMA —TU Berlin 14

ond
@ ent
S\
S om
5§
&
2e
B %,
9, %,
98
a
.

Designing a distributed filesystem ﬂE

m Design constraints and considerations

O o0Oo0oooogaogao

run on potentially unreliable commodity hardware

files are large (usually ranging from 100 MB to multiple GBs of size)
billions of files need to be stored

most write operations are appends

random writes or updates are rare

most files are write-once, read-many

appends are much more resilient than random updates

most applications rely on MapReduce which naturally results in file appends

m Most common read operation: sequential streams of large data
quantities

O
O
O

(e.g. streaming video, transferring a web index chunk, etc)
frequent streaming renders caching useless
cus of GFS is on high overall bandwidth, not latency

m File system API must be simple and expandable

O

O
O
O
O

Flat file namespace suffices

file path is treated as string (no directory listing possible)
qualifying file names consist of namespace and file name

no POSIX compatibility needed

Additional support for file appends and snapshot operations

16.04.2012 DIMA —TU Berlin 15

RN

‘O’b{\c

L

D HDFS Architecture

%,
‘4;;"1 uy
éq

m blocks
o files are broken into block-sized chunks
0 blocks are stored as independent units

m a single master server (NameNode)

0 manages the filesystem namespace
o maintains the filesystem tree and metadata for all files

o knows the data nodes on which all the blocks for a given file are
located
m multiple workers (DataNodes)
o store and retrieve blocks (either initiated by the NameNode or a client)

o communicate with NameNode about the blocks they store

m replication
o blocks are redundantly stored on multiple DataNodes

| 16.04.2012 DIMA — TU Berlin 16 |

nd
e Sent
<
@
o
a5
)é
©

[
(AN
9,255‘

D Anatomy of a file read in HDFS ﬂE

1:open Distributed
R Filesystem

2: get block locations_ NameNode

Client 3: read

\ FSDatalnputStream
N

6:close

DataNode DataNode DataNode

16.04.2012 DIMA —TU Berlin 17

-1 Anatomy of a file write in HDFS

L

2: create
Distributed

HDFS Filesystem I 7: complete

Client 3: write

FSDataOutputStream

6:close

4: write packet 5: ack packet

NameNode

4 4
DataNode ! DataNode H DataNode

16.04.2012 DIMA —TU Berlin

18

nd
e\i\e\"‘

D Replica placement & coherency I'E

o
%2

m default strategy for replica placement
o 3 copies (replicas) of each block
o first replica on the local or random node
0 second replica on a node of a different rack (off-rack)
o third replica on a node of the same rack

af‘kf rx 2 ts‘o,

0

m Coherency model

file is visible after creation

no guarantee that written contents are visible

data becomes visible once a complete block is written

sync method (similar to fsync) forces all buffers to be flushed to the
datanodes, subsequently created readers will see the data

o o o o

DIMA — TU Berlin 19

| 16.04.2012 |

@(‘\

aOkyste

d

1 ’ MapReduce

0%,
¢ o,
%2

MapReduce

| 16.04.2012 DIMA — TU Berlin 20 |

q,@
&4
>.
L2
%%
0%

3 Where traditional Databases are unsuitable 'E

m Analysis over raw (unstructured) data

o Text processing
o In general: If relational schema does not suit the problem well

~ XML, RDF

m Where cost-effective scalability is required
o Use commodity hardware

o Adaptive cluster size (horizontal scaling)
o Incrementally growing, add computers without requirement for

expensive reorganization that halts the system

m In unreliable infrastructures
0 Must be able to deal with failures — hardware, software, network

— Failure is expected rather than exceptional

o Transparent to applications
— very expensive to build reliability into each application

| 16.04.2012 DIMA — TU Berlin 21 |

1 Example Use Case: Web Index Creation l'E

m A Search Engine scenario:
o Have crawled the internet and stored the relevant documents
o Documents contain words (Doc-URL, [list of words])
o Documents contain links (Doc-URL, [Target-URLs])

m Need to build a search index
o Invert the files (word, [list of URLs])

o Compute a ranking (e.g. page rank),
which requires an inverted graph: (Doc-URL, [URLs-pointing-to-it])

m Obvious reasons against relational databases here

o Relational schema and algebra do not suit the problem well
o Importing the documents, converting them to the storage format is expensive

m A mismatch between what Databases were designed for and what

is really needed:
o Databases come originally from transactional processing. They give hard
guarantees about absolute consistencies in the case of concurrent updates.
o Analytics are added on top of that

o Here: The documents are never updated, they are read only. It is only about
analytics here!

16.04.2012 DIMA —TU Berlin 22

nd
&

D A ongoing Re-Design... I'E

iQG

ksy:.

m Driven by companies like Google, Facebook, Yahoo

m Use heavily distributed system

o Google used 450,000 low-cost commodity servers in 2006
in cluster of 1000 - 5000 nodes

m Redesign infrastructure and architectures completely with
the key goal to be
o Highly scalable
o Tolerant of failures

m Stay generic and schema free in the data model

16.04.2012 DIMA —TU Berlin 23

ond

1 ’ Retrieving and Analyzing Data l'E

ok
¢ 0,
g

m Data is stored as custom records in files
0 Most generic data model that is possible

m Records are read and written with data model specific
(de)serializers

m Analysis or transformation tasks must be written directly as
a program
o Not possible to generate it from a higher level statement
o Like a query-plan is automatically generated from SQL

m Programs must be parallel, highly scalable, fault tolerant
o Extremely hard to program
o Need a programming model and framework that takes care of that

o The map/reduce model has been suggested and successfully adapted
on a broad scale

DIMA —TU Berlin 24

| 16.04.2012 |

\)V‘d

L

3 What is Map/Reduce?

m Programming model
o borrows concepts from functional programming
o suited for parallel execution — automatic parallelization & distribution of

data and computational logic
o clean abstraction for programmers

m Functional programming influences
o treats computation as the evaluation of mathematical functions and

avoids state and mutable data

o no changes of states (no side effects)
o output value of a function depends only on its arguments

m Map and Reduce are higher-order functions
o take user-defined functions as argument

o return a function as result
o to define a map/reduce job, the user implements the two functions

| 16.04.2012 DIMA — TU Berlin 25 |

| ’ User Defined Functions l'E

m The data model

0 key/value pairs(K x V)
o e.g. (int, string)

m The user defines two functions
5 map: M (K, % Vi) (K, x V,.)"
— input key-value pairs: (k,v)k € K,,. v eV,
— output key-value pairs: (g,w)g € K,, w €V,

o reduce: R: (K, V.) (K, V,)
— input key € K- and a list of values €V,*
— output key € K,. and a single value €V,

m The framework
0 accepts a list (K., x Vi)'
o outputs result pairs(x,.v,)"

16.04.2012 DIMA —TU Berlin 26

ksy.

D Data Flow in Map/Reduce I'E

(K Vi) *
Framework \l’ \l/ II \1/ \%
Framework V)F V)F V)F

%Wi

L L L

Framework

‘l/
(K, V,)*

16.04.2012 DIMA —TU Berlin 27

D Map Reduce Illustrated (1) I'E

9, Ul
JQG

m Problem: Counting words in a parallel fashion
o How many times different words appear in a set of files
o juliet.txt: Romeo, Romeo, wherefore art thou Romeo?
o benvolio.txt: What, art thou hurt?
O

Expected output: Romeo (3), art (2), thou (2), art (2), hurt (1),
wherefore (1), what (1)

m Solution: Map-Reduce Job

map (filename, line) {
foreach (word in line)
emit (word, 1);

}

reduce (word, numbers) {
int sum = 0;
foreach (value in numbers) {
sum += value;
}
emit (word, sum);

}

16.04.2012 DIMA —TU Berlin 28

nksysg,
a@o‘“""a G‘,))

D Map Reduce Illustrated (2) ﬂs

¢ ~70,
%2

0

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\ ,f
\\ ’,’
Romeo, 1 . .
Romeo, 1 ‘ What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1,1, 1)
hurt (1), wherefore, (1)
thou (1, 1) what, (1)
art, 2 ’,’ Romeo, 3
hurt, 1 wherefore, 1
thou, 2 what, 1

16.04.2012 DIMA —TU Berlin 29

ond
@ qent
SO
&

D Hadoop - A map/reduce Framework I'E

9, Ul
JQG

m Hadoop: Apache Top Level Project ;
o open Source (DID],_-”

o written in Java

ksy:.

m Hadoop provides a stack of
o distributed file system (HDFS) - modeled after the Google File System
o Map/Reduce engine
o data processing languages (Pig Latin, Hive SQL)

m Runs on
o Linux, Mac OS/X, Windows, Solaris
o Commodity hardware

16.04.2012 DIMA —TU Berlin 30

D Hadoop Map/Reduce Engine ﬂE

m Master / Slave architecture

m Map/Reduce Master: JobTracker

O accepts jobs submitted by clients
o0 assigns map and reduce tasks to TaskTrackers
O monitors execution status, re-executes tasks upon failure

m Map/Reduce Slave: TaskTracker
o runs map / reduce tasks upon instruction from the task tracker

O manage storage, sorting and transmission of intermediate output

| 16.04.2012 DIMA — TU Berlin 31 |

L

D Hadoop Map/Reduce Engine

m Jobs are executed like a Unix pipeline:
cat > output

unig -c |
| Reduce | Output

sort |

grep |
Shuffle & Sort

O cat * |
| Map |

O Input

m Workflow
O input phase: generates a number of FileSplits from input files (one per
Map task)
0 map phase: executes a user function to transform input kv-pairs into a

new set of kv-pairs
o sort & shuffle: sort and distribute the kv-pairs to output nodes
o reduce phase: combines all kv-pairs with the same key into new kv-

pairs
o output phase writes the resulting pairs to files

m All phases are distributed with many tasks doing the work

o Framework handles scheduling of tasks on cluster
o Framework handles recovery when a node fails

| 16.04.2012 DIMA — TU Berlin 32 |

i Hadoop Map/Reduce Engine | E

D

User defined

Client ,
| Submit Job

M1
DFS
DFS split1 Task Region1 — Task o
- utpu
Input split3 |
file || splita o
splits M2 .
|
Task Region1 |
Tracker Region? | J
|
M3 | R2
4 — Task \| ' / Task —
7 Tracker TrackV T ore
pputformar] L_RAM_| ' shuffle I I reduce() Output
combine() m * / file 2
Region2 5
partition() OutputFormat
N A >/
~ - AN — y
Map Phase Reduce Phase

33

DIMA — TU Berlin

16.04.2012

L

5

s

3
=

1 ’ Hadoop Fault Tolerance

)

m Inputs are stored in a fault tolerant way by the DFS

m Mapper crashed
0 Detected when no report is given for a certain time

0 Restarted at a different node, reads a different copy of the same input
split

m Reducer crashed
o Detected when no report is given for a certain time

0 Restarted at a different node also. Pulls the results for its partition from

each Mapper again.

m The key points are:
o The input is redundantly available
o Each intermediate result (output of the mapper) is materialized on disk

- Very expensive, but makes recovery of lost processes very simple and

cheap
| 16.04.2012 DIMA — TU Berlin 34 |

