
Technische Universität Berlin AIM3: Scalable Data Mining and Data Analysis

Database Systems and Information Management Group Summer term 2012

Prof. Dr. Volker Markl, Sebastian Schelter, Christoph Boden, Thomas Bodner

First Assignment
MapReduce and Hadoop

Due on May 2nd

Basics of MapReduce and Hadoop

1. WordCount - ”Hello World”of MapReduce

We’ll start with the classic MapReduce example of counting words. Your task is to complete

the code in de.tuberlin.dima.aim3.assignment1.FilteringWordCount. The output of this job
should be a textfile holding the following data per line:

word[TAB]count.

An additional requirement here is that stop words like to, and, in or the should be removed

from the input data and all words should be lowercased.

2. A custom Writable

You will work on your first custom Writable object in this task. Have a look at the class

de.tuberlin.dima.aim3.assignment1.PrimeNumbersWritable, which models a collection of

prime numbers. Writable classes need to be able to serialize to and deserialize from a binary

representation. Enable that for our custom Writable by implementing write(DataOutput
out) and readFields(DataInput in).

3. Average temperature per month

Have a look at the file src/test/resources/assignment1/temperatures.tsv. It contains the

output of a fictional temperature sensor, where each line denotes the year, the month and

the temperature of a single recording. Additionally a quality parameter is included which

expresses how ”sure”the sensor was of a single measurement:

year[TAB]month[TAB]temperature[TAB]quality

Your task is to implement a MapReduce program that computes the average temperature

per month of year. It should ignore all records that are below a given minimum quality.

The output of your program will be a textfile holding the following data per line:

year[TAB]month[TAB]average temperature

Use de.tuberlin.dima.aim3.assignment1.AverageTemperaturePerMonth as a starting point.



Parallel Joins in MapReduce

Next we deal with bibliographic data about authors and books located in the folder

src/test/resources/assignment1/. Author names and ids are contained in the file aut-
hors.tsv, the file books.tsv contains books, their year of publication and their author id.

We will use MapReduce and Hadoop to sort and join this data.

4. Sort the books with ”Secondary Sort”

We want to transform the book data into a list of (century, title)-tuples, where century

just denotes the first two digits of the year of publication. Each line in the output file

should have the format

century[TAB]book title.

The output data must be sorted ascending by century and title. You must not sort the

data yourself, but must use Hadoop’s ”Secondary Sort”capabilities to have the framework

do the sorting for you in the shuffle phase.

5. Join books and authors with a ”Broadcast Join”

In this task we will perform an inner join of the books and authors on the author id. Use a

”Broadcast Join”: load the smaller dataset into memory in your mapper class and perform

the join before sending the tuples to the reducer over the network. Each line in the output

file must have the format:

authorname[TAB]book title[TAB]year of publication

6. Join books and authors with a ”Reduce-side Join”

We will peform the same join here as in task 5, but we will use another technique called

”Reduce-side Join”. The join should be performed in the reducer class, an optimal solution

should also avoid buffering more than one value in the reducer.

Deadline

Source code for the exercises is available at https://github.com/dimalabs/scalable-datamining-
class.

Register in the ISIS information system at https://www.isis.tu-berlin.de/course/view.php?id=6535
and upload your solution in the form of a patch file until May 2nd.


