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Scalability

Scalability
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Parallel Speedup

■
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Parallel Speedup



25.04.2012 DIMA – TU Berlin 5

need for scalable algorithms
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from sequential to parallel
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Hadoop in Detail
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■ network is typically the most scarce resource in a 
distributed environment

■ remember the wordcount example: 
□ for each document, emit (word,1) tuples from the mapper

□ the reducer sums up all counts per word

□ → unnecessary network traffic, we could pre-aggregate all the tuples 

sent from a single mapper-instance

■ MapReduce offers a third optional function combine

(k, list(v)) → (k,list(v))

□ implementation must be idempotent

□ no guarantee that combine will see each tuple

□ very often, the reducer can also be used as combiner

combine – a third function
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■ Jobs are executed like a Unix pipeline:
□ cat * | grep | sort | uniq -c | cat > output

□ Input | Map | Shuffle & Sort | Reduce | Output

■ Workflow
□ input phase: generates a number of FileSplits from input files (one per 

Map task)

□ map phase: executes a user function to transform input kv-pairs into a 
new set of kv-pairs

□ sort & shuffle: sort and distribute the kv-pairs to output nodes

□ reduce phase: combines all kv-pairs with the same key into new kv-
pairs

□ output phase writes the resulting pairs to files

■ All phases are distributed with many tasks doing the work
□ Framework handles scheduling of tasks on cluster

□ Framework handles recovery when a node fails

Hadoop Map/Reduce Engine
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Hadoop Map/Reduce Engine

User defined
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■ suppose we run a large search engine and would like to find 
the top ten search queries per city from a file holding 
(city, query, count) tuples

■ we would emit (city, {query, count}) pairs in the mapper, 
but how would we find the the top ten queries in the 
reducer?
□ as we don‘t know in which order the {query, count} values arrive, we 

would have to buffer the ten best and iterate through all values 

■ Hadoop‘s Secondary Sort capabilities solve that problem!

□ create a combined key in the mapper ({city, count}, {query, count})

□ Hadoop supports using different comparators for grouping and sorting

□ for grouping we only use the first key attribute: {city, count}

□ For sorting we use both {city, count}

Secondary Sort
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Parallel Joins in MapReduce
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■ Equi-Join: L(A,X)      R(X,C)
□ assumption: |L| << |R|

■ Idea
□ broadcast L to each node completely before 

the map phase begins

□ Utilities like Hadoop's distributed cache can take this part

■ Mapper
□ only over R

□ step 1: read assigned input split of R into a hash-table (build phase)

□ step 2: scan local copy of L and find matching R tuples (probe)

□ step 3: emit each such pair

□ Alternatively read L into Hash-Table, then read R and probe

■ No need for partition / sort / reduce processing
□ Mapper outputs the final join result

Broadcast Join

M M M

L R R R
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■ Equi-Join: L(A,X)      R(X,C)
□ assumption: |L| < |R|

■ Mapper L(A,X)      R(X,C)
□ identical processing logic for L and R

□ evaluate local predicates to filter 
unneeded tuples (optional)

□ emits each tuple once

□ the intermediate key is a pair of
 the value of the actual join key X

 an annotation identifying to which relation the tuple belongs to (L or R)

■ Partition and sort
□ modulo division of the join key hash value

□ input is sorted primary on the join key, secondary on the relation name

□ output: a sequence of L(i), R(i) blocks of tuples for ascending join key i

■ Reduce
□ collect all L-tuples for the current L(i) block in a hash map

□ combine them with each R-tuple of the subsequent R(i)-tuple block

Repartition Join (Reduce-side Join)

M M M

L R RLRL

R R R

L R L R L R

read

h(key) % n

build L
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Hadoop Ecosystem
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■ Data warehouse infrastructure built on top of Hadoop, 
providing:
□ Data Summarization

□ Ad hoc querying

■ Simple query language: Hive QL (based on SQL)

■ Extendable via custom mappers and reducers

■ Subproject of Hadoop

■ No „Hive format“

■ http://hadoop.apache.org/hive/

Hive

http://hadoop.apache.org/hive/
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Hive - Example

LOAD DATA INPATH `/data/visits` INTO TABLE visits

INSERT OVERWRITE TABLE visitCounts

SELECT url, category, count(*)

FROM visits

GROUP BY url, category;

LOAD DATA INPATH „/data/urlInfo‟ INTO TABLE urlInfo

INSERT OVERWRITE TABLE visitCounts

SELECT vc.*, ui.*

FROM visitCounts vc JOIN urlInfo ui ON (vc.url = ui.url);

INSERT OVERWRITE TABLE gCategories

SELECT category, count(*)

FROM visitCounts

GROUP BY category;

INSERT OVERWRITE TABLE topUrls

SELECT TRANSFORM (visitCounts) USING „top10‟;
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■ Higher level query language for JSON documents

■ Developed at IBM‘s Almaden research center

■ Supports several operations known from SQL
□ Grouping,  Joining, Sorting

■ Built-in support for
□ Loops, Conditionals, Recursion

■ Custom Java methods extend JAQL

■ JAQL scripts are compiled to MapReduce jobs

■ Various I/O
□ Local FS, HDFS, Hbase, Custom I/O adapters

■ http://www.jaql.org/

JAQL

http://www.jaql.org/
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JAQL - Example

registerFunction(„top“, „de.tuberlin.cs.dima.jaqlextensions.top10“);

$visits = hdfsRead(„/data/visits“);

$visitCounts =

$visits

-> group by $url = $

into { $url, num: count($)};

$urlInfo = hdfsRead(„data/urlInfo“);

$visitCounts =

join $visitCounts, $urlInfo

where $visitCounts.url == $urlInfo.url;

$gCategories =

$visitCounts

-> group by $category = $

into {$category, num: count($)};

$topUrls = top10($gCategories);

hdfsWrite(“/data/topUrls”, $topUrls);
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■ A platform for analyzing large data sets

■ Pig consists of two parts:
□ PigLatin: A Data Processing Language

□ Pig Infrastructure: An Evaluator for PigLatin programs

□ Pig compiles Pig Latin into physical plans 

□ Plans are to be executed over Hadoop

■ Interface between the declarative style of SQL and low-
level, procedural style of MapReduce

■ http://hadoop.apache.org/pig/

Pig

http://hadoop.apache.org/pig/
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Pig - Example

visits = load „/data/visits‟ as (user, url, time);

visitCounts = foreach visits generate url, count(visits);

urlInfo = load „/data/urlInfo‟ 

as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories

generate top(visitCounts,10);

store topUrls into „/data/topUrls‟;

Example taken from:
“Pig Latin: A Not-So-Foreign Language For Data Processing” Talk, Sigmod 2008
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■ a scalable machine learning library

■ Scalable to reasonably large data sets: the core algorithms 
are implemented on top of Apache Hadoop using the 
map/reduce paradigm. 

■ Currently Mahout supports mainly four use cases: 
□ Recommendation mining takes users' behavior and from that tries to 

find items users might like. 

□ Clustering takes e.g. text documents and groups them into groups of 
topically related documents. 

□ Classification learns from exisiting categorized documents what 
documents of a specific category look like and is able to assign 
unlabelled documents to the (hopefully) correct category. 

□ Frequent itemset mining takes a set of item groups (terms in a query 
session, shopping cart content) and identifies, which individual items 
usually appear together.

Mahout
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■ open-source server which enables 
highly reliable distributed coordination.

■ a centralized service for maintaining configuration 
information, naming, providing distributed synchronization, 
and providing group services. All of these kinds of services 
are used in some form or another by distributed 
applications. 

ZooKeeper
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■ HBase is open-source, distributed, 
versioned, column-oriented store 
modeled after Google's Bigtable

■ features 
□ random, realtime read/write access to your Big Data.

□ hosting of very large tables -- billions of rows X millions of columns --
atop clusters of commodity hardware

□ provides Bigtable-like capabilities on top of Hadoop and HDFS

HBase
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■ Large scale graph processing system ontop of Hadoop

■ implementation of Google Pregel

■ adds fault-tolerance with the use of 
ZooKeeper as its centralized coordination 
service.

■ Giraph follows the bulk-synchronous parallel model relative 
to graphs where vertices can send messages to other 
vertices during a given superstep. 

Giraph


