
09.05.2012 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

AIM3 – Scalable Data Analysis and Data
Mining

04 – Stratosphere

Sebastian Schelter, Christoph Boden, Volker Markl

09.05.2012 DIMA – TU Berlin 2

■ MapReduce is a powerful abstraction
□ Express problems are pairs of functions Map and Reduce

□ In practice, more functions are available (and required to use)

■ A typical MapReduce system (like Hadoop) implements a
processing pipeline
□ Here the view from the programmers perspective

Let's talk MapReduce first, though…

2

File Splits Records

split itemize map

Records

partition

Partitions

sort

Partitions

group

R
esu

lt

In
p

u
t

Groups Groups

combine reduce

09.05.2012 DIMA – TU Berlin 3

■ Hadoop's runtime implements a static strategy based on a
distributed sort based on partitioning

■ What about problems that do not fit sorting or partitioning
best?

■ What about other techniques for data processing?

MapReduce execution

3

Input
Splits

Map / Partition /
Sort / Combine

Map / Partition /
Sort / Combine

Merge /
Reduce

Merge /
Reduce

09.05.2012 DIMA – TU Berlin 4

■ Given a schema with two tables

■ Simple query that joins them and computes an aggregate

■ How would one express that in MapReduce?
□ Different possibilities?

■ How many jobs are required?

Example Task: A simple analytical Query

4

09.05.2012 DIMA – TU Berlin 5

■ Is that natural to program?

■ What if one side is much smaller?

■ What if the size is hard to be estimated and can only be
determined at runtime?

Typical Join Implementation in M/R

5

T

R

Input

Input Splits

Map

Map

Map

k1

k3

k4

k5

k2

Re-
duce

Re-
duce

Re-
duce

k1

k3

k4

k5

k2

k1

k3

k4

k5

k2

k1

k3

k4

k5

k2

09.05.2012 DIMA – TU Berlin 6

■ Enumerating Triangles in a social graph is a frequent
preprocessing step

■ Basic procedure:

■ Representation in MapReduce?

One more example: Triangle Enumeration

6

09.05.2012 DIMA – TU Berlin 7

■ The plan is basically to subsequent joins
□ First one is a self joins among the edges

□ Second one joins open triads to edged

■ What are the intermediate result sizes?

■ How would the "join" be executed most efficiently?

■ Is it a good idea to store the intermediate result in a DFS?

Triangle Enumeration continued…

7

n edges

Job 1 (Map / Reduce) Job 2 (Map / Reduce)

 edges,
k = avg-vertex-degree

09.05.2012 DIMA – TU Berlin 8

Some points can be easily observed

1) Break the static execution pipeline
□ Support more options beside partitioning and sorting

2) Encapsulate the parallelization requirement to "match
items" with its semantics

3) Support composed data-flows larger than the two-stage
MapReduce pipeline
□ Don't write everything, but only where it is very valuable for recovery

What can be improved?

8

09.05.2012 DIMA – TU Berlin 9

Abschnittsübersicht

THE STRATOSPHERE
APPROACH

Extending the MapReduce Idea…

9

09.05.2012 DIMA – TU Berlin 10

Examples in Stratosphere

10

SQL Query

Triangle Enumeration

09.05.2012 DIMA – TU Berlin 11

■ PACT is a generalization and extension of MapReduce
□ PACT inherits many concepts of MapReduce

■ Both are inspired by functional programming
□ Fundamental concept of programming model are 2nd-order functions

□ User writes 1st-order functions (user functions)

□ User code can be arbitrarily complex

□ 2nd-order function calls 1st-order function with independent data subsets

□ No common state should be held between calls of user function

Data Parallelism

11

Input

1st-order function
(User Code)

2nd-order function

09.05.2012 DIMA – TU Berlin 12

■ Define dependencies between the records that must be
obeyed when splitting them into subsets
□ Cp: Required partition properties

The Second-Order-Functions

12

Input set
Independent
subsets

Key Value

Map:
• All pairs are independently processed

Reduce:
• Pairs with identical key are grouped
• Groups are independently processed

09.05.2012 DIMA – TU Berlin 13

■ Cross
□ Builds a Cartesian Product

□ Elements of CP are independently processed

■ Match
□ Performs an equi-join on the key

□ Join candidates are independently processed

■ CoGroup
□ Groups each input on key

□ Groups with identical keys are processed together

Input Contracts beyond Map and Reduce

13

09.05.2012 DIMA – TU Berlin 14

■ Generalization and Extension of MapReduce
■ Based on Parallelization Contracts (PACTs)

■ Input Contract

□ 2nd-order function; generalization of Map and Reduce
□ Generates independently processable subsets of data

■ User Code
□ 1st-order function
□ For each subset independently called

■ Output Contract
□ Describes properties of the output of the 1st-order function
□ Optional but enables certain optimizations

PACT Programming Model

14

Input

Output
Contract

Data Data User Code
(1st-order function)

Input Contract (2nd-order function)

09.05.2012 DIMA – TU Berlin 15

■ PACT Programs are data flow graphs
□ Data comes from sources and flows to sinks

□ PACTs process data in-between sources and sinks

□ Multiple sources and sinks allowed

□ Arbitrary complex directed acyclic data flows can be composed

PACT Programming Model

15

Data Source 1 Data Sink 1
MAP

Data Source 2
COGROUP

MAP

MATCH

CROSS

Data Sink 2

REDUCE

MAP

09.05.2012 DIMA – TU Berlin 16

■ Same-Key
□ User Function does not alter the key

■ Super-Key
□ Key generated by UF is a super-key of the input key

■ Unique-Key
□ Data source or UF produces unique keys

Output Contracts

Unique-KEY

Super-KEY

Same-Key

16

UF

UF

UF

09.05.2012 DIMA – TU Berlin 17

Architecture Overview

Execution Engine

Parallel Programming
Model

Higher-Level
Language

Nephele

PACT
 Programming

Model

JAQL,
Pig,
Hive

Hadoop

Dryad

Map/Reduce
Programming

Model

Scope,
DryadLINQ

JAQL!

Hadoop Stack Dryad Stack Stratosphere
Stack

17

09.05.2012 DIMA – TU Berlin 18

Structure of a Nephele Schedule

■ Nephele Schedule is represented as DAG
□ Vertices represent tasks

□ Edges denote communication channels

■ Mandatory information for each vertex
□ Task program

□ Input/output data location (I/O vertices only)

■ Optional information for each vertex
□ Number of subtasks (degree of parallelism)

□ Number of subtasks per virtual machine

□ Type of virtual machine (#CPU cores, RAM…)

□ Channel types

□ Sharing virtual machines among tasks

18

Output 1

Task 1

Input 1

Task: LineWriterTask.program
Output: s3://user:key@storage/outp

Task: MyTask.program

Task: LineReaderTask.program
Input: s3://user:key@storage/input

09.05.2012 DIMA – TU Berlin 19

Task 1

Output 1

Input 1

ID: 2
Type: m1.large

ID: 1
Type: m1.small

■ Explicit assignment to virtual machines
□ Specified by ID and type

□ Type refers to hardware profile

Internal Schedule Representation

■ Nephele schedule is converted into internal
representation

19

Task 1 (2)

Output 1 (1)

Input 1 (1)

■ Explicit parallelization
□ Parallelization range (mpl) derived from PACT

□ Wiring of subtasks derived from PACT

09.05.2012 DIMA – TU Berlin 20 20

Nephele Architecture

■ Standard master worker pattern

■ Workers can be allocated on demand

Compute Cloud

Client

Public Network (Internet)

C
lo

u
d

 C
o

n
tr

o
lle

r

Pe
rs

is
te

n
t

St
o

ra
ge

Master

Worker

Private / Virtualized Network

Workload over time

Worker Worker

09.05.2012 DIMA – TU Berlin 21

From PACT Programs to Data Flows

function match(Key k, Tuple val1,

 Tuple val2)

-> (Key, Tuple)

{

 Tuple res = val1.concat(val2);

 res.project(...);

 Key k = res.getColumn(1);

 Return (k, res);

}

invoke():

 while (!input2.eof)

 KVPair p = input2.next();

 hash-table.put(p.key, p.value);

 while (!input1.eof)

 KVPair p = input1.next();

 KVPait t = hash-table.get(p.key);

 if (t != null)

 KVPair[] result =

 UF.match(p.key, p.value, t.value);

 output.write(result);

end

UF1
(map)

UF2
(map)

UF3
(match)

UF4
(reduce)

V1

V2

V3 V4

In-Memory
Channel

Network
Channel

PACT Program Nephele DAG Spanned Data Flow

V1 V2

V3

V4

V3

V1 V2

V3

V4

V3

User
Function

PACT code
(grouping)

Nephele code
(communication)

compile span

21

09.05.2012 DIMA – TU Berlin 22

■ For certain PACTs, several distribution patterns exist that
fulfill the contract
□ Choice of best one is up to the system

■ Created properties (like a partitioning) may be reused for
later operators
□ Need a way to find out whether they still hold after the user code

□ Output contracts are a simple way to specify that

□ Example output contracts: Same-Key, Super-Key, Unique-Key

■ Using these properties, optimization across multiple PACTs
is possible
□ Simple System-R/Volcano style optimizer approach possible

Optimizing PACT Programs

22

09.05.2012 DIMA – TU Berlin 23

Get a binary or clone the source

at http://stratosphere.eu

Website provides

■ A lot of user documentation

■ Several illustrated examples

■ Architectural details

■ Guide how get started with the code, if you want to extend
the system

Download and try Stratosphere

23

StratoSphere
Above the Clouds

http://stratosphere.eu/

09.05.2012 DIMA – TU Berlin 24

Execute jobs via

■ Command line client

■ Web GUI with plan visualization

Different modes

■ A local mode that starts a small-scale version everything in
a single JVM (no reconfiguration needed)

■ A Cluster-Mode that uses a pool of machines
□ Machines may be heterogeneous. Matching hardware profiles allows to

use them optimally together

■ A cloud mode that automatically allocates as many
machines as needed from a cloud-controller

Nice Features

24

StratoSphere
Above the Clouds

09.05.2012 DIMA – TU Berlin 25

Infrastructure as a Service

Use-Cases

...

■ Explore the power of
Cloud computing for
complex information
management applications

■ Database-inspired
approach

■ Analyze, aggregate, and
query

■ Textual and (semi-)
structured data

■ Research and prototype a
web-scale data analytics
infrastructure

The Stratosphere Project*

Scientific Data Life Sciences Linked Data

StratoSphere
Above the Clouds

Query Processor

25

* FOR 1306: DFG funded collaborative project among TU Berlin (Markl, Kao), HU Berlin (Freytag, Leser) and HPI Potsdam(Naumann)

