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■ MapReduce is a powerful abstraction 
□ Express problems are pairs of functions Map and Reduce 

□ In practice, more functions are available (and required to use) 

 

■ A typical MapReduce system (like Hadoop) implements a 
processing pipeline 
□ Here the view from the programmers perspective 

 

 

Let's talk MapReduce first, though… 
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■ Hadoop's runtime implements a static strategy based on a 
distributed sort based on partitioning 

 

 

 

 

 

 

 

 

 

■ What about problems that do not fit sorting or partitioning 
best? 

■ What about other techniques for data processing? 

MapReduce execution 
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■ Given a schema with two tables 

■ Simple query that joins them and computes an aggregate 

 

 

 

 

 

 

 

 

■ How would one express that in MapReduce? 
□ Different possibilities? 

■ How many jobs are required? 

 

Example Task: A simple analytical Query 
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■ Is that natural to program? 

■ What if one side is much smaller? 

■ What if the size is hard to be estimated and can only be 
determined at runtime? 

Typical Join Implementation in M/R 
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■ Enumerating Triangles in a social graph is a frequent 
preprocessing step 

 

■ Basic procedure: 

 

 

 

 

 

 

 

■ Representation in MapReduce? 

One more example: Triangle Enumeration 
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■ The plan is basically to subsequent joins 
□ First one is a self joins among the edges 

□ Second one joins open triads to edged  

 

 

 

 

 

 

 

 

■ What are the intermediate result sizes? 

■ How would the "join" be executed most efficiently? 

■ Is it a good idea to store the intermediate result in a DFS? 

Triangle Enumeration continued… 
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Some points can be easily observed 

 

1) Break the static execution pipeline 
□ Support more options beside partitioning and sorting 

 

2) Encapsulate the parallelization requirement to "match 
items" with its semantics 

 

3) Support composed data-flows larger than the two-stage 
MapReduce pipeline 
□ Don't write everything, but only where it is very valuable for recovery 

What can be improved? 
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Abschnittsübersicht 

THE STRATOSPHERE 
APPROACH 

Extending the MapReduce Idea… 

9 



09.05.2012 DIMA – TU Berlin 10 

Examples in Stratosphere 
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■ PACT is a generalization and extension of MapReduce 
□ PACT inherits many concepts of MapReduce 

 

■ Both are inspired by functional programming 
□ Fundamental concept of programming model are 2nd-order functions 

□ User writes 1st-order functions (user functions) 

□ User code can be arbitrarily complex 

□ 2nd-order function calls 1st-order function with independent data subsets 

□ No common state should be held between calls of user function 

 
 

 

Data Parallelism 
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■ Define dependencies between the records that must be 
obeyed when splitting them into subsets 
□ Cp: Required partition properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Second-Order-Functions 
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■ Cross 
□ Builds a Cartesian Product 

□ Elements of CP are independently processed  

 

 

 

■ Match 
□ Performs an equi-join on the key 

□ Join candidates are independently processed  

 

 

 

■ CoGroup 
□ Groups each input on key 

□ Groups with identical keys are processed together 

 

Input Contracts beyond Map and Reduce 
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■ Generalization and Extension of MapReduce 
■ Based on Parallelization Contracts (PACTs) 

 
 
 
 

 
 

 
■ Input Contract 

□ 2nd-order function; generalization of Map and Reduce 
□ Generates independently processable subsets of data 

 

■ User Code 
□ 1st-order function 
□ For each subset independently called 

 

■ Output Contract 
□ Describes properties of the output of the 1st-order function 
□ Optional but enables certain optimizations 

 

PACT Programming Model 
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■ PACT Programs are data flow graphs 
□ Data comes from sources and flows to sinks 

□ PACTs process data in-between sources and sinks 

□ Multiple sources and sinks allowed 

□ Arbitrary complex directed acyclic data flows can be composed 

 

 

PACT Programming Model 
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■ Same-Key 
□ User Function does not alter the key 

 

 

 

 

■ Super-Key 
□ Key generated by UF is a super-key of the input key 

 

 

 

■ Unique-Key 
□ Data source or UF produces unique keys 

Output Contracts 

Unique-KEY 

Super-KEY 

Same-Key 
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Architecture Overview 
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Structure of a Nephele Schedule 

■ Nephele Schedule is represented as DAG 
□ Vertices represent tasks 

□ Edges denote communication channels 

 

■ Mandatory information for each vertex 
□ Task program 

□ Input/output data location (I/O vertices only) 

 

■ Optional information for each vertex 
□ Number of subtasks (degree of parallelism) 

□ Number of subtasks per virtual machine 

□ Type of virtual machine (#CPU cores, RAM…) 

□ Channel types 

□ Sharing virtual machines among tasks 
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Task 1 

Output 1 

Input 1 

ID: 2 
Type: m1.large 

ID: 1 
Type: m1.small 

■ Explicit assignment to virtual machines 
□ Specified by ID and type 

□ Type refers to hardware profile 

Internal Schedule Representation 

■ Nephele schedule is converted into internal 
representation 
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Task 1 (2) 
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Input 1 (1) 

■ Explicit parallelization 
□ Parallelization range (mpl) derived from PACT 

□ Wiring of subtasks derived from PACT 
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Nephele Architecture 

■ Standard master worker pattern 

■ Workers can be allocated on demand 
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From PACT Programs to Data Flows 

function match(Key k, Tuple val1, 

               Tuple val2) 

-> (Key, Tuple) 

{ 

  Tuple res = val1.concat(val2); 

  res.project(...); 

  Key k = res.getColumn(1); 

  Return (k, res); 

} 

invoke(): 

  while (!input2.eof) 

    KVPair p = input2.next(); 

    hash-table.put(p.key, p.value); 
 

  while (!input1.eof) 

    KVPair p = input1.next(); 

    KVPait t = hash-table.get(p.key); 

    if (t != null) 

      KVPair[] result = 

        UF.match(p.key, p.value, t.value); 

      output.write(result); 

end 
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■ For certain PACTs, several distribution patterns exist that 
fulfill the contract 
□ Choice of best one is up to the system 

 

■ Created properties (like a partitioning) may be reused for 
later operators 
□ Need a way to find out whether they still hold after the user code 

□ Output contracts are a simple way to specify that 

□ Example output contracts: Same-Key, Super-Key, Unique-Key 

 

■ Using these properties, optimization across multiple PACTs 
is possible 
□ Simple System-R/Volcano style optimizer approach possible 

 

Optimizing PACT Programs 
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Get a binary or clone the source 

at http://stratosphere.eu 

 

 

Website provides  

■ A lot of user documentation 

■ Several illustrated examples 

■ Architectural details 

■ Guide how get started with the code, if you want to extend 
the system 

 

 

 

Download and try Stratosphere 
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StratoSphere 
Above the Clouds 

http://stratosphere.eu/


09.05.2012 DIMA – TU Berlin 24 

Execute jobs via 

■ Command line client 

■ Web GUI with plan visualization 

 

Different modes 

■ A local mode that starts a small-scale version everything in 
a single JVM (no reconfiguration needed) 

■ A Cluster-Mode that uses a pool of machines 
□ Machines may be heterogeneous. Matching hardware profiles allows to 

use them optimally together 

■ A cloud mode that automatically allocates as many 
machines as needed from a cloud-controller 

 

 

Nice Features 

24 
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Infrastructure as a Service 

Use-Cases 

... 

■ Explore the power of 
Cloud computing for 
complex information 
management applications 

 

■ Database-inspired 
approach 

 

■ Analyze, aggregate, and 
query 

 

■ Textual and (semi-) 
structured data 

 

■ Research and prototype a  
web-scale data analytics 
infrastructure 

 

The Stratosphere Project* 

Scientific Data Life Sciences Linked Data 

StratoSphere 
Above the Clouds 

Query Processor 
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* FOR 1306: DFG funded collaborative project among TU Berlin (Markl, Kao),  HU Berlin (Freytag, Leser) and HPI Potsdam(Naumann) 


