
16.04.2012 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

AIM3 – Scalable Data Mining and Data
Analysis

02 – Distributed filesystems and MapReduce

Sebastian Schelter, Christoph Boden, Volker Markl

16.04.2012 DIMA – TU Berlin 2

Recap

Recapitulation

16.04.2012 DIMA – TU Berlin 3

A new set of tools

■ Distributed filesystems
□ store petabytes of data in the cluster

□ transparently handle reads, writes and replication

■ Parallel processing platforms
□ offer a parallel programming model to allow

developers to write distributed applications

□ move computation to data, not data to computation

□ relieve the developer from handling concurrency,
network communication and machine failures

16.04.2012 DIMA – TU Berlin 4

Our algorithms have to change

■ Each machine will only see a small portion of the data
□ we cannot use random access anymore, we must always work on

partitioned data

□ joining data become very costly as lots of machines will be involved

■ Communication via network and disk becomes the
bottleneck
□ our algorithms must try to locally aggregate as much as possible

□ minimizing network traffic becomes the key to scaling out algorithms

■ Concurrency and recovery must be hidden from the
developer
□ algorithms must fit into a simple, parallelizable programming model

□ the system (not the developer) handles concurrency and recovery

16.04.2012 DIMA – TU Berlin 5

Agenda

■ Topics of the course

□ Motivation, Overview

□ MapReduce & Distributed filesystems

□ MapReduce: Joins, Patterns & Extensions

□ Stratosphere

□ Clustering

□ Dimensionality Reduction

□ Data Stream Mining

□ Graph Processing & Social Network Analysis

□ Graph Processing: Google Pregel

□ Collaborative Filtering: Neighborhood Methods

□ Collaborative Filtering: Latent Factor Models

□ Classification

□ Textmining

□ Specialized Machine Learning approaches

16.04.2012 DIMA – TU Berlin 6

Tasks in the course

■ 3 two week homework assignments
□ available as Java project on github

□ implement your solution and send us a patch

□ present your solution in the course

■ six week project (in groups of 2-3 students)
□ implement a data mining algorithm on a parallel processing platform

□ demonstrate your solution on a real world dataset

□ 3 ten minute presentations: problem and planned solution, prototypical
implementation, final presentation with results on real world data

■ oral exam

16.04.2012 DIMA – TU Berlin 7

Literature

■ Mining of Massive Datasets
(Rajaraman, Ullman)

free PDF version available at:
http://infolab.stanford.edu/~ullman/mmds.html

■ Hadoop: The definitive guide
(White)

http://infolab.stanford.edu/~ullman/mmds.html

16.04.2012 DIMA – TU Berlin 8

■ ISIS course page
https://www.isis.tu-berlin.de/course/view.php?id=6535

■ mailinglist for the lecture
aim3@dima.tu-berlin.de

■ source code for the homework
https://github.com/dimalabs/scalable-datamining-class

Resources

https://www.isis.tu-berlin.de/course/view.php?id=6535
https://www.isis.tu-berlin.de/course/view.php?id=6535
https://www.isis.tu-berlin.de/course/view.php?id=6535
https://www.isis.tu-berlin.de/course/view.php?id=6535
mailto:aim3@dima.tu-berlin.de
mailto:aim3@dima.tu-berlin.de
mailto:aim3@dima.tu-berlin.de
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class
https://github.com/dimalabs/scalable-datamining-class

16.04.2012 DIMA – TU Berlin 9

Distributed filesystems

Distributed filesystems

16.04.2012 DIMA – TU Berlin 10

Go

Google 1997: one machine is not enough...

16.04.2012 DIMA – TU Berlin 11

■ Economic and technical drivers for distributed systems
□ Costs: better price/performance as long as commodity hardware is

used for the component computers

□ Performance: by using the combined processing and storage capacity
of many nodes, performance levels can be reached that are out of the
scope of centralized machines

□ Scalability/Elasticity: resources such as processing and storage
capacity can be increased incrementally

□ Availability: by having redundant components, the impact of
hardware and software faults on users can be reduced

Motivation for having distributed systems

16.04.2012 DIMA – TU Berlin 12

■ Each server rack holds 40 to 80
commodity-class x86 PC servers
with custom Linux
□ each server runs slightly outdated hardware

□ each system has its own 12V battery
to counter unstable power supplies

□ no cases used, racks are setup in standard
shipping containers and are just wired
together

■ very unstable, but also very cheap
→ high “bang-for-buck” ratio

Google Servers in the early days

16.04.2012 DIMA – TU Berlin 13

□ ~0.5 overheating (power down most machines
in <5 mins, ~1-2 days to recover)

□ ~1 PDU (power distribution unit) failure
(~500-1000 machines suddenly disappear,
~6 hours to come back)

□ ~1 rack-move (plenty of warning, ~500-1000
machines powered down, ~6 hours)

□ ~1 network rewiring (rolling ~5% of machines
down over 2-day span)

□ ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to
get back)

□ ~5 racks go wonky (40-80 machines see 50% packet loss)

□ ~8 network maintenances (might cause ~30-minute random
connectivity losses)

□ ~12 router reloads (takes out DNS and external VIPs for a couple
minutes)

□ ~3 router failures (traffic immediately pulled for an hour)

□ ~dozens of minor 30-second DNS blips

□ ~1000 individual machine failures

□ thousands of hard drive failures, countless slow disks, bad
memory, misconfigured machines, etc.

Typical first year for a new cluster (consisting
of several racks)

16.04.2012 DIMA – TU Berlin 14

■ Challenges to the data center software
□ deal with all these hardware failures while avoiding any data loss and

~100% global uptime

□ decrease maintenance costs to minimum

□ allow flexible extension of data centers

■ Solution
□ use cloud technologies

□ GFS (Google File System)

□ HDFS (Hadoop Distributed File System), an open source
implementation of GFS

Challenges to data center software

16.04.2012 DIMA – TU Berlin 15

■ Design constraints and considerations
□ run on potentially unreliable commodity hardware
□ files are large (usually ranging from 100 MB to multiple GBs of size)
□ billions of files need to be stored
□ most write operations are appends
□ random writes or updates are rare
□ most files are write-once, read-many
□ appends are much more resilient than random updates
□ most applications rely on MapReduce which naturally results in file appends

■ Most common read operation: sequential streams of large data
quantities
□ (e.g. streaming video, transferring a web index chunk, etc)
□ frequent streaming renders caching useless
□ cus of GFS is on high overall bandwidth, not latency

■ File system API must be simple and expandable
□ Flat file namespace suffices
□ file path is treated as string (no directory listing possible)
□ qualifying file names consist of namespace and file name
□ no POSIX compatibility needed
□ Additional support for file appends and snapshot operations

Designing a distributed filesystem

16.04.2012 DIMA – TU Berlin 16

■ blocks
□ files are broken into block-sized chunks

□ blocks are stored as independent units

■ a single master server (NameNode)
□ manages the filesystem namespace

□ maintains the filesystem tree and metadata for all files

□ knows the data nodes on which all the blocks for a given file are
located

■ multiple workers (DataNodes)
□ store and retrieve blocks (either initiated by the NameNode or a client)

□ communicate with NameNode about the blocks they store

■ replication
□ blocks are redundantly stored on multiple DataNodes

HDFS Architecture

16.04.2012 DIMA – TU Berlin 17

Anatomy of a file read in HDFS

NameNode

DataNode DataNodeDataNode

HDFS
Client

Distributed
Filesystem

FSDataInputStream

1:open

2: get block locations

3: read

6:close

4:read 5:read

16.04.2012 DIMA – TU Berlin 18

Anatomy of a file write in HDFS

NameNode

DataNode DataNodeDataNode

HDFS
Client

Distributed
Filesystem

FSDataOutputStream

1:create 2: create

3: write

6:close

4: write packet 5: ack packet

7: complete

4 4

5 5

16.04.2012 DIMA – TU Berlin 19

■ default strategy for replica placement
□ 3 copies (replicas) of each block

□ first replica on the local or random node

□ second replica on a node of a different rack (off-rack)

□ third replica on a node of the same rack

■ Coherency model
□ file is visible after creation

□ no guarantee that written contents are visible

□ data becomes visible once a complete block is written

□ sync method (similar to fsync) forces all buffers to be flushed to the
datanodes, subsequently created readers will see the data

Replica placement & coherency

16.04.2012 DIMA – TU Berlin 20

MapReduce

MapReduce

16.04.2012 DIMA – TU Berlin 21

■ Analysis over raw (unstructured) data
□ Text processing

□ In general: If relational schema does not suit the problem well

 XML, RDF

■ Where cost-effective scalability is required
□ Use commodity hardware

□ Adaptive cluster size (horizontal scaling)

□ Incrementally growing, add computers without requirement for
expensive reorganization that halts the system

■ In unreliable infrastructures
□ Must be able to deal with failures – hardware, software, network

 Failure is expected rather than exceptional

□ Transparent to applications

 very expensive to build reliability into each application

Where traditional Databases are unsuitable

16.04.2012 DIMA – TU Berlin 22

■ A Search Engine scenario:
□ Have crawled the internet and stored the relevant documents

□ Documents contain words (Doc-URL, [list of words])

□ Documents contain links (Doc-URL, [Target-URLs])

■ Need to build a search index
□ Invert the files (word, [list of URLs])

□ Compute a ranking (e.g. page rank),
which requires an inverted graph: (Doc-URL, [URLs-pointing-to-it])

■ Obvious reasons against relational databases here
□ Relational schema and algebra do not suit the problem well

□ Importing the documents, converting them to the storage format is expensive

■ A mismatch between what Databases were designed for and what
is really needed:
□ Databases come originally from transactional processing. They give hard

guarantees about absolute consistencies in the case of concurrent updates.

□ Analytics are added on top of that

□ Here: The documents are never updated, they are read only. It is only about
analytics here!

Example Use Case: Web Index Creation

16.04.2012 DIMA – TU Berlin 23

■ Driven by companies like Google, Facebook, Yahoo

■ Use heavily distributed system
□ Google used 450,000 low-cost commodity servers in 2006

in cluster of 1000 – 5000 nodes

■ Redesign infrastructure and architectures completely with
the key goal to be
□ Highly scalable

□ Tolerant of failures

■ Stay generic and schema free in the data model

A ongoing Re-Design…

16.04.2012 DIMA – TU Berlin 24

■ Data is stored as custom records in files
□ Most generic data model that is possible

■ Records are read and written with data model specific
(de)serializers

■ Analysis or transformation tasks must be written directly as
a program
□ Not possible to generate it from a higher level statement

□ Like a query-plan is automatically generated from SQL

■ Programs must be parallel, highly scalable, fault tolerant
□ Extremely hard to program

□ Need a programming model and framework that takes care of that

□ The map/reduce model has been suggested and successfully adapted
on a broad scale

Retrieving and Analyzing Data

16.04.2012 DIMA – TU Berlin 25

■ Programming model
□ borrows concepts from functional programming

□ suited for parallel execution – automatic parallelization & distribution of
data and computational logic

□ clean abstraction for programmers

■ Functional programming influences
□ treats computation as the evaluation of mathematical functions and

avoids state and mutable data

□ no changes of states (no side effects)

□ output value of a function depends only on its arguments

■ Map and Reduce are higher-order functions

□ take user-defined functions as argument

□ return a function as result

□ to define a map/reduce job, the user implements the two functions

What is Map/Reduce?

16.04.2012 DIMA – TU Berlin 26

■ The data model

□ key/value pairs

□ e.g. (int, string)

■ The user defines two functions

□ map:

 input key-value pairs:

 output key-value pairs:

□ reduce:

 input key and a list of values

 output key and a single value

■ The framework

□ accepts a list

□ outputs result pairs

User Defined Functions

16.04.2012 DIMA – TU Berlin 27

Data Flow in Map/Reduce

(K m,Vm)*

(K m,Vm) (K m,Vm) (K m,Vm)

MAP(K m,Vm)MAP(K m,Vm)MAP(K m,Vm)

(K r ,Vr)*(K r ,Vr)*(K r ,Vr)*

REDUCE(K r ,Vr*) REDUCE(K r ,Vr*) REDUCE(K r ,Vr*)

(K r ,Vr*) (K r ,Vr*)(K r ,Vr*)

(K r ,Vr) (K r ,Vr) (K r ,Vr)

(K r ,Vr)*

…

…

…

…

…

…

Framework

Framework

Framework

16.04.2012 DIMA – TU Berlin 28

■ Problem: Counting words in a parallel fashion

□ How many times different words appear in a set of files

□ juliet.txt: Romeo, Romeo, wherefore art thou Romeo?

□ benvolio.txt: What, art thou hurt?

□ Expected output: Romeo (3), art (2), thou (2), art (2), hurt (1),
wherefore (1), what (1)

■ Solution: Map-Reduce Job
map(filename, line) {

foreach (word in line)

emit(word, 1);

}

reduce(word, numbers) {

int sum = 0;

foreach (value in numbers) {

sum += value;

}

emit(word, sum);

}

Map Reduce Illustrated (1)

16.04.2012 DIMA – TU Berlin 29

Map Reduce Illustrated (2)

16.04.2012 DIMA – TU Berlin 30

■ Hadoop: Apache Top Level Project
□ open Source

□ written in Java

■ Hadoop provides a stack of
□ distributed file system (HDFS) – modeled after the Google File System

□ Map/Reduce engine

□ data processing languages (Pig Latin, Hive SQL)

■ Runs on
□ Linux, Mac OS/X, Windows, Solaris

□ Commodity hardware

Hadoop – A map/reduce Framework

16.04.2012 DIMA – TU Berlin 31

■ Master / Slave architecture

■ Map/Reduce Master: JobTracker
□ accepts jobs submitted by clients

□ assigns map and reduce tasks to TaskTrackers

□ monitors execution status, re-executes tasks upon failure

■ Map/Reduce Slave: TaskTracker
□ runs map / reduce tasks upon instruction from the task tracker

□ manage storage, sorting and transmission of intermediate output

Hadoop Map/Reduce Engine

16.04.2012 DIMA – TU Berlin 32

■ Jobs are executed like a Unix pipeline:
□ cat * | grep | sort | uniq -c | cat > output

□ Input | Map | Shuffle & Sort | Reduce | Output

■ Workflow
□ input phase: generates a number of FileSplits from input files (one per

Map task)

□ map phase: executes a user function to transform input kv-pairs into a
new set of kv-pairs

□ sort & shuffle: sort and distribute the kv-pairs to output nodes

□ reduce phase: combines all kv-pairs with the same key into new kv-
pairs

□ output phase writes the resulting pairs to files

■ All phases are distributed with many tasks doing the work
□ Framework handles scheduling of tasks on cluster

□ Framework handles recovery when a node fails

Hadoop Map/Reduce Engine

16.04.2012 DIMA – TU Berlin 33

Hadoop Map/Reduce Engine

User defined

16.04.2012 DIMA – TU Berlin 34

■ Inputs are stored in a fault tolerant way by the DFS

■ Mapper crashed
□ Detected when no report is given for a certain time

□ Restarted at a different node, reads a different copy of the same input
split

■ Reducer crashed
□ Detected when no report is given for a certain time

□ Restarted at a different node also. Pulls the results for its partition from
each Mapper again.

■ The key points are:
□ The input is redundantly available

□ Each intermediate result (output of the mapper) is materialized on disk

 Very expensive, but makes recovery of lost processes very simple and
cheap

Hadoop Fault Tolerance

