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Agenda 

■ Topics of the course 
 

□ Motivation, Overview 

□ MapReduce & Distributed filesystems 

□ MapReduce: Joins, Patterns & Extensions 

□ Stratosphere 

□ Clustering 

□ Dimensionality Reduction 

□ Data Stream Mining 

□ Graph Processing & Social Network Analysis 

□ Graph Processing: Google Pregel 

□ Collaborative Filtering: Neighborhood Methods 

□ Collaborative Filtering: Latent Factor Models 

□ Classification 

□ Textmining  

□ Specialized Machine Learning approaches 
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Supervised learning vs. unsupervised learning 

■ Supervised learning: discover patterns in the data 
that relate data attributes with a target (class) 
attribute.  

□ These patterns are then utilized to predict the values of 
the target attribute in future data instances.  

□ e.g.: Email marked „SPAM“, Image with Keywords, Face 
with Name, DNA with Genes marked, … 

 

■ Unsupervised learning: The data have no target 
attribute.  

□ We want to explore the data to find some intrinsic 
structures in them.  
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■ Given a set of points, with a notion of distance 
between points, group the points into some 
number of clusters, so that 

□ Members of a cluster are close/similar to each other 

□ Members of different clusters are dissimilar 

 

■ Usually: 

□ Points are in a high-dimensional space 

□ Similarity is defined using a distance measure 

□ Euclidean, Cosine, Jaccard, edit distance, … 

Clustering: Problem definition 
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Example 
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Application: Image Segmentation 
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Problems With Clustering 

■ Clustering in two dimensions looks easy. 

 

■ Clustering small amounts of data looks easy. 

 

■ And in most cases, looks are not deceiving. 

 

 

■ But: Many applications involve not 2, but 10 or 10,000 
dimensions. 

 

■ High-dimensional spaces look different: almost all pairs of 
points are at about the same distance. 
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■ Assume random points within a bounding box 

□ e.g., values between 0 and 1 in each dimension. 

 

■ In 2 dimensions  

□ a variety of distances between 0 and 1.41. 

 

■ In 10,000 dimensions 

□ the difference in any one dimension is distributed as a triangle. 

 

 

 

■ The law of large numbers applies  

 

■ Actual distance between two random points is the sqrt of the 
sum of squares of essentially the same set of differences  

 

Example: Curse of Dimensionality 
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The curse of dimensionality 
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■ A catalog of 2 billion “sky objects” represents objects by 
their radiation in 7 dimensions (frequency bands). 

 

■ Problem: cluster into similar objects, e.g., galaxies, nearby 
stars, quasars, etc. 

 

■ Sloan Sky Survey is a newer, better version. 

 

Example: SkyCat 
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■ Intuitively: music divides into categories, and customers 
prefer a few categories. 

□ But what are categories really? 

 

■ Represent a CD by the customers who bought it. 

 

■ Similar CD’s have similar sets of customers, and vice-versa. 

 

Example: Clustering CD’s 
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■ Think of a space with one dimension for each customer. 

□ Values in a dimension may be 0 or 1 only. 

 

■ A CD’s point in this space is (x1, x2,…, xk), where xi = 1 iff 
the i th customer bought the CD. 

□ Compare with boolean matrix: rows = customers; cols. = CD’s. 

 

■ For Amazon, the dimension count is tens of millions. 

 

■ An alternative: use minhashing/LSH to get Jaccard similarity 
between “close” CD’s. 

 

■ 1 minus Jaccard similarity can serve as a (non-Euclidean) 
distance. 

 

 

Example: Clustering CD‘s (II) 
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■ Represent a document by a vector    (x1, x2,…, xk), where xi 
= 1 iff the i th word (in some order) appears in the 
document. 

□ It actually doesn’t matter if k  is infinite; i.e., we don’t limit the 
set of words. 

 

■ Documents with similar sets of words may be about the 
same topic. 

 

Example: Clusters of Documentsd 
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■ As with CD’s we have a choice when we think of 
documents as sets of words or shingles: 

 
□ Sets as vectors: measure similarity by the cosine distance. 

 

𝑑𝐶𝑜𝑠𝑖𝑛𝑒 =
𝑥 ∙ 𝑦

 𝑥𝑖²𝑖  𝑦𝑖
²

𝑖

 

 

□ Sets as sets: measure similarity by the Jaccard distance. 
 

𝑑𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
(𝐴 ∩ 𝐵)

(𝐴 ∪ 𝐵)
 

 

□ Sets as points: measure similarity by Euclidean distance. 

 

Aside: Cosine, Jaccard, and Euclidean Distances 
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■ d(x, y) ≥ 0 (no negative distances) 

 

■ d(x, y) = 0 if and only if x = y (distances are positive, 
except for the distance from a point to itself) 

 

■ d(x, y) = d(y, x) (distance is symmetric) 

 

■ d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality) 

Distance Meassures 
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Example: DNA Sequences 

■ Objects are sequences of {C,A,T,G}. 

 

■ Distance between sequences is edit distance, the minimum 
number of inserts and deletes needed to turn one into the 
other. 

 

■ Note there is a “distance,” but no convenient space in which 
points “live.” 
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■ Clustering, in itself, is often not the primary problem 

□ Exploratory analysis is rarely needed 

 

■  Methods are often tied to the “final” goal 

 

■ E.g.: Query Refinement 

□ User inputs ambiguous query (“madonna”) 

□ Search engine asks: 

□ “Did you mean: songs, videos, pictures?” 

In the Web Context 
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Methods of Clustering 

■ Hierarchical (Agglomerative): 
 

□ Agglomerative (bottom up): 

 Initially, each point is a cluster 

 Repeatedly combine the two “nearest” 
clusters into one. 

 

□ Divisive (top down): 

 Start with one cluster and recursively 
split it 

 

 

■ Point Assignment: 
 

□ Maintain a set of clusters. 

□ Place points into their “nearest” cluster. 
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Hierarchical Clustering 

■ Key operation: Repeatedly combine two nearest clusters  

 

■ Three important questions:  

□ How do you represent a cluster of more than one point?  

□ How do you determine the “nearness” of clusters?  

□ When to stop combining clusters?  

 

■ Key problem: as you build clusters, how do you represent 
the location of each cluster, to tell which pair of clusters is 
closest? 

 

■ Euclidean case: each cluster has a centroid = average of its 
points. 
□ Measure intercluster distances by distances of centroids. 
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Example: Hierarchical Clustering 
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■ The only “locations” we can talk about are the points 
themselves. 

□ I.e., there is no “average” of two points. 

 

■ Approach 1: clustroid  = point “closest” to other points. 

□ Treat clustroid as if it were centroid, when computing 
intercluster distances.  

 

 

□ E.g.: using edit distance, we decide to merge the strings  
abcd and aecdb  

 

□ edit distance = 3  

 

□ there is no string that represents their averages 

 

And in the Non-Euclidean Case? 
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“Closest” Point? 

■ Possible meanings of “closest”: 

 

□ Smallest maximum distance to the other points. 

□ Smallest average distance to other points. 

□ Smallest sum of squares of distances to other points. 
 

 For distance metric d clustroid c of cluster C is:  
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■ Approach 2: intercluster distance = minimum of the 
distances between any two points, one from each cluster. 

 

■ Approach 3: Pick a notion of “cohesion” of clusters, e.g., 
maximum distance from the clustroid. 

□ Merge clusters whose union  is most cohesive. 

 

Defining „nearness“ of Clusters 



09.05.2012 DIMA – TU Berlin 24 

Cohesion 

■ Approach 1: Use the diameter of the merged cluster = 
maximum distance between points in the cluster. 

 

■ Approach 2: Use the average distance between points in the 
cluster. 

 

■ Approach 3: Use a density-based approach:  take the 
diameter or average distance, e.g., and divide by the 
number of points in the cluster. 

□ Perhaps raise the number of points to a power first, e.g., 
square-root. 
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■ Naïve implementation of hierarchical clustering: 

□ At each step, compute pairwise distances between all 
pairs of clusters, then merge 

□ O(N3) 

 

 

■ Careful implementation using priority queue can 
reduce time to O(N2 log N) 

□ Still too expensive for really big datasets that do not fit 
in memory 

Implementation 
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k – Means Algorithm(s) 

 

■ Assumes Euclidean space. 

 

■ Start by picking k, the number of clusters. 

 

■ Initialize clusters by picking one point per cluster. 

 

□ Example: pick one point at random, then   k -1 other 
points, each as far away as possible from the previous 
points. 
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Populating Clusters 

 

■ For each point, place it in the cluster whose 
current centroid it is nearest. 

 

■ After all points are assigned, fix the centroids of 
the k  clusters. 

 

■ Optional: reassign all points to their closest 
centroid. 

 
□ Sometimes moves points between clusters. 



09.05.2012 DIMA – TU Berlin 28 

 

 

 

Algorithm k-means(k, D) 

 

   choose k data points as the initial centroids (cluster centers) 

   repeat 

 for each data point x ∈ D do 

  compute the distance from x to each centroid; 

  assign x to the closest centroid 

 endfor 

 re-compute the centroid using the current cluster memberships 

   until the stopping criterion is met 

K-Means Algorithm  
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Example: Assigning Clusters 
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■ How to select k?  

 

□ Try different k, looking at the change in the average 
distance to centroid, as k increases.  

 

□ Average falls rapidly until right k, then changes little  

 

Getting the k right 
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Example: Picking k 
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Example: Picking k 
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Example: Picking k 
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■ How would you implement K-Means in MapReduce? 

 

■ Take a set of seed centroids  
□ can be generated using other algorithms e.g. Canopy Clustering 

 

■ Compute distance to centroids and determine the closest 
centroid for each data point in a Mapper 

 

■ Combine data points in similar clusters 

 

■ Recompute new centroids in reduce task 

K-means in MapReduce 
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Algorithm 1. map (key, value) 

Input: centroids, the offset key, the sample value 

Output: <key’, value’> pair, where the key’ is the index of the closest center point and 
value’ is a string comprise of sample information 

 

1. Construct the sample instance from value; 

2. minDis = Double.MAX VALUE; 

3. index = -1; 

4. For i=0 to centers.length do 

 dis= ComputeDist(instance, centers[i]); 

 If dis < minDis { 

  minDis = dis; 

  index = i; 

 } 

5. End For 

6. Take index as key’; 

7. Construct value’ as a string comprise of the values of different dimensions; 

8. output <key, value> pair; 

Map 
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Algorithm 2. combine (key, V) 
Input: key is the index of the cluster, V is the list of the samples assigned to the same 
cluster 
Output: < key, value> pair, where the key’ is the index of the cluster, value’ is a string 
comprised of sum of the samples in the same cluster and the sample number 
 

1. Initialize one array to record the sum of value of each dimensions of the samples 

contained in the same cluster, i.e. the samples in the list V; 

2. Initialize a counter num as 0 to record the sum of sample number in the same 

cluster; 

3. while(V.hasNext()){  

 Construct the sample instance from V.next(); 

 Add the values of different dimensions of instance to the array 

 num++; 

4. } 

5. Take key as key’; 

6. Construct value’ as a string comprised of the sum values of different dimensions and 

num; 

7. output < key, value> pair; 

Combine 
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Algorithm 3. reduce (key, V) 
Input: key is the index of the cluster, V is the list of the partial sums from different host 
Output: <key, value> pair, where the key’ is the index of the cluster, value’ is a string 
representing the new center 

 

1. Initialize one array record the sum of value of each dimensions of the samples 

contained in the same cluster, e.g. the samples in the list V; 

2. Initialize a counter NUM as 0 to record the sum of sample number in the same 

cluster; 

3. while(V.hasNext()){ 

 Construct the sample instance from V.next(); 

 Add the values of different dimensions of instance to the array 

 NUM += num; 

} 

4. Divide the entries of the array by NUM to get the new center’s coordinates; 

5. Take key as key’; 

6. Construct value’ as a string comprise of the center’s coordinates; 

7. output <key, value> pair; 

Reduce 
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SpeedUp of parallel k-means 

• keep the dataset constant and increase the number of nodes 
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Initialization: k -Means 

 

 

■ Possible initialization strategies of the k cluster 
centers:  

 

□ Take a small random sample and cluster optimally. 

 

□ Take a sample; pick a random point, and then k – 1 more 
points, each as far from the previously selected points as 
possible. 

 

□ (Canopy Clustering) 



09.05.2012 DIMA – TU Berlin 40 

■ very simple and fast method for grouping objects into clusters 

 

■ uses a fast approximate distance metric and two distance 
thresholds T1 > T2 for processing.  

 

Algorithm: 

□ begin with a set of points and remove one at random.  

□ Create a Canopy containing this point and iterate through the remainder of 
the point set.  

□ At each point, if its distance from the first point is < T1, then add the point 
to the cluster.  

□ If, in addition, the distance is < T2, then remove the point from the set.  
 

In MapReduce: 

□ The data is massaged into suitable input format 

□ Each mapper performs canopy clustering on the points in its input set and 
outputs its canopies' centers 

□ The reducer clusters the canopy centers to produce the final canopy centers 

□ The points are then clustered into these final canopies 

 

Canopy Clustering 
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BFR Algorithm 

■ BFR (Bradley-Fayyad-Reina) is a variant of k -means 
designed to handle very large (disk-resident) data sets. 

 

■ It assumes that clusters are normally distributed around a 
centroid in a Euclidean space. 

□ Standard deviations in different dimensions may vary. 

 

■ Points are read one main-memory-full at a time. 

 

■ Most points from previous memory loads are summarized 
by simple statistics. 

 

■ To begin, from the initial load we select the initial k  
centroids by some sensible approach. 
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Three Classes of Points 

■ discard set (DS): 

□ points close enough to a centroid to be summarized. 

 

■ compression set (CS):  

□ groups of points that are close together but not close to 
any centroid.  They are summarized, but not assigned to 
a cluster. 

 

■ retained set (RS): 

□ isolated points. 
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The „Galaxies“ Picture 
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Summarizing Sets of Points 

■ For each cluster, the discard set is summarized by: 

 

□ The number of points, N. 

 

□ The vector SUM, whose i th component is the sum of the 
coordinates of the points in the i th dimension. 

 

□ The vector SUMSQ: i th component = sum of squares of 
coordinates in i th dimension. 
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Summarizing Points: Comments 

■ 2d + 1 values represent any number of points. 

□ d  = number of dimensions. 

 

■ Averages in each dimension (centroid coordinates) can be 
calculated easily as SUMi /N. 

□ SUMi = i th component of SUM. 

 

■ Variance of a cluster’s discard set in dimension i  can be 

computed by:   
□ (SUMSQi /N ) – (SUMi /N )2 

□ And the standard deviation is the square root of that. 

 

■ The same statistics can represent any compression set. 
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Processing the “Memory-Load” of points:  

 

■ Find those points that are “sufficiently close” to a cluster 
centroid; add those points to that cluster and the DS. 

 

■ Use any main-memory clustering algorithm to cluster the 
remaining points and the old RS. 

□ Clusters go to the CS; outlying points to the RS. 

 

■ Adjust statistics of the clusters to account for the new points 
□ Add N’s, SUM’s, SUMSQ’s. 

 

■ Consider merging compressed sets in the CS. 

 

■ If this is the last round, merge all compressed sets in the 
CS and all RS points into their nearest cluster. 

 

 

The “Memory-Load” of Points 
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A Few Details . . . 

 

■ How do we decide if a point is “close enough” to a cluster 
that we will add the point to that cluster? 

 

■ How do we decide whether two compressed sets deserve to 
be combined into one? 
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How Close is Close Enough? 

■ We need a way to decide whether to put a new point into 
a cluster. 

 

■ BFR suggest two ways: 

□ The Mahalanobis distance  is less than a threshold. 

□ Low likelihood of the currently nearest centroid changing. 
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■ Normalized Euclidean distance from centroid. 

 

■ For point (x1,…,xk) and centroid (c1,…,ck): 

□ Normalize in each dimension: yi = (xi -ci)/i 

□ Take sum of the squares of the yi ’s. 

□ Take the square root: 

 

Mahalanobis Distance 
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Mahalanobis Distance – (2) 

■ If clusters are normally distributed in d  
dimensions, then after transformation, one 
standard deviation = d. 

□ I.e., 68% of the points of the cluster will have a 
Mahalanobis distance < d. 

 

■ Accept a point for a cluster if its M.D. is < some 
threshold, e.g. 4 standard deviations. 
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Picture: Equal M.D. Regions 

 

2 
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Should Two CS Subclusters Be Combined? 

■ Compute the variance of the combined subcluster. 
□ N, SUM, and SUMSQ allow us to make that calculation quickly. 

 

■ Combine if the variance is below some threshold. 

 

■ Many alternatives: treat dimensions differently, 
consider density. 
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The CURE Algorithm 

■ Problem with BFR/k -means: 

□ Assumes clusters are normally distributed in each dimension. 

□ And axes are fixed – ellipses at an angle are not  OK. 

 

■ CURE: 

□ Assumes a Euclidean distance. 

□ Allows clusters to assume any shape. 
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Example: Stanford Faculty Salaries 
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Starting CURE 

■ Pick a random sample of points that fit in main memory. 

 

■ Cluster these points hierarchically – group nearest 
points/clusters. 

 

■ For each cluster, pick a sample of points, as dispersed 
as possible. 

 

■ From the sample, pick representatives by moving them 
(say) 20% toward the centroid of the cluster. 
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Example: Initial Clusters 
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Example: Pick Dispersed Points 
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Example: Pick Dispersed Points 
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Finishing CURE 

■ Now, visit each point p  in the data set. 

 

■ Place it in the “closest cluster.” 

□ Normal definition of “closest”: that cluster with the 
closest (to p ) among all the sample points of all the 
clusters. 
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■ Represent datapoints as vertices V of a graph G. 

■ Each pair of vertices is connected by an edge. 

■ Edges have weights W. Large weights mean that adjacent 
vertices are similar. 

■ The graph construction depends on the application. 

Spectral Clustering 
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■ Build a weighted graph G = (V,E,W). 

■ Construct a matrix L = f (W) (different variants of spectral 
clustering result from different functions f . 

■ Compute the eigenvectors of the k smallest eigenvalues of 
L. These provide a new representation of the original data 
points. 

■ Cluster the points in this new representation (e.g. using K-
means). 

Graph Partitioning 
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■ Clustering  
□ Clusters are often a useful summary of data that is in the form of 

points in some space. To cluster points, we need a distance measure 
on that space. Ideally, points in the same cluster have small distances 
between them, while points in different clusters have large distances 

between them. 

■ The Curse of Dimensionality 
□ Points in high-dimensional Euclidean spaces, as well as points in non-

Euclidean spaces often behave unintuitively. Two unexpected properties 
of these spaces are that random points are almost always at about the 
same distance, and random vectors are almost always orthogonal. 

■ K-Means Algorithms:  
□ This family of algorithms is of the point-assignment type and assumes 

a Euclidean space. It is assumed that there are exactly k clusters for 
some known k. After picking k initial cluster centroids, the points are 
considered one at a time and assigned to the closest centroid. The 
centroid of a cluster can migrate during point assignment, and an 
optional last step is to reassign all the points, while holding the 
centroids fixed at their final values obtained during the first pass. 

Summary 
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■ The BFR Algorithm 

□ A version of k-means designed to handle data that is too large 
to fit in main memory. It assumes clusters are normally 
distributed about the axes 

 

■ The CURE Algorithm 

□ This algorithm is of the point-assignment type. It is designed 
for a Euclidean space, but clusters can have any shape. It 
handles data that is too large to fit in main memory. 

 

■ Clustering Using Map-Reduce 

□ We can divide the data into chunks and cluster each chunk in 
parallel, using a Map task. The clusters from each Map task can 
be further clustered in a single Reduce task. 

 

Summary (II) 
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