
Spring Security SAML module

Author: Vladimir Schäfer

E-mail: vladimir.schafer@gmail.com

Copyright © 2009

The package contains the implementation of SAML v2.0 support for Spring Security

framework. Following features are available:

• SP and IDP initialized WebSSO profile of the SAML v2 protocol stack

• HTTP-POST and HTTP-Redirect bindings

• Automatic generation of SP metadata

• User selection of IDP to federate with

• Multiple IDPs in the circle of trust with metadata loading from filesystem or URL

• Custom loading/storing of user data using UserDetails interface

• Fully configurable using Spring context

• Sample pre-configured web application

Internal processing of the SAML messages, marshalling and unmarshalling is handled by

OpenSAML (http://www.opensaml.org/).

1.1 Prerequisites

The library is written in Java 1.5 and uses Maven as build system. For the run of the library

any Java EE 5 application server or container with support for Java Servlets 2.4 should be

sufficient.

Make sure that the XML parsing libraries used at the server are compatible with OpenSAML

(https://spaces.internet2.edu/display/OpenSAML/OSTwoUsrManJavaInstall).

The sample web application uses JSTL 1.2 library which must be present at the application

server.

1.2 Compilation

To compile modules type “mvn package”. All dependencies are located in

http://shibboleth.internet2.edu/downloads/maven2/ and http://repo1.maven.org/maven2/

repositories.

2

1.3 IDP server

Library should be able to authenticate users against any SAML 2.0 compatible Identity

Provider.

Currently the NameIDs urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress,

urn:oasis:names:tc:SAML:1.1:nameid-format:x509SubjectName,

urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified,

urn:oasis:names:tc:SAML:2.0:nameid-format:persistent and

urn:oasis:names:tc:SAML:2.0:nameid-format:transient are stated as supported in the

generated metadata. The implementations may use NameIDs in the UserDetails

implementation. Application programmers can utilize various NameIDs with custom

processing code by implementing and plugging SAMLUserDetailsService interface.

The library respects WantAuthnRequestsSigned attribute in IDP metadata and signs the

AuthNRequests only if this property is true.

1.4 Application design

Library consists of two parts:

• saml2-shared – contains all the common classes and must be present in all projects

• saml2-webapp – sample web application containing recommended Spring

configuration and jsp files presenting correct use of the library

Key components of the library are SAMLEntryPoint and SAMLProcessingFilter.

SAMLEntryPoint

Implements AuthenticationEntryPoint and SpringSecurityFilter interfaces and can be

invoked either directly by access to a monitored URL or by ExceptionTranslationFilter upon

AuthenticationException being thrown while accessing an application URL.

Entry point can function in one of the two modes of IDP discovery:

a. A default IDP has been configured which is then always used

b. User is allowed to select IDP from the list of configured ones; entry point then

redirects user to the selection page.

When the IDP discovery process has finished the AuthNRequest SAML message is sent to

the IDP using either HTTP-POST or HTTP-Redirect binding and the request is stored in the

cache for subsequent matching with the response.

SAMLProcessingFilter

A SAML response created by the IDP is sent to the URL monitored by this filter. Processing

filter parses the SAML message, wraps it into SAMLAuthenticationToken and invokes the

SAMLAuthenticationProvider. By default the processing filter expects calls at /saml/SSO.

3

SAMLAuthenticationProvider

Performs validation using WebSSOProfileConsumer class. In case the assertion is present in

the response and is valid the UsernamePasswordAuthenticationToken is returned and

stored.

The UsernamePasswordAuthenticationToken contains following information:

• Name: value of the Subject in the SAML response

• Credential: SAMLCredential object (containing NameID, assertion used to

authenticate the user and name of IDP who performed the authentication).

• GrantedAuthority: are currently not implemented, in future could be loaded from

SAML attributes

Optionally the authentication provider invokes custom SAMLUserDetailsService which can

load/store information about the user. For example urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent NameID could be stored to custom datastore for future user matching.

Details about SAML processing can be found in the implementation.

The SAML Single log-out profile is currently not supported, invocation of logout filter at

/saml/logout context will only destroy the local session.

1.5 Configuration

Application is fully configurable using Spring context. At the moment no custom

namespaces are implemented, but may be added in the future.

Sample configuration is located in the saml2-

webapp/src/main/resources/security/securityContext.xml, all bean names used in the

following text are referring to this document.

Keystores

The library requires one JKS keystore with at least one private key. There is a sample JKS

bundled in the webapp module, information about creation of custom one can be found at

http://wiki.eclipse.org/Generating_a_Private_Key_and_a_Keystore.

1) Configure keyStore bean:

• Set path to the key store

• Set password used to open the keystore

2) Configure keyResolver bean:

• For each used key in the keystore set a map entry:

<entry key="keyAlias" value="privateKeyPassword" />

3) Configure webSSOprofile bean:

• Set keyAlias of the key you want to use for encryption/signing as constructor

argument with index 2

4

Metadata

First step in enabling SAML Single Sign-On is exchange of SAML metadata. This process is

specific for each IDP. For configuration of Spring SAML please have the IDP metadata file

ready beforehand. Metadata of the hosted SP will be generated automatically after

deployment.

All configured IDPs are considered to be members of a single circle of trust.

To configure metadata:

1) Prepare metadata of the IDP you want to federate with in a file or URL

2) Modify the metadata bean in configuration file:

a. In case you have metadata in a file use the

org.opensaml.saml2.metadata.provider.FilesystemMetadataProvider class

b. In case you have metadata as URL use the

org.opensaml.saml2.metadata.provider.HTTPMetadataProvider.

c. Delete other unused metadata configurations

3) Optionally set the defaultIDP property to the value of entityID attribute of one of the

configured IDPs. In case the defaultIDP value is set and custom selection of IDP is

disabled user will be automatically forwarded to this IDP upon invocation of

entryPoint. In case only one IDP is configured this value can be removed completely.

In case the SP metadata generator is disabled, there must be exactly one metadata

document describing values of the hosted service provider.

Metadata generator

The metadata for the hosted SP (our deployed application) can be generated automatically.

Beans metadataFilter and metadataGenerator are responsible for this task.

By default the SP metadata can be accessed at:

protocol://server:port/appContext/saml/metadata

The generated XML contains one assertion consumer with HTTP-POST support.

The generated metadata must be uploaded to the IDPs circle of trust.

In case the metadata generator is not needed (hand configured SP metadata is present in

the metadata bean) both metadataFilter and metadataGenerator can be removed from the

configuration.

User IDP selection

In case the idpSelectionPath property of samlEntryPoint bean is set the EntryPoint will

present user with an IDP selection view instead of directly sending a SAML request. The

selected IDP is sent with a GET request including parameter login=true and idp=entityID to

the filter URL of samlEntryPoint, which then issues the SAML request to the selected IDP.

Please consult WEB-INF/security/idpSelection.jsp for an example or customization.

5

Custom user data loading

In order to enable custom processing of user after login create a class implementing

SAMLUserDetailsService interface and a bean in the Spring configuration.

Reference to the bean must be added to the samlAuthenticationProvider bean as

userDetails property and will be called after each successful authentication attempt.

Custom paths

By default all the components have default paths:

• /saml/SSO – processing filter

• /saml/metadata – metadata generator

• /saml/logout – logout filter

• /saml/login – entry point

All paths can be changed in the Spring context configuration file.

1.6 Sample application

The bundled web application demonstrates usage of the library. Please follow the above

mentioned configuration steps before deployment. In particular the keystore must be set,

metadata list can be left empty in case you only want to generate the SP metadata.

For execution of single sign-on at least one IDP must be configured.

The JSTL 1.2 is used in the application; you can get the JSTL jar at https://maven-

repository.dev.java.net/repository/jstl/jars/ or more info at

http://www.mularien.com/blog/2008/02/19/tutorial-how-to-set-up-tomcat-6-to-work-

with-jstl-12/

The sample configuration uses user IDP selection, so upon access to the root context you

will be presented with the list of configured IDPs to select from and login button will

redirect you to the IDP. After login at the IDP assertion will be sent back and user logged in.

1.7 Tested environment

The library has been tested against OpenSSO and Weblogic 10 as IDPs. Application has been

successfully deployed and used on JBoss 4.2.2 GA, Tomcat 6.0.18 and Weblogic 10.1.

Weblogic requires updates to the XML parsing libraries in order to work with OpenSAML.

6

1.8 Future development and problems

At the moment the application is in the progress of extensive unit testing, although no bugs

are known right now it may change soon ☺

• Currently the most wanted feature seems to be the single logout support

• the simplified configuration with a custom namespace would also be nice.

• cache of sent SAML requests needs a cleaning thread

• the SAMLCredential is currently not serializable but should be

• there’s never enough documentation, some more should be written

7

