
Testing & Debugging
JavaScript

By: Rob Levin
Version: 0.0.1
Dated: Mon, October 19, 2009

1

License: This document is licensed under the
Attribution-NonCommercial-ShareAlike 3.0
Unsupported
Template Author: mayankjohri

License, available at http://creativecommons.org/licenses/by-nc-sa/3.0

2

http://creativecommons.org/licenses/by-nc-sa/3.0
http://templates.services.openoffice.org/en/user/10304

Disclaimer

The information in this document is based on publicly available documentations and author's
personal & professional experience. In no event shall author be liable for any direct, indirect,
consequential, punitive, special or incidental damages (including, without limitation, damages for
loss of profts, business interruption or loss of information) arising out of the use or inability to use
this document, even if Author has been advised of the possibility of such damages. Author makes
no representations or warranties with respect to the accuracy or completeness of the contents of
this document and reserves the right to make changes to this document at any time without
notice. Author does not make any commitment to update the information contained in this
document.

Title TDD JavaScript

Author Rob Levin

Email roblevintennis@gmail.com (author) johri.maya@gmail.com (template author)

Version 0.0.1

Document Date 10/19/09Notes

3

mailto:johri.maya@gmail.com
mailto:roblevintennis@gmail.com

Table of Contents
Introduction... 6

 1.1. Why this book?.. 7
 1.2. Rationale.. 7
 1.3. Goals of this book..7
 1.4. Who should read?.. 7
 1.5. What this book is not?... 8
 1.6. Examples..8
 1.7. Disclaimer..8

Part I – Debugging Tools...9
Firebug...9

 2.1 Introduction...9
 2.2 Installation.. 9
 2.3 Usage.. 11

Selenium IDE.. 13
 3.1 Introduction...13
 3.2 Installation.. 13
 3.3 Usage.. 13

Example of a Debugging Session.. 15
Part II – Testing Tools... 15

 Testing Methodologies..15
xUnit Frameworks.. 15
BDD Frameworks...15

YUI Test.. 16
 4.1 Introduction...16
 4.2 Installation.. 16
 4.3 Usage.. 16
 4.4 Setup, Teardown... 20
 4.5 Additional Features...21
 4.6 YUI 3.. 21

QUnit... 21
 6.1 Introduction...22
 6.2 Installation.. 22
 6.3 Usage.. 22
 6.4 FireUnit...24

jspec...26
 7.1 Introduction...26
 7.2 Installation.. 26
 7.3 Usage.. 27
 7.2 Additional Features...30

Callbacks.. 30
Options... 30
Server Formatting...31
Other Tidbits...31

Summary... 32
Unit Tests vs. Regression Tests.. 32

Part III – Test Driving JavaScript..33
Before we get started..33
5 Minute Drill...33

What just happened?... 37
Objects...38

Object Creation...38

4

Accessing Object Properties...40
Object Assigned by Reference... 40
Prototypes...41

Prototype Shadowing..42
Reinventing Thyself..42
Prototype Issue..43

Inheritance... 45
Pseudoclassical...45
Prototype Shared State Issue.. 47
Constructor Stealing & Combination Inheritance.. 47
Prototypal Inheritance.. 48
Inheriting Prototypes Not Constructors..49
Functional Inheritance ...50
Summary of Inheritance Patterns... 52

JavaScript Gotchas.. 52
Namespace...53
parseInt.. 53
Equality and == vs ===...54
Reserved Words in Object Literals..55
Scope... 55

Privileged Singleton...57
Part IV – Using What You've Learned.. 58
TDD Example: Linked List...58

Singly Linked Lists.. 58
Decomposing Requirements..59
Getting Started...59

Regressions.. 60
List Creation.. 60
Insertion... 61
Traversing.. 62
Removal...63
Finding ..64

JavaScript Builds...66
Validation...66

Installing Rhino..66
Run JSLint via the Rhino Shell..67
JSLint Options...67

Compression..68
YUI Compressor..68
Automated Builds..69

Ant Alternative...71
References... 72
Notes to self...73

Oreilly Template.. 73

5

Introduction
Contents:
Introduction... 6

 1.1. Why this book?.. 7
 1.2. Rationale.. 7
 1.3. Goals of this book..7
 1.4. Who should read?.. 7
 1.5. What this book is not?... 8
 1.6. Examples..8
 1.7. Disclaimer..8

6

 1.1. Why this book?

While there are a plethora of good JavaScript books, blogs, etc., information on testing JavaScript
is scattered across the net and a bit cumbersome to wade through. The author's hope is to
remedy this with a nice “ramp up” document for developers that need to get up and running
quickly.

 1.2. Rationale

Most programming books put of getting in to things like debugging and testing until very late in
the book (if at all). This is a bit of a shame because debugging and testing are not only
indispensable skills, they're actually quite helpful in aiding the learning of a new language.

An example of using testing to learn and confrm features of a new language can be found in the
Part II: The xUnit Example in Kent Beck's TDD By Example book. Mr. Beck actually uses unit
testing to both “play” with Python and build a unit testing framework from out of thin air!
[BKTDD2002]

TDD JavaScript will attempt to allow the user to “kill two birds with one stone” - get up to speed
on both JavaScript and testing JavaScript programs.

 1.3. Goals of this book

This book is not meant to be an exhaustive reference or even complete tutorial on JavaScript –
there are already a number of good choices for that:

● JavaScript: The Good Parts by Douglas Crockford
● JavaScript: The Defnitive Guide by David Flanagan
● Professional JavaScript for Web Developers by Nicholas C. Zakas
● Books and blogs by John Resig

There are of course others as well – these are some the author can vouch for. Please note that
these may be considered advanced so a newbie will likely need another resource before tackling
any of these. Both w3schools and Mozilla, have some very nice free online alternatives for those
just trying to get started.

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide
http://www.w3schools.com/js/default.asp

This book's primary goals are:
1. Get you up and running using JavaScript AND testing quickly.
2. Act as supplemental material to more authoritative tomes (see books above).

 1.4. Who should read?

This book is aimed at the following cross-section of readers:
● Those coming to JavaScript from another language (eg Java, PHP, C#, etc.)
● JavaScript programmers that would like to test, but only if they can get set up and going

quickly.
● Those that have avoided JavaScript like the plague in favor of server side programming,

but now fnd themselves in a project that demands client-side programming skills.
● A fast reader that wants to do an hour's research and get a sense of some of the tools

presented before wading through a bunch of README's and environment setup. If this is
you, just read the frst part of this book to get a sense of some nice JavaScript tools

7

http://www.w3schools.com/js/default.asp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide

available.
● Although this book isn't targeted at newbies, the exploration of testing frameworks, and

setting up a solid JavaScript development environment should prove as valuable
supplemental material. If things get too complicated, just move on to another section and
come back to these sections later in career.

If you are already a JavaScript guru, have already set up a complete TDD JavaScript environment,
etc., this book may not be for you. You may want to cherry pick the chapters that interest you
specifcally. Perhaps there's a tool or two covered that you just haven't got around to using yet?
Moreover, you may have the job of getting a new hire, junior developer, etc., to use some
discipline in their JavaScript development but don't have time to pair program them. You may
consider using this as a resource to “throw at them”.

 1.5. What this book is not?

A lot! We are not going to get into every testing framework or debugger and we will be doing most
of our work in Firefox. That being said, the reader is defnitely encouraged to also test their scripts
in IE, Chrome, Safari, Opera, etc. However, there's just not enough room for this book to cover all
of these.

As brevity is one of the chief goals of this document, it will be up to the reader to fnd other
background material to learn the rationale for things like TDD (test driven development), BDD,
xUnit. One suggestion, is that if this book makes a foreword reference to something you are not
familiar with, take 10 minutes to read the Wikipedia, etc. Moreover, we won't be getting into every
feature available from each framework. Unfortunately, that means Ajax, mocks and stubs, and
certain other features have been left out. The goal is to give you a point of departure from which
you can move into these more interesting areas on your own.

Also, this book does not try to get deep into the JavaScript language itself. It is meant to be used
as supplemental material to a more “proper” JavaScript book. The author does plan to use parts of
the Zakas and Crockford books previously mentioned to inspire some of the examples later in the
book (specifcally, we will use some tests to iron out confusion of Object Creation and Inheritance).
If the reader is so inclined, they will probably get a lot out of using this as a study aid on top of
those more exhaustive resources. But not, neither is for the faint or heart!

Lastly, this document is not meant to act as a comparison chart or matrix on the tools examined!

 1.6. Examples

The code examples were ran on either Mac OS X (10.5.8) or Ubuntu 8+ system (or both) running
Firefox 3.5.3. You system's results may be diferent.

The author maintains a repository on github with the book itself, as well as any supplemental
code, etc., at:
http://github.com/roblevintennis/Testing-and-Debugging-JavaScript
As it is always challenging to take source code from a word processed document, it is strongly
suggested that you grab the code from there (as opposed to cut and pasting from this document).
Moreover, it is likely that any updates in the source will be in the github code before this
document!

 1.7. Disclaimer

This is a free book, and the author is doing this on the side (on top of full time development and
family concerns). As it is more important to get the information “out there” and provide that it is

8

http://github.com/roblevintennis/Testing-and-Debugging-JavaScript

accurate, the formatting may leave much to be desired. If this really bothers the reader, and they
have the knowledge to do so, they may contribute to this project by reformatting the book (if they
are so inclined). If so, please create a clone and add it. Moreover, the author does not claim to be
a superstar of JavaScript wizardry – if you are only interested in getting information from the
“heads of state”, please see the list presented earlier (or search for JavaScript + any of the
following: Crockford, Zakas, Resig, Flannigan, Edwards, PPK, etc.)

Part I – Debugging Tools
This section of the book is meant to provide short chapters on some of the various tools available
for debugging and testing JavaScript.

Firebug
Contents:
Firebug...9

 2.1 Introduction...9
 2.2 Installation.. 9
 2.3 Usage.. 11

 2.1 Introduction

Firebug is a Firefox Add-on that gives you a grab bag of web development tools to aid in debugging
your JavaScript code. You can use it: as a JavaScript interpreter; to inspect DOM elements on a web
page; edit HTML, CSS, and JavaScript in-place and view the results live in your browser; debug
code using typical breakpoint/step functionality found in IDE debuggers; view network stats to
determine page responsiveness. The current url for Firebug is: http://getfrebug.com/

There's also a great presentation by the original author himself, Joe Hewitt:
http://yuiblog.com/blog/2007/01/26/video-hewitt-frebug/

 2.2 Installation

The following screen-shots show what the author did to install the Firebug Add-on for Firefox:

9

http://yuiblog.com/blog/2007/01/26/video-hewitt-firebug/
http://getfirebug.com/

Figure 1-1. Finding Firebug is easy from the Firefox Add-ons search page.

Figure 3-2. Click the Add to Firefox (green button)

10

Figure 3-3. Restart Firefox

Upon restarting Firefox, you will then have the Firebug Add-on installed. To actually use it, you
have to open it up by either three methods: 1) Tools->Firebug->Open Firebug 2) Hitting the F12
function key 3) Clicking the little bug icon on your status bar (at the bottom of your browser). All of
these should present you with something similar to the following where you can verify the console
works by typing in a simple log message and clicking the 'Run' at the bottom of the console input
pane (it's highlighted in the screen-shot below):

Figure 3-4. Verifying Firebug console with a simple console.log(“hello”) message
and clicking the 'Run' button

In the above, you've used the Firebug console interpreter to enter JavaScript directly into the input
pane (shown right) and have it output the result of executing that JavaScript (show left). The
console.log(“hello”) is simply a call to the log method on the console object with the string
message 'hello'. We'll be using this logging functionality throughout the rest of this book so make
sure you can duplicate the result before moving on.

 2.3 Usage

As this book is aiming at brevity we'll show you just a couple more of the features of Firebug.
There's a ton of hidden features that are very useful and I suggest watching the Joe Hewitt video
previously cited.

If you go to any web site with Firebug open and click the 'Net' tab, you should see page load
information similar to that in Figure 3-5. Note that if you don't initially see anything, you may have
to Reload the web page. One thing not shown in the fgure is that if you scroll to the button of the
Net section, you can determine the total page load time which will show up on the bottom right
side. This is very useful when trying to improve the page responsiveness of your site. Perhaps you

11

have many diferent includes that are each causing a separate HTTP request and should consider
creating one amalgamation fle instead? Have you minifed your JavaScript? Is my image too big?
These are advanced topics but exemplify how you may use the Net tab to improve response time.

Figure 3-5. Clicking on the Net tab and then reloading a web page. Notice the yellow
stat box? That shows up from simply hovering over one of the timeline bars. This

allows you to see how long certain parts of the page are taking to load.

Below is a screen-shot showing how to use the inspector to fnd the exact DOM for a particular
item on a web page. Note that the inspector icon (just to the right of the bug) may look diferently
on your system.

Figure 3-6. Firebug Inspector. 1) We click the inspector icon 2) We click on a page
item (“Joe Hewitt”) 3) Firebug shows the exact HTML element within the markup!

Note that you can also right-click (or context-click on a Mac) the highlighted HTML element and a
context menu will appear in which you can select useful things like Copy XPath. This gives you the
valid XPath string you can paste later, which may look something like:

12

//html/body/div/h4/a

This will be useful later when we use another tool Selenium IDE. As mentioned, this indispensable
tool has much more to ofer like breakpoints and step execution. Some of this will be discussed in
later chapters as appropriate.

Note that the following chapters (to save space) will not show as much installation detail, and will
assume that you can fgure out how to download and install the libraries yourself.

Selenium IDE
Contents:
Selenium..12

 3.1 Introduction...12
 3.2 Installation.. 12
 3.3 Usage.. 12

 3.1 Introduction

Selenium is a comprehensive suite of software for testing applications from within the context of
the browser. It is really a blasphemy to call it a debugging tool as it's so much more! However, it
seems to ft nicely here (apologies to those ofended!), and we're only going to get into simple
usage of the IDE portion of this suite of tools.

Selenium itself, consists of Selenium Core, Selenium IDE, Selenium RC, and Selenium Grid. This
book will focus on Selenium IDE which is a Firefox Add-on. The IDE allows you to “record in” your
browser interface interactions (eg Open the http://localhost:3000/events page, click the Create
New Record button, etc.). You can then “playback” these interactions and you will see the browser
responding to these prerecorded interactions (much the way the old player pianos would play a
song and the piano keys would move as if an invisible person was playing it).

You can also manually type in such commands (as opposed to recording them). The best way to
understand the IDE is to begin playing with it.

 3.2 Installation

You can essentially search the Firefox Add-on site for Selenium IDE and install exactly as you did
with Firebug. If you've installed it successfully, it should show up in the Tools menu of Firefox.

 3.3 Usage

When you frst open up Selenium IDE, the record key (the red key on the upper right hand side)
will be engaged. This means that you are already in record mode. You can of course toggle this of
if you wish, but for the purposes of our discussion, we'll leave it engaged. Simply interact with you
web browser (eg open one of your pages, try to carry out a user story, etc.) and then click the
record button to turn recording of.

13

http://localhost:3000/events

Figure 4-1. Selenium IDE opens up in record mode so you can start recording your
browser interactions

TODO:

1. Put in a section which shows creating a test suite for a simple application and put source
in /code in repository.

2. Mention something about the problem of having to open the browser, manually running
test, alternatives including Selenium RC, possibly Cucumber and Webrat, etc.

14

Example of a Debugging Session

– Put in an example of using Firebug and Selenium to debug a script –

Part II – Testing Tools

 Testing Methodologies

This section (and the rest of this book) will assume that the reader has been exposed to some type
of unit testing framework, be it an xUnit variant like Junit, or a BDD variant like RSpec.

xUnit Frameworks

The frst testing framework we'll discuss is the YUI Test framework – this is an xUnit testing
framework. With xUnit testing frameworks there are test methods, test cases, and test suites.
There's also a test runner for executing the tests.

• Test methods allow you to test one isolated piece of functionality in your software.
• Assertions are usually one executable line of code that asserts that some condition has

some characteristic (e.g. something is true, something is of a particular object type, etc.)
Test methods generally have one or more assertions.

• Test cases are one or more test methods cohesively grouped to test one object or module.
• Test suites are just a way of grouping test cases so that they will all run together (just as a

musical suite would be a group of songs that are to be performed together).

Usually, you will have one object under test that will map to one particular test suite, with
methods of that object being tested individually by test cases. [ZNTDD2008]

In order to run, either an individual test case or a suite of such test cases, a test runner acts
essentially as a driver bootstrapping the suite of tests.

BDD Frameworks

BDD tends to emphasize the inclusion of stakeholders by using an outside-in process which
focuses on the goals of the stakeholder, and then works its way in to the system that supports
these goals. It starts by describing what a unit of software should do and then makes some
assertions about that functionality with the idiom of starting with 'it should' (do such and such).

According to Dan North, the pioneer of this methodology, 'if the methods do not comprehensively
describe the behaviour of your system, then they are lulling you into a false sense of security.'
Essentially, his solution is to do away with the testMethod convention, and instead describe the
desired behavior of the thing being tested. [NDBDDINTRO]

BDD may have some advantages over traditional xUnit in that it's more closely tied to the specifc
features required by the stakeholders, thus insuring that you only write software you need, but
there's nothing preventing achieving similar results from xUnit testing. It really is a matter of

15

preference and taste.

For a more complete discussion of both xUnit and BDD please see:

http://en.wikipedia.org/wiki/XUnit
http://en.wikipedia.org/wiki/Behavior_driven_development

The jspec framework is a BDD testing framework – a whole chapter is devoted to this framework
later in the book. There, we will get deeper into what's involved with using BDD.

YUI Test
Contents:
YUI Test.. 16

 4.1 Introduction...16
 4.2 Installation.. 16
 4.3 Usage.. 16
 4.4 Setup, Teardown... 20
 4.5 Additional Features...21
 4.6 YUI 3.. 21

 4.1 Introduction

According to Yahoo's yuitest page located at the time of this writing at:
http://developer.yahoo.com/yui/yuitest
“YUI Test is a testing framework for browser-based JavaScript solutions. Using YUI Test, you can
easily add unit testing to your JavaScript solutions. While not a direct port from any specifc xUnit
framework, YUI Test does derive some characteristics from nUnit and Junit.”

It allows for the creation of test cases, test suites, asynchronous testing and more.

 4.2 Installation

For our purposes, we'll go ahead and download the includes straight from Yahoo's servers from
within our script so we don't have to actually install anything! However, you may wish to download
and host the yuitest includes on your server (which I will leave to the reader to do for themselves if
so).

If you'd like to optimize your includes, you can use the YUI Dependency Confgurator which will
allow you to choose the specifc YUI components you want to use on your web page. You can also
choose to combine all JS fles into a single fles which will reduce the number of HTTP requests
improving your browser page load time dramatically. However, we will not use this tool to
confgure our setup as it is out of the scope of this document.

Please note that the bulk of this chapter uses YUI Test from YUI 2. The latest version is YUI 3 and
there is a move in this direction. Therefore, you can fnd a bare minimum working example in the
github repository for this book. See the last section of this chapter for more details.

 4.3 Usage

Getting yuitest to work is fairly straight forward. You basically need to require all of the boiler plate

16

http://www.junit.org/
http://www.nunit.org/
http://developer.yahoo.com/yui/yuitest
http://en.wikipedia.org/wiki/Behavior_driven_development
http://en.wikipedia.org/wiki/XUnit

CSS, dependencies, and yuitest source code. Once you've done that, you will create one or more
test cases, each of which will in turn contain individual test methods, and then add those test
cases to a test suite. Lastly, you will instantiate a test runner object and call run on that object
(essentially bootstrapping the running of the test suite). If you're impatient, you should be able to
just “load and go” the source code in the repository under /code prefxed with yui_test

In general, it is advised that for each object you want to test you have ([ZakasTDD2008]):
1. One test case for each method in the object. This test case will contain one or more test

methods to test the various aspects of the object method. For example, if you are testing
an addTwoNums method, you may one test method that tests if 1 + 2 == 3, another that
tests that -1 + 3 == 2, yet another that insures that an exception is thrown if an invalid
value is passed in (eg NotANumber), etc. So all of these test methods combined are meant
to exercise the one method in the object.

2. One test suite per object. If you have two methods in your object under test, you may have
two test cases with one or more test methods, and then add those test cases to a test suite
which will efectively test that one object.

The following code creates an HTML fle that includes another JavaScript fle (as we typically do).
Upon loading this into a browser window you should see the YUI test results widget showing your
success or failure (please use code from github as opposed to cut and pasting this code!):

yui_test.html

<html>
<head>

<!-- Add Logger -->
<link rel="stylesheet" type="text/css"
href="http://yui.yahooapis.com/2.8.0r4/build/logger/assets/logger.css">
<link rel="stylesheet" type="text/css"
href="http://yui.yahooapis.com/2.8.0r4/build/yuitest/assets/testlogger.css">

<!-- Dependencies -->
<script type="text/javascript" src="http://yui.yahooapis.com/2.8.0r4/build/yahoo-
dom-event/yahoo-dom-event.js"></script>
<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.0r4/build/logger/logger-min.js"></script>

<!-- YUI Test Source -->
<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.0r4/build/yuitest/yuitest-min.js"></script>

<!-- Our JS file with the test cases, test suite, and test runner instances -->
<script src="yui_test.js"></script>

</head>
<body>
</body>
</html>

yui_test.js

// Simple test case 1
var nameAgeTest = new YAHOO.tool.TestCase({

17

 name: "Test Name and Age",

 setUp : function () {
 this.data = { name : "Rob", age : 39 };
 },

 tearDown : function () {
 delete this.data;
 },

 testName: function () {
 YAHOO.util.Assert.areEqual("Rob", this.data.name, "Name should be 'Rob'");
 },

 testAge: function () {
 YAHOO.util.Assert.areEqual(39, this.data.age, "Age should be 39");
 }
});
// Simple test case 2
var fooNumTest = new YAHOO.tool.TestCase({

 name: "Test Foo Num",

 setUp : function () {
 this.data = { foo : "FOO", num : 123 };
 },

 tearDown : function () {
 delete this.data;
 },

 testFoo: function () {
 YAHOO.util.Assert.areEqual("FOO", this.data.foo, "foo should be 'FOO'");
 },

 testBar: function () {
 YAHOO.util.Assert.areEqual(123, this.data.num, "num should be 123");
 }
});

// Create a test suite and add the two test cases from above
yuiSuite = new YAHOO.tool.TestSuite("YUI Test Suite");
yuiSuite.add(nameAgeTest);
yuiSuite.add(fooNumTest);

YAHOO.util.Event.onDOMReady(function (){

 var logger = new YAHOO.tool.TestLogger();// Create logger
 YAHOO.tool.TestRunner.add(yuiSuite); // Add Suite to test runner
 YAHOO.tool.TestRunner.run(); // Call run on the runner to run tests
});

Upon grabbing the above source code from your github downloaded code, and putting it on your
local hard drive, you should be able to go to your browser and enter something similar to the
following URL (depending of course on the exact path to your fle):

18

Figure 3-1. Entering a fle URL in the browser to test a fle on your computer

Figure 3-1. YUI test results.

19

Figure 3-2.Same results with 'Info' unchecked.

If you get it to work you should do something creative to make it “break” so you can also see what
it looks like to get a failure.

There are many other options available which you can learn more about yourself from the yuitest
web site such as: AdvancedOptionsTestCase (which allows you to defne tests that should fail, be
ignored, or throw an error); Asynchronous Tests for testing Ajax; simulation of user interaction
(note that this is a “moving target” between YUI 2 & 3 and you will need to get this from another
package – see notes YUI 3 section); and many more features that are well beyond the scope of this
book.

 4.4 Setup, Teardown

As you may have noticed that in addition to our tests, there are two additional methods, setUp and
tearDown. Intuitively, one defnes and initializes a “data” object on this, while the other deletes it
essentially cleaning up. The “data” object is what is called a fxture – basically a common resource
that will be used for one or more tests. This allows us to avoid repetitiously creating the same
object over and over again at the beginning of each method. The setUp and tearDown methods
are hooks that will get called automatically before your tests run.

One important thing to note about the setUp and tearDown methods, is that they are called for
each of your test methods and not just once for each test case. This insures that any results from
one test case do not afect the integrity of following test methods. To prove this fact, I added a
simple console.log to the setUp method for a test case that had exactly four test methods within it:

console.log("setUp called...");
/* Outputs:
setUp called...tearDown called...
setUp called...tearDown called...
setUp called...tearDown called...

20

setUp called...tearDown called...
*/
This exemplifes that fact that for each test method within a particular test case, both setUp and
tearDown gets called as expected for an xUnit family testing framework.

 4.5 Additional Features

Now that you have a working template to add to, I suggest that you create a copy of the fle (so
you don't clobber your working test), and then experiment with the available YUI Test assertions:
http://developer.yahoo.com/yui/yuitest/#assertions

Additionally, if you'd like to have a report of the test run sent to your site, you can enter a URL
var oReporter = new
YAHOO.tool.TestReporter("http://you .com/path ",YAHOO.tool.TestFormat.JSON);
oReporter.report(results);

In the above, you have specifed a URL for the frst parameter, and the JSON format for the second
parameter.

There is other functionality such as asynchronous testing which basically allows you to simulate
“waiting” for a specifed amount of time before a callback gets invoked. This is again outside the
scope of this document.

 4.6 YUI 3

YUI 3 has changed the look and feel of the console. As of the time of this writing, YUI 3 is pretty
“bleeding edge” but perhaps worth the efort to use. According to the support page at:
http://yuilibrary.com/projects/yui3/wiki
'YUI 3.0.0 was made available 9/29/09.'
This is 3 weeks before the author's writing of this chapter and it seemed that there were a lot of
various CSS styles rules, and div id's, etc., that were required to get the result widget to ook
correct. Of particular note, it appears that the User Actions functionality of YAHOO.util.UserAction
has moved to the event-simulate module. So just be forewarned of this change if you're migrating
older tests.

In order to get this working, Yahoo's example code was tweaked a bit and is in this book's github
repository under: yui_test3.html and yui_test3.js respectively. Of course, all rights and authorship
of this code remains with Yahoo! as it's essentially the same as their example code (please don't
sue us Yahoo!). Jump on board and run the code if you wish!

QUnit
Contents:
QUnit... 21

 6.1 Introduction...22
 6.2 Installation.. 22
 6.3 Usage.. 22
 6.4 FireUnit...24

21

http://yuilibrary.com/projects/yui3/wiki
http://yoursite.com/target
http://yoursite.com/target
http://developer.yahoo.com/yui/yuitest/#assertions

 6.1 Introduction

QUnit is the test framework used by the JQuery project to test their own code-base. However, as
with YUI Test, it's just a couple of includes and you can use it with any of your own generic
JavaScript code.

The syntax is a bit diferent in that tests are analogous to test methods, and modules are (sort of)
analogous to test cases. Within a test you specify how many assertions will be ran via a call to
expect (eg expect(3) would indicate 3 assertions are in the current test). Moreover, the syntax
(namely the assertions) is much less verbose than YUI Test. If you get overwhelmed by huge lists
of assertion options you may like this. Another stylistic twist is that the assertions use inline
functions ostensibly so that the framework can use them as hooks. Modules have setup and
teardown functions which act as expected.

 6.2 Installation

To use Qunit you only need to include two fles: qunit.js and qunit.css (and use the HTML structure
it expects to output the results. As with YUI Test, you can do this by either downloading the
respective JavaScript and CSS fles mentioned above, and including them from the relative path of
your script, or alternatively point your includes to their repository location (currently github). For
our purposes, we'll just point to the repository.

 6.3 Usage

QUnit takes a “meat and potatoes” approach to assertions with three of them: ok, same, and
equals. The following is the basic API for these:
ok(bool_expression, message)
equals(actual, expected, message)
same(actual, expected, message)

Basically, ok is the same as an xUnit assertTrue, equals compares to assertEquals. The last one,
same, is interesting in that it can do a 'deep recursive comparison assertion' for arrays, and
objects, passing if actual and expected are “meaningfully equal”.

One unfortunate thing I noticed was that when I commented out a failing test but forgot to
decrement the expect call, it just silently continued to failed without indicating the discrepancy
between expect and the actual number of assertions:

test("some other test", function() {
 expect(2); // silently fails without indicating that there's only 1 assertion!
 //equals(true, false, "failing test");
 equals(true, true, "passing test");
});

If I switch the above expect to 1 it worked - one would think that the failing test would indicate the
discrepancy.

The following is an example of a complete if simple test (don't paste this code – use the repo
version instead!):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

22

 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <link rel="stylesheet"
href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css"
media="screen" />
 <script type="text/javascript"
src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script>

 <script>
 $(document).ready(function(){

 test("In the spirit of Rails scaffolding, true is true ;-) ", function() {
 expect(2)
 ok(true, "true is true alright!");
 var artist = "David Bowie";
 equals("David Bowie", artist, "We expect artist to be 'David Bowie'.");
 });

 test("Meaningfully equal objects are the 'same'", function() {
var actual = {name : "Rob", age : "I'd have to kill you!", happy : true};
same(actual,

{name : "Rob", age : "I'd have to kill you!", happy : true},
"Separate but meaningfully equal object are considered the 'same'.");

 });

 test("Meaningfully equal arrays are the 'same'", function() {
var actual = [1,2,3,4,"five"];
same(actual, [1,2,3,4,"five"], "Separate but meaningfully equal arrays are

considered the 'same'.");
 });

 module("My Module");

 test("Module Test 1", function() {
 ok(true, "This bettor pass!");
 });

 test("Module Test 2", function() {
 ok(true, "So better this!");
 });

 });
 </script>

</head>
<body>
 <h1 id="qunit-header">QUnit example</h1>
 <h2 id="qunit-banner"></h2>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
</body>
</html>

As you can see, it's pretty darn straight forward to get some QUnit testing going! You can grab the
above template from the github repository under: code/qunit_test.html (JavaScript was in-lined in
this case but you'll want to go ahead and separate it from the HTML in practice).

23

The results of running a failing test will show something like the following:
1. my test (2, 2, 4)

The frst number indicates the number of failed assertions, the second the number of passed
assertions, and the third the total number of assertions. If you're wondering where the messages
are, you have to click the particular failing test and you'll see a nice verbose message.

QUnit also has functionality for testing Ajax similar to wait and resume in YUI Test but calls them
respectively start and stop. Again, this is beyond our scope, so refer to the online docs for
information on how to implement this if you need it.

 6.4 FireUnit

FireUnit is an extension to Firebug which provides support for logging your tests into a new tab of
Firebug called, appropriately enough 'Test'. As of the time of this writing it's still in the
experimental phases. If you're like the author and love Firefox Addons and Firebug, you may want
to give this a try. To install:

• http://github.com/jeresig/freunit and click the Download button at the top (or do a git clone
if you prefer)

• Navigate to the directory you've placed this in and simply type make
• This will build the .xpi fle that Firefox uses as a plugin installer. Therefore, within Firefox do

File → Open File and load the previously created .xpi fle (freunit-1.0a3.xpi at the time of
this writing but likely to change as they keep updating the code).

• Open Firebug (this requires Firebug of course!) and look for a 'Test' tab. Note that one of the
plugin authors suggested a version of Firebug earlier than what we tested on (Firebug 1.4.3)
but it seems to work for us so just fne.

• Run the following code in your browser (example in the github repository under:
/code/freunit_test.html)

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script>
fireunit.ok(true, "Passing test result");
fireunit.ok(false, "Failing test result.");
fireunit.compare("expected data", "expected data",
 "Passing verification of expected and actual input.");
fireunit.compare("<div>expected</div>", "<div>actual</div>",
 "Failing verification of expected and actual input.");

// Wait for asynchronous operation.
setTimeout(function(){
 // Finish test
 fireunit.testDone();
}, 1000);
</script>
</head>
<body/>
</html>

Now in Firebug you should initially see something similar to the following:

24

http://github.com/jeresig/fireunit

Figure 6-1. FireUnit starts out like above.

Figure 6-2. FireUnit with more detailed information after being expanded. Note the
bottom test – the Compare tab has been clicked and very useful 'Diference' data is

supplied.

One of the authors, John Resig, blogged about FireUnit here:
http://ejohn.org/blog/freunit/

Jan Odvarko, one of the other authors blogs here:
http://www.softwareishard.com/blog/frebug/freunit-testing-in-the-frebug-world/

You can actually integrate FireUnit with QUnit if you already have a test suite in the later. However,

25

http://www.softwareishard.com/blog/firebug/fireunit-testing-in-the-firebug-world/
http://ejohn.org/blog/fireunit/

you don't get the “sexy” comparison dif described above. In any event, here's the hook you need
to put in your QUnit code:
if(typeof fireunit === "object") {
 QUnit.log = fireunit.ok;
 QUnit.done = fireunit.testDone;
}

The FireUnit extension is still very much in it's beginning stages, but proves to be an exciting
additional tool for JavaScript developers!

jspec
Contents:
jspec...26

 7.1 Introduction...26
 7.2 Installation.. 26
 7.3 Usage.. 27
 7.2 Additional Features...30

Callbacks.. 30
Options... 30
Server Formatting...31
Other Tidbits...31

 7.1 Introduction

Jspec is a BDD testing framework that has much in common with the Ruby BDD framework RSpec.
If you are a Ruby developer coming from using RSpec (or any other BDD framework), you'll feel at
home with this framework. If not, and you're in a hurry to get going, you may want to skip this
chapter and come back when you're ready to experiment with BDD.

– Does this work on Linux too or just Macs??? NEED TO TEST!!!

At the time of this writing, the http://visionmedia.github.com/jspec/ site listed several screen-casts
of the author, TJ Holowaychuk, which were quite helpful in getting an overview of the tool. In the
screen-cast about jspec's grammar, the he states that “it is not JavaScript, but JavaScript runs it”.
In fact, it looks a bit like a combination of JavaScript and Ruby.

If this bothers you, you can edit the spec.dom.html fle and force it use just JavaScript. If you want
to do this, please see the documentation as this is out of the scope of this document.

 7.2 Installation

In order to install jspec you will frst need to install the gem command line utility. If you're a Ruby
developer you already have this. If not, you can get directions for installing it here:
http://docs.rubygems.org/read/chapter/3

Once you have the gem utility installed, you can issue the following command to get the jspec
gem:

$sudo gem install visionmedia-jspec --source http://gems.github.com

26

http://gems.github.com/
http://docs.rubygems.org/read/chapter/3
http://visionmedia.github.com/jspec/

Then you can verify it's installed with:

$ jspec --version
// On the authors system outputs: JSpec 2.11.2

Alternatively, you can manually include it from your JavaScript program, but we will use the gem
for this document. You will also want to turn on the developer debugging in Safari if you plan to
use it on a Mac (it defaults to opening up the results in whatever browser your environment
defaults to using – but this can be overiden with the --browsers option discussed a few pages
later):

$ defaults write com.apple.Safari IncludeDebugMenu 1

 7.3 Usage

Jspec has a whole diferent way of developing in comparison to the other frameworks we've looked
at so far. You actually use it to generate a minimal set of project directories a bit like you would if
generating a Rails project.

$jspec init PROJECT_NAME
$cd PROJECT_NAME

If you open the created project directory you will see something
similar to the image on the right:

To start the jspec environment type:

$jspec run

On the author's MacBook, this automatically opened up the Safari
browser as seen in Figure 7.1 below:

27

Figure 7-1. jspec run will automatically open Safari to point to the spec.dom.html as
above.

This is showing a passing test because we just left the boiler plate default test. Let's do one
iteration of a BDD cycle (from jspec's author's screen-casts):

1. First we generate a test in the spec_core.js fle (note that you can create other spec fles,
but we'll go ahead and use the default by deleting the boiler plate code and adding our own
as follows):

2. Reload the Safari browser and see the failing test (we haven't implemented anything yet!):

28

3. Implement the minimal code to make this pass:

4. Reload the browser once more and see it pass:

29

This is essentially the same introduction that the jspec author gives in the screen-casts which you
might previously mentioned.

These steps show the basic fow of BDD development. To quote the ofcial RSpec web site (an
infamous Ruby BDD framework) the following steps outline an iteration of BDD:

1. Start with a very simple example that expresses some basic desired behavior.

2. Run the example and watch it fail.

3. Now write just enough code to make it pass.

4. Run the example and bask in the joy that is green.

[RSPECBDD]

The idea, is that you continue to do the above steps as you add on features, fx bugs, etc.

 7.2 Additional Features

The following are some of the additional features available in jspec. For more details see the
ofcial site and/or the very detailed README fle.

Callbacks

Just as the xUnit derivatives used setup and teardown, jspec has before and after hooks. There
are also similar callbacks such as before_each and after_each which give you fner grained control
as you'd expect. See documentation for more details on the hooks available (or better yet, the
jspec.js source code itself which is pretty concise and easy to browse).

Options

It also allows you to add the '--browsers' switch to test in multiple browser:

30

$jspec run --browsers f,safari

This will open up the respective browsers on your system if they're installed. You can also run the
'--server' switch to see the passes and failures in your console (if you don't have a particular
browser installed it will tell you it couldn't fnd it):

$ jspec run --browsers ff,chrome,safari --server
Started JSpec server at http://0.0.0.0:4444
Unable to find application named 'Chromium'

 Firefox Passes: 0 Failures: 0
 Safari Passes: 0 Failures: 0

If you leave out the browsers switch it will attempt to open all and again inform you for each one
that you don't have:
$ jspec run --server
Started JSpec server at http://0.0.0.0:4444
Unable to find application named 'Chromium'
Unable to find application named 'Opera'

 Firefox Passes: 0 Failures: 0
 Safari Passes: 0 Failures: 0

Note that you'll need to do a Ctrl-C to end the process.

Server Formatting

You can fne tune the server settings in the spec.server.html and server.rb fles. So for example, if
you'd like less verbosity in your test runs you can edit the following line in spec.server.html:

.run({ formatter: JSpec.formatters.Server, verbose: true, failuresOnly: true })
to:
.run({ formatter: JSpec.formatters.Server })

and your output will be more concise. Additionally, if you have rhino installed on your system you
can use the --rhino switch to run your tests through rhino.

Other Tidbits

• You can also test for a throw from within a test case as in:
function(){ throw 'some_error' }.should.throw_error 'some_error'

• Fixtures: If you need a DOM document to test on, you can create a fxture and then load it
in your before or before_each hook.

• The above fxtures can be in HTML, json, XML, etc. See documentation for details.
• Not shown on the screen-shots is the rightmost side of our browser window when running

the jspec tests. On our system, it shows vertical lines or “pipes”, each representing an
assertion within that test case; so if you made two assertions it would show something like
'||', three '|||', etc., on the right side of the jspec results page.

31

Summary
In this section we've taken a look at 4 testing frameworks. YUI Test, QUnit, and FireUnit are of the
xUnit derivative, whereas jspec is a BDD framework much in the spirit of RSpec. There are many
more JavaScript testing frameworks available. Some of the frameworks which we would have loved
to included had this document been a “JavaScript testing tome”:

• JSUnit (been around for a long time and used by many projects)
• JSSpec (used by the MooTools framework)
• unittest.js (script.aculo.us and Prototype)
• JsUnitTest (based of Prototype's unittest.js)
• D.O.H. (Dojo Objective Harness)
• screw.unit (another BDD style framework)
• Jasmine (a Pivotol Lab's BDD framework)

As far as determining which one of these frameworks is right for your projects, the frst thing to
fgure out is if you're going to go with xUnit or BDD style testing. If you're coming from a Java shop
that's been using JUnit in Eclipse for ages, and have no intentions on ramping up on 'this BDD
thing', than of course you've already made your decision. However, if you're a Ruby developer, it's
pretty hard to escape the fact that all the “cool kids” have embraced BDD - you may want to keep
things somewhat familiar by using BDD in your JavaScript testing framework. If you're of the “non-
religious” derivative of programmers out there, play with both and see which feels more
comfortable to you. Whichever you use you'll be better of than you were just cutting code and
releasing!

Unit Tests vs. Regression Tests

One thing that you should be cognizant of, is the diference in what you gain from unit tests versus
integration tests (also called acceptance tests or regression tests) - we are purposely blurring the
lines between acceptance, regression, and integration testing as they are quite similar by nature
but in fact diferent. For our purposes we'll use the terms interchangibly.

Deferring to Wikipedia:
Unit testing: 'a software verifcation and validation method in which a programmer tests if
individual units of source code are ft for use. A unit is the smallest testable part of an
application...'

Regression testing: 'any type of software testing that seeks to uncover software
regressions...Typically, regressions occur as an unintended consequence of program changes.
Common methods of regression testing include rerunning previously run tests and checking
whether previously fxed faults have re-emerged.'

It's important to note that, although some regression-beneft may be derived from old unit tests,
this is usually not the case. For example, you have a public API that must never change, but for
what ever reason, you decide to “re-gut” the entire internal implementation. However, you
maintain that you must not change your public API. Since you are completely changing your
internal system, your unit tests may not help you test the public API at all – they probably just
tested you're implementation. HIf you have a regression suite, you can beneft by 'rerunning
previously run tests' to insure that your new system maintains it's public interface.

In fact, Merb is a notable piece of software (now merged into Ruby on Rails) for which this was
exactly the case. [KYCTDS2008] Yehuda Katz, the lead developer and presenter of the presentation

32

in the following link gives a very pragmatic view on the benefts of unit and integration testing:
http://rubyconf2008.confreaks.com/writing-code-that-doesnt-suck.html

If this diversion has scared you, be comforted by the fact that this book will primarily use “vanilla
unit tests”. Note that we will be primarily using jspec for the upcoming chapters.

Part III – Test Driving JavaScript
It turns out that unit testing is a great way to quickly grok a programming language. If an
interpreter is available for language as well you may want to combine these tools by:

• using the interpreter for immediate feedback when “staying in the groove” is of the utmost
importance (I.e. while you're working on a real project).

• using unit tests to explore the edges of a particular language so that you have an
“automated recording” of your fndings.

For JavaScript, we've already discussed a very nice interpreter – the Firebug console!

Before we get started

Note that the examples will use jspec for this section by the author's choice. If you have chosen
another framework like QUnit or YUI Test, feel free to convert the examples to use that framework
instead. Rest assured that, the following tests will be simple pedantic examples so transposition
should be trivial.

Much of the object creation and inheritance sections can be used as supplemental study to the
topics provided in Chapter 6 of Professional JavaScript for Web Developers, 2nd Edition by Nicholas
C. Zakas, and Chapter 3 & 5 of JavaScript: The Good Parts by Douglas Crockford. Both of these
chapters go into some interesting but quirky details of JavaScript's object creation and inheritance
models. But frst we'll start with some very basic JavaScript...

5 Minute Drill

Let's dive into a couple of JavaScript basics to get our bearings. If you're a guru you could skip this
section but you may want to skim just to see the general concept of grokking a language via unit
tests.

Getting things set up is always a challenge so here's the frst steps to getting tests going using
jspec (again, if you'd like to use one of the other frameworks that's fne too):

1. jspec init
2. Then open the created project in your IDE or editor of choice
3. jspec needs to be able to fnd your 'system under test'. We changed that to be

/lib/test_js_itself.js (instead of /lib/yourlib.core.js which we deleted)
4. Run 'jspec run --browser f' – from the console for each test run

spec.core.js

describe 'TestJsItself'
 before_each

jsTest = new JSTest
 end
 describe '.switchTest()'

33

http://rubyconf2008.confreaks.com/writing-code-that-doesnt-suck.html

it 'should return corresponding case primitive int as a string'
 jsTest.switchTest(1).should.eql "one"
end

 end
end

test_js_itself.js

JSTest = function() {}
JSTest.prototype = {
 constructor: JSTest,
 switchTest : function(c) {
 switch(c) {

 case 0:
return "zero";
break;

 case 1:
return "one";
break;

 }
 }
}

Running the above with jspec passes. If it's not obvious from context, we are testing the basic
functionality of the switch statement in JavaScript. In the above, the system under test (idiomatic
for the object you're testing) is the test_js_itself.js program, and the describe '.switchTest()' line is
a test case that tests the switchTest() method. The 'it should' is an assertion. The .eql is a BDD
“matcher”.

In the QUnit framework, a transposition of the above test case might look something like:

 test("Returns corresponding case primitive int as a string", function() {
jsTest = new JSTest(); // likely moved to setup
actual = jsTest.switchTest(1); // calls the 'sut' system under test
same(actual, "one", "Returns corresponding...as a string"); // assertion

 });

Note that we did not test the above code so consider it pseudocode! Other xUnit family
frameworks might use something like assertSame or assertEquals.

By writing both the test case for switchTest and the method implementation of switchTest itself,
we've jumped ahead of the TDD process – normally we would: 1) write the test 2)watch it fail 3)
implement the code 4) rerun the test and watch it pass.

So we've confrmed that we understand the basics of how a switch statement works in JavaScript.
But how about the venerable fall-through. We hypothesize that omitting a break means that it will
fall-through to the next case. Moreover, we've heard that JavaScript allows us to combine
primitives and reference types in the case statements. We add the following in bold to our test:

describe '.switchTest()'
 it 'should return corresponding case primitive int as a string'

jsTest.switchTest(1).should.eql "one"
 end
 it 'should fall through to next case when omitting a break'

jsTest.switchTest("no break case") "next case"

34

 end
end

Running this I get an error:

TypeError: actual is undefned

Although it's a bit hard to tell from that message, we know that we haven't even defned the
corresponding case in our switch statement, so jspec is choking. We add the bold section to our
switch:

 switch(c) {
case 0:
 return "zero";
 break;
case 1:
 return "one";
 break;
case "no break case":
 // do nothing...testing fall through
case "next case":
 return "next case";
 break;

 }
}

It passes. We've proved that fall through works as expected (and that we can mix and mash
Number types with String types, etc.) 'Big deal' you say. Hold on, things will get more interesting
soon!

Are we confdent enough in creating simple vars? For example:
var x =1; var y = 2; result = x + y; // result == 3 Of course we are. No need to test that!

Let's have a look at creating Arrays. We'll check for creation and that indexing is zero based. So we
add a test:

describe '.arrayTest()'
 it 'should create an array and index by zero based subscripts'

arr = jsTest.arrayTest()
(arr.class == 'Array').should.eql "true"

 end
end

When we run jspec we get the following error:
TypeError: jsTest.arrayTest is not a function

Great! We've created a test, watched it fail (because there's no implementation yet) – we're doing
TDD development! So we add the following remembering to place a comma after our switchCase
method:

arrayTest : function() {
 return [1,2,3,4,5];
}

it fails: expected false to eql 'true'

35

Ah right, we accidentally tried using .class because we were thinking in Ruby not JavaScript –
ouch! So we remember that there's a typeof operator in JavaScript for this sort of thing. Before
going back to the test, we open up Firebug because we're a bit unsure of ourselves and need some
instantaneous feedback:

typeof [1,2,3] == "array"; // false, huh???
arr = [1,2,3];
typeof arr == "array"; // false, what the heck?
arr = new Array(1,2,3);
typeof arr == "array"; // false
typeof [1,2,3] == "object"; // true, oh yeah Crockford said something about this!

Upon doing this of course we realize that JavaScript returns “object” for Arrays and recollect
Douglas Crockford mentioned something about this. Sure enough we Google: 'typeof javascript
array' and his page comes up frst:
http://javascript.crockford.com/remedial.html

Ok, so we'd already heard about this problem but still forgot – oh the shame! How can we make
sure we don't forget next time? Well, now that we know the rule lets change our test. In fact, let's
break this up into two cohesive tests – one to confrm that typeof array returns “object” and
another for our original claim that array's in JavaScript use zero based indexing:
...
 describe '.arrayTest()'

it 'should return object for typeof array because JS is weird in that way'
 typeof arr == 'object' // uh oh! No matcher should.eql
end
it 'should use zero based indexing'
 arr[1].should.eql 2
end

 end
...

Interestingly, jspec now shows that we have three of the tests passing out of four - jspec shows
that something's went wrong with the third test. Right, we forgot to use a matcher (eg should.eql).
It doesn't explode but the test doesn't end up doing anything. So we change the bold line from
above to read:

 (typeof arr == 'object').should.eql true

We run jspec and we get: 'Passes: 4' – cool!

36

http://javascript.crockford.com/remedial.html

Figure 8-1. We've used TDD development to test JavaScript's switch statement and Array
data structure. After some initial misconceptions, we've managed to fnally make all the
tests pass!

We've only tested a couple of areas of JavaScript but we've already cataloged an interesting
JavaScript oddity – the way typeof returns 'object' on Arrays (it does this with nulls too!). Next we
could exercise some of the Array methods like sort, push, etc., just to confrm our understanding.
This would take just minutes but our tests would live on for later reference. Here's a helpful page
for doing just that:
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array

What just happened?

The above exemplifes the process of using test driven development to confrm a language's rules
and syntax. The mistakes and fumbles along the way were left in because they realistically show
the mindset used to deal with road blocks.

Two other popular ways of experimenting with a language are: using an interpreter for instant
feedback (useful in it's own right), and writing small test programs. Small test programs are not
very efective to aid in recalling concepts later – you end up with either a rats nest of small
programs which become hard to later fnd, or one jumbled fle virtually impossible to navigate.

As unit tests are, by design, meant to be self documenting, they will provide a means for future
reference that won't “hurt your eyes”. If you want to be able to grep the fles later, there's nothing
stopping you from adding easy-to-grep comments like /* ARRAY_TESTS */ allowing you to do:
grep -A 10 'ARRAY_TESTS' my_tests.js
to get the 10 lines after the matching ARRAY_TESTS section.

Next we look at some interesting areas of JavaScript that the author encountered reading both the
Zakas and Crockford books – namely Object Creation and Inheritance.

37

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array

Objects
Contents:
Objects...38

Object Creation...38
Accessing Object Properties...40
Object Assigned by Reference... 40
Prototypes...41

Prototype Shadowing..42
Reinventing Thyself..42
Prototype Issue..43

This chapter will deal with JavaScript objects and will use unit tests confrm our understanding of
how they work. The author will examine interesting topics from Chapter 3 & 5 of JavaScript: The
Good Parts – Douglas Crockford, and Chapter 6 of Professional JavaScript for Web Developers, 2nd

edition – Nicholas Zakas.

Object Creation

So let's get right into creating objects with object literals. Our test:

describe 'JSObjects'
 before_each

jso = new JSObjects();
 end
 describe '.objLiteralCreate()'

it 'should create an object literal'
 (typeof jso.objLiteralCreate() == 'object').should.eql true
end

 end
end

We run our test in jspec and of course get the fail as there's no implementation:

38

Figure 8-2. Step two in TDD is to run your unimplemented test which will inevitably fail!

So we implement the following in our system under test:

function JSObjects(){};
JSObjects.prototype = {
 constructor : JSObjects,
 objLiteralCreate : function() {

return {
 name : 'Rob',
 age : 39
}

 }
}

And we pass:

39

Figure 8-3. Steps 3 & 4 our respectively: implement the feature, watch it pass

There's a bit of extra stuf going on in that implementation but it essentially does the following:

function JSObjects(){};

Creates a constructor for our system under test JSObjects.

JSObjects.prototype = …

JavaScript is a prototypal language meaning that it provides a “prototype linkage” allowing one
object to inherit properties and methods from another. [CDJGS20] Sufce it to say that this is
preferable to adding methods directly into a constructor which would cause method objects to be
created for each instance.

Our return statement creates and returns an object literal which is essentially a grouping of
name : value pairs within brackets {} where the names can represent either properties or
methods. This notation is very convenient and visually helpful. However, we could have also done
this using the new Object() constructor and dot notation like so:

o = new Object();
o.name = 'Rob';
o.age = 39;
return o;

In fact, we tested this by commenting out the object literal return statement and adding the
above.

Accessing Object Properties

JavaScript can use either dot or subscript notation to access properties:

 describe 'Accessing Object Properties'
it 'should be able to use either dot or subscript notation for access'
 o = {name:'Rob', age:39}
 o.name.should.eql 'Rob'
 o['name'].should.eql 'Rob'
end

 end

Note that we did something a bit diferent here – instead of calling a method on our system under
test, we just tested the feature from right within our test case. Since we're simply testing language
features this is perfectly acceptable.

Object Assigned by Reference

 Objects are assigned by reference and not copied [CDJGP22]:

 describe 'Object Assignment'
it 'should reference original object and reflect any changes made to

original'
 o = jso.objLiteralCreate();
 var copy = o;
 copy.name.should.eql 'Rob'

40

 o.name = 'Charlie'
 copy.name.should.eql 'Charlie'
end

 end

So once we change the original we see the changes in the variable that was assigned to ('copy' is
probably a bad variable name here because we've just proved it's not a copy but a reference! 'ref'
would be a much better variable name). In any event, we get a pass.

Note that while objects are passed by reference, number and boolean are passed by value, and as
strings are immutable this essentially does not afect you. [FDDGJS48]

Prototypes

Prototypes are useful in that you can add properties to an object, and those properties will be
shared by all instances of that object. Alternatively, you can defne properties in an object's
constructor, but doing so means that you have to create these properties for each instance
created. That's fne for instance variables but for methods (which are essentially JavaScript
functions) remember that functions are objects. So if I have 1 method defned in my constructor,
and then instantiate that constructor 5 times, I will have created 5 method objects (one for each
instance). This can get quite memory intensive if you need a non-trivial collection of such objects.
Therefore, the idiom is to defne such methods in a prototype which will be shared by all instances.

<--- PROTOTYPE DIAGRAM NEEDED HERE --->

Prototypes are also a means for achieving inheritance in JavaScript, and we will discuss that aspect
of prototypes more in the chapter on Inheritance. For now, let's take a look at how prototype
properties work with objects and their instances. We hypothesize that prototype properties are
shared by instances:

describe 'ObjectCreation'
 before_each

function MyObj(){};
MyObj.prototype.foo = 'foo property';
MyObj.prototype.bar = function() { return "me is bar method"; }
obj1 = new MyObj();
obj2 = new MyObj();

 end

 describe 'Prototypes and Object Creation'
it 'should add prototype property which should be available to all

instances'
 obj1.foo.should.eql 'foo property'
 obj2.foo.should.eql 'foo property'
 obj1.bar().should.eql 'me is bar method'
 obj2.bar().should.eql 'me is bar method'
end

 end
end

Above, we created an object constructor on the frst line of the before_each hook, added two
prototypal properties, one an instance variable of MyObj and the other a method of MyObj. Lastly,
we create two instances. In our test case, we assert that for each instance both properties are
available. This test passes. This begs the question “What if we manually overwrite a prototype
property? Does it afect all instances?” Let's see...

41

Prototype Shadowing

If we create a case like:

 obj1.foo = "new version of foo"
 obj2.foo.should.eql "new version of foo"

It fails because obj2 still has the old prototype value (“foo property”). Therefore, this does work:

it 'should update a prototype property but only affect that same instance'
 obj1.foo = "new version of foo"
 obj1.foo.should.eql "new version of foo"
 obj2.foo.should.eql "foo property"
end

“Ok, well are we really updating the property or just shadowing it?”. Let's test this by updating a
property, deleting the updated property, then checking again to see if original prototype value
shows itself again [ZNPJWD158]:

 describe 'Updated Prototype Props are really shadowed'
it 'should return to showing original prototype value after deleting shadow'
 obj1.foo = "new version of foo"
 obj1.foo.should.eql "new version of foo"
 delete obj1.foo;
 obj1.foo.should.eql "foo property"
end

 end

That's interesting! When we delete the updated property, the prototype version of the property
shows up again! Let's check if prototype methods exhibit the same shadow behavior:

 obj1.bar = function() { return "me is NEW bar method!"; }
 obj1.bar().should.eql 'me is NEW bar method!'
 delete obj1.bar;
 obj1.bar().should.eql 'me is bar method'

It's as if we put a layer in front of the original prototype method when we assigned the “me is NEW
bar...” version. It's very important to note that the original did not go away as shown above!
Hence, we say it's shadowed.

Reinventing Thyself

You can completely overwrite the default prototype and use a prototype literal. In fact, since you
can add all of the additional properties at once, it makes visual sense to do so:

js_obj_creation.js

function FancyProto(){}
FancyProto.prototype = {
 constructor : FancyProto, // instance.contructor will == Thing and not Object!
 x : 100,
 y : 200,
 foo : function() { return "I am foo"; }
};

42

function SloppyProto(){}
SloppyProto.prototype = {
 //constructor : SloppyProto // instance.contructor will now be Object
 name : 'Sloppy Joe'
};

Above, we've commented out the constructor feld in SloppyProto so calls to
sloppyInstance.constructor will equal Object. In our test we can see this is in fact the case:

it 'should have constructor field if needs it to be available to instances'
 t = new FancyProto();
 t.foo().should.eql 'I am foo'
 (t instanceof FancyProto).should.eql true
 (t.constructor == FancyProto).should.eql true
 s = new SloppyProto();
 (s.constructor == SloppyProto).should.eql false
 (s.constructor == Object).should.eql true
end

Note that when we overwrite the prototype we must be sure to do so before creating instances. If
not, the instances will just point to default prototype and we'll get an error as soon as we try to
access the properties of the new prototype [ZNPJWD163]:

it 'should be that instances created before overwriting prototype point to
old default prototype so new prototype properties WILL NOT be available'

 function Thing(){}
 var beforeProto = new Thing();
 Thing.prototype = {

foo : 'foo'
 };
 ('foo' in beforeProto).should.eql false
 var afterProto = new Thing();
 ('foo' in afterProto).should.eql true
end

Above, we create instances before and after overwriting the prototype. We can see in the
highlighted lines that the beforeProto instance does not have access to the foo method but the
afterProto instance does as this test passes. Note that if we had actually called the foo method on
beforeProto we would recieve an error.

Prototype Issue

Putting stuf in prototypes is great because it saves memory. Agreed. But this shared state is not
so great for reference properties. The reason this is not a great thing is that the state of these
reference properties gets shared between all instances. Java and many other languages call this
behavior static.

There's an odd caveat that's frankly hard to memorize – primitive types seem to work just fne –
it's reference types like Arrays and Objects that exhibit static behavior! The author uses an
imperative heuristic: “Never put non-methods in prototypes!” Let's examine this through code.
Given the following object:

function Issues(){}
Issues.prototype = {

43

 x : 1,
 arr : ['uno','dos','tres'],
 hsh : {phone : 'iPhone', carrier : 'ATT' }
}

We then test the prototype-static-issue on the primitive, Array, and Hash defned:

 describe 'Prototype Issue - Static-Like Behavior ONLY for Reference Types'
it 'should share state on prototype non-method properties'
 var instance1 = new Issues()
 var instance2 = new Issues()

 // Reference types are essentially static
 instance1.arr.push('cuatro')
 (instance1.arr === instance2.arr).should.eql true

 instance1.hsh['phone'] = 'Blackberry'
 (instance1.hsh === instance2.hsh).should.eql true
 i2Phone = instance2.hsh['phone'].should.eql 'Blackberry'

 // OMG, primitives hide their state just fine!
 instance1.x = 9
 instance1.x.should.eql 9
 instance2.x.should.eql 1
end

 end

The salient point to remember here is: prototype primitives do hide state and act like “non-statics”
whereas reference types act like statics and therefore do not hide their state.

The convention is to put methods in the prototype and put the object's properties in the
constructor thus combining the constructor and prototype patterns. According to Nicholas Zakas
[ZNPJWD166]:

'The hybrid constructor/prototype pattern is the most widely used and accepted practice for
defning reference types in ECMAScript.'

By doing this, you will retain the integrity of your object properties between instances, while
saving memory creating method objects just once to be shared by all instances.

If you are more comfortable with having all of your object creation code in the constructor, you can
place the prototype defnition directly in the constructor with a conditional to insure that it only
gets created one time:

if (typeof this.someProtoMethod != “function”) {
 // Defne your prototype methods here
}

In summary, we have taken a look at object creation details such as:
• object creations through the literal and new Object() idioms
• object references (namely that they are passed by reference not copied)
• many aspects of prototypes relating to object creation

There's a somewhat hazy distinction between object creation and inheritance – you can't inherit
anything unless you've creating something to inherit from in the frst place. Because of that
coupling, we have purposely deferred the discussion of concepts like durable object to the next

44

chapter.

Inheritance
Contents:
Inheritance... 45

Pseudoclassical...45
Prototype Shared State Issue.. 47
Constructor Stealing & Combination Inheritance.. 47
Prototypal Inheritance.. 48
Inheriting Prototypes Not Constructors..49
Functional Inheritance ...50
Summary of Inheritance Patterns... 52

Let's start by discussing what Douglas Crockford calls the Pseudoclassical style of inheritance.

Pseudoclassical

The main characteristics of the pseudoclassical style of inheritance are that we combine
constructor and prototype defnitions on our parent object (this is more or less the same as what
Zakas calls a hybrid constructor/prototype pattern as discussed in the last chapter. His version just
explicitly specifes that instance variables go in the constructor and methods in the prototype.
Crockford's 'mammal' example on page 47 of JavaScript: The Good Parts basically follow this
pattern as well [CDJGP47]). Then we create a child object and manually connect it to the parent by
overwriting it's prototype and pointing that to the parent object. Let's have a look.

First we make sure we can create the parent object and instantiate it successfully. First the failing
test gets written and ran (in /code/spec/spec.js_inheritance.js):

 describe 'Pseudoclassical Inheritance Creation'
it 'should create parent and child objects using pseudoclassical style'
 // First part: create a parent object and successfully instantiate it
 var onyx = new Animal("Onyx")
 onyx.whoAmI().should.match /I am Onyx.*/

 // More to come...
end

 end

ReferenceError: Animal is not defned

Then we implement the code to make it pass:

function Animal(name){
 this.name = name;
}
Animal.prototype = {
 whoAmI: function() { return "I am " + this.name + "!\n"; }
};

Notice that we have used jspec's 'match' regex matcher which gives us regular expression

45

matching capabilities. There's no reason to try to remember that we had a '!\n' so regex works
nicely here. Next is to create the child object and connect its prototype to the parent object
(Animal).

function Dog(name, breed) {
 this.name = name;
 this.breed = breed;
}
Dog.prototype = new Animal();
Dog.prototype.getBreed = function() {
 return this.breed;
}
Dog.prototype.bark = function() {
 return 'ruff ruff';
}

We start out be creating a Dog constructor that takes an additional property 'breed'. Then we
augment the Dog with the getBreed and bark methods (jumping ahead of ourselves again!). In any
event, the initial test passes. Then we decide to test the heck out of the instance and constructor
relationships:

it 'should create parent and child object using pseudoclassical inheritance'
 animal.constructor.should.eql Animal
 // dog.constructor.should.eql Dog // Nope: expected Animal to eql Dog
 dog.constructor.should.eql Animal
 animal.should.be_a Animal
 dog.should.be_a Animal
 // dog.should.be_a Dog // Nope!

 // We severed the original prototype pointer and now point to Animal!
 dog.should.be_an_instance_of Animal
 dog.should.be_an_instance_of Dog
 (animal instanceof Dog).should.be_false
end

This is a rather verbose test! It doesn't matter since we're merely testing our understanding of the
language, but in a real application we'd probably do away with half the assertions that essentially
add code duplication.

The bold lines show that prototypal inheritance has a quirk in that the derivative object's
constructor points to the parent (so Dog's constructor points to Animal). The constructor
essentially becomes useless to us at runtime in the pseudoclassical pattern.

Both the whoAmI() method and the name instance variable are defned in the parent class but
become available to the child as expected:

it 'should behave so child inherits methods & instance vars from parent'
 animal.whoAmI().should.match /I am Onyx.*/
 dog.whoAmI().should.match /Sebastian.*/
 animal.should.respond_to 'whoAmI'
 dog.should.respond_to 'whoAmI'
 dog.should.have_prop 'name'
end

46

Prototype Shared State Issue

The issue of shared state was already brought up in the last chapter on object creation – when we
created reference types in the prototype, instances shared the state. Well this time we put a
reference type in the constructor, but because the child's prototype now points to the parent's
constructor, we end up with the same type of issue – the following shows this:

First we add the following to our Animal constructor:

 this.arr = [1,2,3];

Again, recall that at a certain point we essentially do: Child.prototype = new Parent() so the child's
prototype will inherit the above 'arr' from Parent. Now all instances of the child will share the state!
Here's an example of the potential mess we've created:

it 'should behave so reference variables on the parent are "staticy" to all child instances'
 dog.arr.should.eql([1,2,3])
 dog.arr.push(4)
 dog.arr.should.eql([1,2,3,4])
 spike = new Dog("Spike", "Pitbull")
 spike.arr.should.eql([1,2,3,4])
 spike.arr.push(5)
 rover = new Dog("Rover", "German Sheppard")
 spike.arr.should.eql([1,2,3,4,5])
 rover.arr.should.eql([1,2,3,4,5])
 dog.arr.should.eql([1,2,3,4,5])
end

We have our original 'dog' instance, and add 'spike' and 'rover' to the mix. Being the spunky
canines that they are, each one pushes another element in to the 'arr'. But we see in the last three
bolded lines they can all see the changes made. What if these types of changes were made by
diferent developers in a big program? It would be very likely that side efects would get
introduced!

Constructor Stealing & Combination Inheritance

Constructor stealing allows a child object to call its parent's constructor. A single line of code is
added that calls the parent-constructor with the appropriate properties. So if we had Parent and
Child signatures as follows:

function Parent(name)
function Child(name, age)

The Child constructor would add a line like:

Parent.call(this, name)

By using the 'call' method on the Parent object, we pass this (the newly created Child instance) to
the Parent's constructor. By doing so, the Parent constructor now executes with the Child instance
as the current object. Since the current object (or this) is what gets acted on in any public
function, the Child instance essentially gets constructed to “be an” Animal. Note that we don't
pass in age because that's a property that's left unique to Child objects.

The net result is that we get the benefts of prototype chaining while maintaining encapsulation by

47

adding constructor stealing to the mix. The pattern of combining prototype chaining and
constructor stealing is called combination inheritance [ZNPJWD176]. When we create instances of
the Child they will each have their own state.

The following is both the implementation and test for combination inheritance:

// Combination Inheritance
function Parent(name) {
 this.name = name;
 this.arr = [1,2,3];
}
Parent.prototype = {
 constructor: Parent,
 toString: function() { return "My name is " + this.name; }
}
function Child(name, age) {
 this.age = age;
 Parent.call(this, name);
}
Child.prototype = new Parent();
Child.prototype.getAge = function() {
 return this.age;
}

And the test:

 describe 'Combination Inheritance Solves Static Prototype Properties Issue'
it 'should maintain separate state for each child object'
 child_1 = new Child("David", 21)
 child_2 = new Child("Peter", 32)

 child_1.getAge().should.eql 21
 child_1.arr.push(999)
 child_2.arr.push(333)
 child_1.arr.should.eql([1,2,3,999])
 child_2.arr.should.eql([1,2,3,333])
 child_1.should.be_a Parent
end

 end

The bold lines above show that even though each instance altered the 'arr' reference type, the
changes were encapsulated within both instances. Unfortunately, our Child is a Parent which is sort
of correct, but not very useful to us later if we need to determine type. Another detail is that this
pattern requires calling the Parent constructor twice: once in the constructor stealing Parent.call
line, and next for the prototype chaining Child.prototype = new Parent(). We'll later see a trick
that uses an inherit prototype helper method to chain the prototypes directly.

Prototypal Inheritance

Prototypal inheritance is a simple inheritance option if we don't need to impose strict access. It
depends on the availability of a helper function to attach a new object to another parent object:

Object.prototype.inherit = function(p) {
 NewObj = function(){};
 NewObj.prototype = p;
 return new NewObj();

48

}

There's of course nothing requiring you to monkey patch Object – you can create a wrapper that
returns such functionality and keep Object's namespace “clean”. In fact, we've altered the code
that follows to use such a wrapper object (see /code/objects/lib/js_inheritance.js and search for var
helper).

We tap into the simple stubbing functionality in jspec to create a person object at the beginning of
our tests, by putting the following in a before hook:

person = { password : 'secret', toString : function(){ return '<Person>' } }
stub(person, 'toString').and_return('Original toString method!')

and then use it in our test:

 describe 'Prototypal Inheritance'
it 'should inherit properties from parent'
 person.toString().should.match /Original toString.*/i
 person.password.should.eql 'secret'
 joe = helper.inherit(person)
 joe.password.should.eql 'secret'
 joe.password = 'letmein'
 joe.password.should.eql 'letmein'
 person.password.should.eql 'secret'
end

 end

Notice that our child object 'joe' inherits the person password? This may or may not be what you
want, but you should be cognizant of the behavior. The nice thing is you didn't have to create two
distinct constructors for super and sub types, but you still managed to make the instances
“behave like” a Person.

Inheriting Prototypes Not Constructors

On page 181 of Professional JavaScript for Web Developers, 2nd edition, Nicholas Zakas provides
the Parasitic Combination Inheritance pattern which utilizes a helper function for inheriting
prototypes [ZNPJWD181]. Ours is quite similar:

// Prototypal Inheritance
var helper = {
 inherit: function(p) {

NewObj = function(){};
NewObj.prototype = p;
return new NewObj();

 },
 inheritPrototype: function(subType, superType) {

var prototype = helper.inherit(superType.prototype);
prototype.constructor = subType;
subType.prototype = prototype;

 }
};

function SubType(name, age) {

49

 Parent.call(this, name);
 this.age = age;
};
//Child.prototype = new Parent(); // Gets replaced by:
helper.inheritPrototype(SubType, Parent);
SubType.prototype.getAge = function() {
 return this.age;
};

And here's our test:

 describe 'Parisitic Combination Inheritance'
it 'should use inheritPrototype (to call parent constructor once) and still

work as expected'
 sub = new SubType("Nicholas Zakas", 29)
 sub.toString().should.match /.*Nicholas Zakas/
 sub.getAge().should.eql 29
 charlie = new SubType("Charlie Brown", 69)
 charlie.arr.should.eql([1,2,3])
 charlie.arr.push(999)
 charlie.arr.should.eql([1,2,3,999])
 sub.arr.should.eql([1,2,3])
 sub.should.be_an_instance_of SubType
 charlie.should.be_an_instance_of SubType
 (sub instanceof SubType).should.eql true
 (sub instanceof Parent).should.eql true
end

 end

We create two SubType instances, 'sub' and 'charlie'. We push an element on the 'arr' charlie
inherited, and test to see if both instances can see the change. The '999' element only is available
on to charlie's version of 'arr', so our references are not exhibiting static nature! Moreover, our
instanceof appears to be working correctly as well. Notice the code duplication at the end? I just
wanted to be sure that jspec's be_an_instance_of matcher was working as expected, and in fact
testing instanceof behind the scenes. In production code we would want remove the essentially
duplicate assertions.

According to Nicholas Zakas, this pattern is used for the YUI's YAHOO.lang.extend() method.
[ZNPJWD181]

Functional Inheritance

Douglas Crockford introduced a pattern of object creation and inheritance that does not use the
this or new and has the ability to keep data private. He calls such objects durable because they
cannot be compromised. A durable object does not provide access to its internal state (even if one
has access to the durable object itself). [ZNPJWD169][CDJGP52]

First we will create a durable super object and test that it works as expected while keeping it's
variables hidden. First the test:

 describe 'Functional Durable Inheritance'
it 'should hide private variables'
 sub = new SuperFunk(

 {name: "Superfly", age: 39, foo: "foo", bar: "bar"})

50

 sub.getName().should.eql 'Superfly'
 sub.name.should.be_undefined
 sub.getAge().should.eql 39
 sub.age.should.be_undefined
 sub.getFoo().should.eql 'foo'
 sub.foo.should.be_undefined
end

 end

Here is the implementation of the super object:

function SuperFunk(blueprint) {
 var obj = {};
 obj.getName = function() { return blueprint.name; };
 obj.getAge = function() { return blueprint.age; };
 obj.getFoo = function() { return blueprint.foo; };
 obj.getBar = function() { return blueprint.bar; };
 return obj;
}

Attempts to directly access such private variables (i.e. name, age, foo, etc.) from descendent
objects will return undefned. Let's do the inheritance part so we can test this. We create a test
and implementation to prove:

it 'should create descendent obj inherits props while maintaining privacy'
 sub = new sub_func(

 {name: "Submarine", age: 1, foo: "food", bar: "barfly"})
 sub.getName().should.eql 'Submarine'
 sub.name.should.be_undefined
 sub.getAge().should.eql 1
 sub.age.should.be_undefined
 sub.getFoo().should.eql 'food'
 sub.foo.should.be_undefined
 sub.getBar().should.eql 'barfly'
 sub.bar.should.be_undefined
 sub.coolAugment().should.match /.*fresh new perspective.*/
 //sub.should.be_an_instance_of super_func NOPE!
 //sub.should.be_an_instance_of sub_func NOPE!
 sub.should.be_an_instance_of Object
end

So we need the sub object implementation:

function sub_func(blueprint) {
 blueprint.name = blueprint.name || "Crockford's Place";
 supr = super_func(blueprint);
 supr.coolAugment = function() { return "I give a fresh new perspective on
things!" };
 return supr;
};

So we got our privacy but notice that we don't get the instanceof functionality. At this point, you
may be asking yourself - “Will I actually need refection capabilities?” If the anwer is “Yes”, then go
back and implement the Parasitic Combination Inheritance pattern we discussed previously. Note
one trade of is that this pattern is simpler than the parasitic combination pattern. In any event,

51

the Durable (otherwise called Functional) pattern gives us a big win in the security department!

Summary of Inheritance Patterns

JavaScript gives us a lot of choices when it comes to how we want to implement inheritance!
Which one you choose to use should take in to account the strengths and weaknesses of that
pattern. Sometimes you may know in advanced that you're only going to need shallow inheritance
trees and don't care about instanceof capabilities. In this case, Prototypal Inheritance may work
just fne. Or, perhaps you're getting a project started, and you know that the developers are you
going to be much more productive if they have some familiar capabilities (e.g. instanceof
refection, classical looking inheritance models, etc.). You may then want to go with the Parasitic
Combination Inheritance pattern. Is security imperative for the object? Functional Inheritance may
be a good choice. Feel free to scour the web for even more patterns if none of these suite your
particular needs.

The following is a table that summarizes the strengths and weaknesses of these patterns:

Table 1-1. JavaScript Inheritance Patterns

Pattern Strengths/Weaknesses

Pseudoclassical Pros: Conventional pattern.

Cons: Static references.

Combination Inheritance Pros: Non-static references.

Cons: Calls parent constructor twice.

Prototypal Inheritance Pros: Very Simple. Good when you don't care
about instanceof.

Cons: Static references. instanceof and
constructors not useful.

Functional Inheritance (Durable) Pros: Privacy (security). Good when you need
durable tamper-proof instance variables.

Cons: instanceof and constructors not useful.

Parasitic Combination Inheritance Pros: Very clean and efcient. Non-static
references. Constructor stealing. Only one
constructor call.

Cons: Complicated (two helper methods
required: create_object and inherit_prototype).

JavaScript Gotchas
Contents:
JavaScript Gotchas.. 53

52

Namespace...53
parseInt.. 53
Equality and == vs ===...54
Reserved Words in Object Literals..55
Scope... 56

Privileged Singleton...57

Namespace
One issue inherent in JavaScript is that top-level variables belong to the global namespace. Thus,
this can cause problems such as name collisions in content heavy sites like mash-ups. Start
combining libraries, advertisers scripts, etc., and you've got a real problem on your hands. One
solution to the namespace issue is to create an application-wide object literal on the global
namespace and then put all your stuf in there. For example, your name is John Jacob Smith and
you're designing an application for ABC Inc. You could create the following namespace:

var JJS = {};
JJS.ABC = {};

With this in place, you can then attach your objects, functions, etc., to the JJS.ABC object like:
JJS.ABC.Obj = { … }
JJS.ABC.Func = function(){ … }
etc.

[DDNSPACING][ZNPJWD645]

parseInt
The parseInt function parses a string and returns an integer. It allows you to provide an optional
radix as a second argument for: binary (base 2), octal (base 8), decimal (base 10), hex (base 16),
by specifying the base like:

parseInt("1000",2); // returns 8

The ECMA-262 3 Standard defnes the following caveats:

'parseInt may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is
given that any such characters were ignored.

When radix is 0 or undefned and the string's number begins with a 0 digit not followed by an x or
X, then the implementation may, at its discretion, interpret the number either as being octal or as
being decimal. Implementations are encouraged to interpret numbers in this case as being
decimal.' [ECMA3-ParseInt]

Obvious implications are:

1. particular implementation may discard anything after frst non-integer

2. 08 and 09 will not be interpreted as decimals and are not valid octal – returns 0!

Let's write some tests:

53

 describe 'parseInt Weirdness'

it 'should ignore any non-integer chars & discard after first non-integer'

 gotchas.callParseInt('82I_AM_IGNORED_1234', 10).should.eql 82

 gotchas.callParseInt('82#$I_AM_IGNORED_1234', 10).should.eql 82

 gotchas.callParseInt('1010_binary_too!_1234', 2).should.eql 10

end

it 'should return zero for 08 and 09'

 gotchas.callParseInt('08', undefined).should.eql 0

 gotchas.callParseInt('09', undefined).should.eql 0

 gotchas.callParseInt('09').should.eql 0

 gotchas.callParseInt('09000', undefined).should.eql 0

 gotchas.callParseInt('090jibberish00', undefined).should.eql 0

 gotchas.callParseInt('08', 10).should.eql 8

end

 end

We'll save space by omitting the callParseInt implementation as it just calls parseInt behind the
scenes. The fact that non-integers are discarded is not so bad, but inadvertent octal issue
(exemplifed in the second assertion; especially the bold line) shows that we should always supply
the base 10 radix to insure decimal behavior if that's what we want.

Equality and == vs ===
To test for equality, JavaScript has both double equals operators: == and !=, and triple equals
operators: === and !==. You should pretty much always use the === family of operands
because the double equals == tries to do type coercion. The type coercion rules are complex, and
as Douglas Crockford asserts, “unmemorable”. Here are some examples extracted from JavaScript:
The Good Parts, page 109, and put in jspec test format:

 describe '== type coercion example from Crockford Good Parts'

it 'should show that double equals type coercion is complicated and
"unmemorable"'

 ('' == '0').should.eql false

 (0 == '').should.eql true

 ('0' == 0).should.eql true

 (false == 'false').should.eql false

 (false == '0').should.eql true

 (false == undefined).should.eql false

 (false == null).should.eql false

54

 (null == undefined).should.eql true

 (' \t\r\n ' == 0).should.eql true

end

 end

[CDJGP109]

Just type in the extra character and don't worry about the above rules! If you fear that you may
inadvertently forget this rule, note that JSLint can help you out. We discuss JSLint later in the book.

Reserved Words in Object Literals
JavaScript has many reserved words which at the time of this writing are here:

http://javascript.crockford.com/survey.html

There are some oddities in the way JavaScript restricts the use of these reserved words. Namely,
object literals cannot use a reserved word as a name (in a name:value pair). But the browsers
seem to enforce this diferently. For example, when we ran the following test, Firefox 3.5.3 on a
Mac did not complain and we got a pass, whereas Safari 4.0.3 choked and gave a 'parse error' in
the Web Inspector's JavaScript error console. When we commented out this test, all other tests
succeeded proving that this test caused the issue (in Safari).

 describe 'reserved words in object literals'
it 'should not allow reserved words to be used as names in object literals'
 var obj = {
 case: 'case',
 return: 'return'
 };
 obj.case.should.eql 'case'
 obj.return.should.eql 'return'
end

 end

However, enclosing the reserved word names in quotes, and using subscript notation to access the
object properites worked for both Firefox and Safari:

it 'should not allow reserved words to be used as names in object literals'
 var obj = {
 'case': 'case',
 'return': 'return'
 };
 obj['case'].should.eql 'case'
 obj['return'].should.eql 'return'
end

If for some reason you need to use a JavaScript reserved word, you should use the above strategy
to prevent inconsistent behavior between browsers.

Scope
JavaScript has function scope but not block scope. This means that vars defned in loops,

55

http://javascript.crockford.com/survey.html

conditionals, etc., are visible after the block has fnished executing:

function foo() {

 for(i=0; i<5; i++) {

 console.log(i);

 }

 console.log("i after running for loop is: ", i); // returns 5

}

foo();

The above code prints 5 as the i variable is still visible outside the for block. This is very odd to
most programmers coming from other formal languages. There's a trick to get around the “no
block scope” rule if you need it – you can wrap your block inside an anonymous function that calls
itself. [ZNPJWD192] Since functions do provide their own scope, you will achieve the desired result:

 describe 'block scope workaround'

it 'should use anonymous function to mimic block scope'

 function foo() {

try {

 (function() {

for(var i=0; i<5; i++) {

 console.log(i);

}

 })();

 return i;

} catch(e) {

 return "ReferenceError caught";

}

 }

 foo().should.eql "ReferenceError caught"

end

 end

Unfortunately this example is complicated by the try/catch, but this is the only way we could get
the test to run (jspec's should.throw_error didn't seem to help us). Essentially, the bold code shows
that our line attempting to return i – no longer visible – will cause a error.

The reason that the function is preceded by an open parenthesize, is that the interpreter will
assume a function declaration without it (a function expression is what we're after). We can
actually use this same self-calling anonymous function to create a singleton with private
properties. The next section covers just that.

56

Privileged Singleton

In order to get privacy in JavaScript, you can use the Privileged Singleton (aka Module) Pattern:

var SomeObject = {
 foo: 'foo',
 bar: 'bar'
};

var privileged_singleton = function() {

 // Define some private members
 var privateVar = 'this is private';
 function privateFunc() {

return 'top secret';
 }

 // Create an object and augment it
 var obj = SomeObject;
 obj.publicVar = 'this is public';

 // Privileged method has access to private members
 obj.publicFunc = function() {

var message = 'publicFunc is privileged, and hereby allows you to see
private var: ' + privateVar + ', as well as see the return value of privateFunc: '
+ privateFunc();

return message;
 };

 return obj;
}();

Here's the test:

 describe 'Priveleged Singleton Pattern (also called Module Pattern)'
it 'should create a singleton with private members'
 privileged_singleton.privateVar.should.be_undefined
 privileged_singleton.privateFun.should.be_undefined
 privileged_singleton.publicFunc().should.match /publicFunc is.*this is

private.*top secret/i
 privileged_singleton.publicVar.should.eql 'this is public'
 privileged_singleton.foo.should.eql 'foo'
end

 end

Notice that the private members return undefned, while the public function can return private
data through it's privileged relationship within the function. Moreover, we have access to both the
original SomeObject, as well the augmented properties (e.g. publicVar and publicFunc).

There are other gotchas in JavaScript such as: bitwise manipulation having to do multiple
conversions from 64-bit double precision to 32-bit and back [FDDGJS22]; issues with NaN; the with
statement; DOM related issues. The reader is encouraged to do their own research on these.

57

Part IV – Using What You've
Learned

If you've made it this far, congratulations, you should have a pretty good grasp of how to use a
TDD approach with JavaScript. You've also learned about some of the peculiarities of JavaScript
itself. In this last section, you will put the concepts to use by “rolling up your sleeves” and writing
some code.

As opposed to having one continuous project that we build upon, we have chosen to use a more
focused example in keeping with the documents goal of brevity.

TDD Example: Linked List
Contents:
TDD Example: Linked List...58

Singly Linked Lists.. 58
Decomposing Requirements..59
Getting Started...59

Regressions.. 60
List Creation.. 60
Insertion... 61
Traversing.. 62
Removal...63
Finding ..64
Extra Credit ...65

Singly Linked Lists

One of the most ubiquitous data structures of programming is the linked list. It consists of a
number of links, or link nodes, that each have a reference to the very next link. Because of this
fact, link nodes are said to be self-referential (because they contain a reference to a data member
of the same type). Generally, the very last link node points to null indicating that it's the last node.

More accurately, the above paragraph defnes a singly linked list - a list that it goes in one
direction, front to back. There's also the doubly linked list – a list that can traverse in both
directions. It does so by keeping an additional self-reference to the previous node. Here we'll be
looking at the singly linked list.

Linked lists ofer ofer a nice and comprehensive alternative to arrays given the improvement on
insertion and deletion performance. Recall that when you insert or delete on an Array, you must
either rearrange all subsequent elements one at a time, or leave a “gap” in the array. With linked
lists, you simply sever the connection by pointing the previous link to the (about to be removed)
node's next link.

Another beneft, is that you can use linked lists as the basis for two other popular data structures,
stacks and queues. [LRDSA145][PIESLL]

58

You may want to see Wikipedia's entry as it has some wonderful graphics to illustrate the
previously mentioned removal process:

http://en.wikipedia.org/wiki/File:Singly_linked_list_delete_after.png

http://en.wikipedia.org/wiki/Linked_list

Decomposing Requirements

Let's defne the basic requirements for our singly linked list:

• Link nodes should contain a simple id member and point to the very next node.

• The linked list itself should always have an accurate reference to the frst link node: the
head.

• The last node should point to null to signify the end of the list.

• We should be able to traverse the list from front to back using the last link's null to identify
we've reached the end.

• We should be able to fnd an element given its id member.

• We should be able to delete a link by it's id without messing up our traversal functionality.

• We should be able to insert a link at the beginning of the list making it the new head.

Wow, look at all the 'shoulds' – as our specs are pretty self-evident we should be able to convert
our requirements one by one as we add to our functionality. It's quite easy to direct a client to use
the style: 'something should do some behavior' and will pay of for both parties! By using this
style, you're allowing the client to use a ubiquitous language (in that it's understandable to all), so
that 'the business vocabulary permeates right into the codebase.'

[NDBDDINTRO] (also see http://en.wikipedia.org/wiki/Domain-driven_design , and
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215)

Getting Started

Using an iterative approach, we will work on one small chunk at a time and try not to get ahead of
ourselves. Let's try to simply create a single link node:

 describe 'Create a node containing simple id member and point to the next node.'

 it 'should create first node with next pointing to null'

node = new LinkNode(1)

node.toString().should.eql "LinkNode id: 1"

node.next.should.be_null

node.id.should.eql 1

 end

 end

While writing this frst test we decided that it would be useful for LinkNode to have a toString()
method so we can do some basic debugging. Given our requirements, we also need to have a
next member that defaults to null. We do the usual drill of writing the test, watching it fail, and

59

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/File:Singly_linked_list_delete_after.png

then implementing just enough to make it pass. At this point, that just means having an
appropriate LinkNode constructor and prototype:

function LinkNode(id) {

 this.id = id;

 this.next = null;

};

LinkNode.prototype = {

 constructor: LinkNode,

 toString: function() { return "LinkNode id: " + this.id; }

};

This allows our frst spec to pass. Now we create the linked list object – it will need a head element
which will always point to the frst node in the list and be initialized to null. We also want our list to
start out with zero elements. So we write our spec: it 'should create a linked list with zero
elements and a head member pointing to null.' This spec is the frst step in tackling our
requirement that: the linked list should always have an accurate reference to the the head.

Regressions

Of course, we are creating an empty linked list so pointing to null is appropriate, but as we add
other features, we will have to insure that “accurate reference to the head” assertion continues to
be true...which brings us nicely to the concept of regressions. According to Wikipedia at
http://en.wikipedia.org/wiki/Software_regression:

'A software regression is a software bug which makes a feature stop functioning as intended after
a certain event.'

Let's just take the above 'certain event' to mean new code was added to the system. For example,
say we implement our insertion requirement, and as a result, our list's head member stops
pointing to the frst node. We'd then have a regression. Hopefully, our automated tests will help us
catch this.

List Creation

Moving on, we look back at our spec. The “linked list with zero elements” tells us that we'll also
need a length element to determine how big the list is. So that's a head and a length member for
Linked List. Let's get to coding (code in /code/singly_linked/):

 it 'should create list with zero elements and head member pointing to null.'

list = new SinglyLinkedList()

list.length.should.eql 0

list.head.should.be_null

 end

We run the test and get our all too familiar ReferenceError (no implementation yet!), so we
implement the following:

function SinglyLinkedList() {

60

http://en.wikipedia.org/wiki/Software_regression

 this.head = null;

 this.length = 0;

};

So we have our initial specs setup and passing. We immediately realize that our members are
publicly accessible which breaks encapsulation. We could use a durable object, hide the vars and
return a closure, etc., but for this pedantic example we won't worry about every such detail.

Insertion

Given that we basically have an empty list, we decide it makes sense to tackle insertion. There are
many variations of insertion that we could go for: insert after a given node or node key, insert at
end, at an index, etc. For now we'll go with implementing an insert beginning which will essentially
replace our list's head with the newly inserted node:

 describe 'List insertion'

it 'should insert link at the beginning of the list making it the new head.'

 node = new LinkNode(1)

 list.insertBeginning(node)

 list.head.id.should.eql node.id

end

 end

And then to get it to pass quickly we add the following:

SinglyLinkedList.prototype = {

 constructor: SinglyLinkedList,

 insertBeginning: function(node) {

this.head = node;

 }

};

The savvy reader will say, 'Hey, your new node will always point to null...when you put another
node in, the list's chain will be broken!'. Correct. We need to improve our spec from:

'should insert link at the beginning of the list making it the new head.'

to:

'should insert link at the beginning of the list making it the new head, and also
have head->next point to the old head.' But that's too wordy, how about:

'should insert node as new head of list, and have its next point to old head.'

Notice how much easier that reads? We've taken out extraneous words like 'at the', etc., and have

61

stated only the essentials. Here's our new test:

it 'should insert node as head of list & have its next point to old head.'

 firstNode = new LinkNode(1)

 list.insertBeginning(firstNode)

 list.head.id.should.eql firstNode.id

 secondNode = new LinkNode(2)

 list.insertBeginning(secondNode)

 list.head.id.should.eql secondNode.id

 list.head.next.id.should.eql firstNode.id

 list.length.should.eql 2

end

The last two lines at the end prove that when we insert two or more nodes, the head will be the
last node inserted and that node's next will point to the previous head (which has now become the
second link). We essentially alter the implementation of insertBeginning() to read:

 insertBeginning: function(node) {

node.next = this.head;

this.head = node;

this.length = this.length + 1;

 }

Voilà! We have insertion. Let's work on traversal.

Traversing

Our implementation will traverse the list and return an array of node ids:

it 'should traverse list from front to back and return array of node ids'

 list.insertBeginning(firstNode)

 list.insertBeginning(secondNode)

 arr = list.traverse()

 arr.should.eql([2,1])

end

The implementation is a simple matter of storing our node ids in the array and then moving our
current node to node.next (until we reach the end signifed by null):

62

 traverse: function() {

var arrayOfIds = [];

var current = this.head;

while(current != null) {

 arrayOfIds.push(current.id);

 current = current.next;

}

return arrayOfIds;

 }

This passes and now we're ready for removal.

Removal

At this point, we'll just show you the whole set of tests and implementation as opposed to taking
you through one test spec at a time:

 describe 'Link node removal'

it 'should return false when list is empty and we try to remove'

 removed = list.remove(2)

 removed.should.eql false

end

it 'should return true when list has one matching link & length should==0'

 list.insertBeginning(firstNode)

 list.remove(1).should.eql true

 list.length.should.eql 0

end

it 'should remove a link node by id'

 list.insertBeginning(firstNode)

 list.insertBeginning(secondNode)

 list.insertBeginning(new LinkNode(3))

 list.remove(2).should.eql true

 list.length.should.eql 2

 list.remove(999).should.eql false

 /* Insure we in fact removed link */

 list.traverse().should.eql([3,1])

end

it 'should return false if non-integer passed in'

63

 list.insertBeginning(firstNode)

 list.remove('abc').should.eql false

end

 end

And the implementation:

 remove: function(id) {

var current = this.head;

var previous = this.head;

while(current != null) {

 if(current.id === id) { // If found match

if(current === this.head) { // If first link in list

 this.head = this.head.next;

} else {

 previous.next = current.next;

}

this.length--;

return true;

 } else { // Didn't match. Move to next link

previous = current;

current = current.next;

 }

}

return false;

 }

In our implementation of removal, we essentially loop through the list until one of two conditions
occurs – we either:

1. fnd a match, in which case we remove the node passed in, update the pointers, and return
true.

2. don't fnd a match at all, in which case we return false.

There's a corner case to 1. above – if it's the very frst node that matches, we simply move the
head to the current head's next.

Finding

Next we need to be able to fnd a particular node by its id:

64

 describe 'Find an element given its id member.'

it 'should find and return a node by id if match in list otherwise returns
null'

 list.insertBeginning(firstNode)

 list.insertBeginning(secondNode)

 node = list.find(firstNode.id)

 node.should.equal firstNode

 list.find(999).should.be null

 list.find('junk').should.be null

end

it 'should return null if list is empty'

 list.find(firstNode.id).should.be null

 list.find(secondNode.id).should.be null

 list.find("garbage").should.be null

end

 end

Implementation:

 find: function(id) {

var current = this.head;

while(current != null) {

 if(current.id === id) {

return current;

 }

 current = current.next;

}

return null;

 }

We've now fulflled our initial requirements for our singly linked list!

Disclaimer: This is not a “production-ready” linked list, nor may it even be necessary given JavaScript's Array.prototype
capabilities. Also, we should have things like isEmpty(), insertBefore(node), guards against bad inputs, etc. These might
make for good exercises for the reader. While you're at it, why not make a doubly linked list, a stack, a queue, etc.?

Extra Credit

We already mentioned that it would be easy enough to add useful additional functionality to our

65

list. Methods like insertBefore(n) or insertAfter(n) seem pretty straight forward, so we won't go in
to those. However, an interesting problem is fnding the Nth-to-last element in the list. An
intriguing book, Programming Interviews Exposed, suggests the following basic algorithm (they
show their implementation in C – but we don't have to worry about pointers per se):

1. Fast forward a pointer (they call it 'current') 'N' elements.

2. Until current->next is null, forward 'current' and an 'nBehind' pointer to the next element.

3. Once current->next points to null, the nBehind will be the Nth-to-last element so return it.

They also put a check at the beginning to insure that the list is in fact at least N elements long or
return null. Looking at this algorithm, it's essentially O(n) as the current pointer traverses the
whole list, while the nBehind will never completely traverse the list. [PIESLL43]

Upon reading this, it occurred to us that another solution would be to simply traverse the list to get
the size; let's assume the list does not provide a length property (which ours actually does). Then
we could get the index by computing index = (size - n) and then traverse to that index. It doesn't
improve on efciency, but it does seem like another way to skin the cat, and we'd like to check
that we're correct.

Just to be clear, if we have 10 elements and we want the 2nd to last we subtract can 2 from 10 and
get 8. If we consider the frst element to be zero, than this index will work (remember the 8th

element starting at 0 is actually 9!)

Let's try implementing our algorithm in JavaScript using our typical jspec approach (you can fnd
this code in /code/singly_linked/):

 describe 'Find Nth-to-last element.'

it 'should fnd Nth-to-last if list at least N elements, otherwise return null'

 list.insertBeginning(frstNode)

 list.insertBeginning(secondNode)

 list.insertBeginning(new LinkNode(3))

 list.fndNthToLast(2).should.eql secondNode

end

 end

If you're anything like the author, you like to insure that you don't have an of by one error. We
cheat and and use Firebug to do a console.log of the size (our implementation still incomplete):

 findNthToLast: function (n) {

if(typeof n === 'number' && isFinite(n)) {

 var size = 1;

 while(current.next !== null) {

size++;

current = current.next;

 }

 console.log(“size after while is: “, size);

66

….

We try creating 2 nodes, 5 nodes, etc., and insure that the size printed out is correct. Of course our
tests will fail while we're doing this, but it's just a sanity check so that's fne. Once we're confdent
our size is correct, we go ahead and fnish of our frst stab and get a pass on our frst test case
(code omitted for brevity sake).

Ok, so what are some conditions we should defend against? Typically, invalid inputs, empty data
structures, etc., are the types of things we need consider – so we add these tests:

it 'should return null if list is empty or less than N'

 // List is empty but we try to fnd N

 list.fndNthToLast(2).should.be null

 list.insertBeginning(frstNode)

 list.insertBeginning(secondNode)

 // List is 2 elements. Lets make N == 3

 list.fndNthToLast(3).should.be null

end

it 'should return null if n argument is not a number'

 list.insertBeginning(frstNode)

 list.fndNthToLast('abc').should.be null

 list.fndNthToLast({one:1,two:2}).should.be null

 list.fndNthToLast([1]).should.be null

end

It turns out we have to do a bit to insure that we defend against all of these – our code is now
working but ugly:

 findNthToLast: function (n) {

if(typeof n === 'number' && isFinite(n)) { // Is it a number?

 if(this.head !== null) { // Guard: List empty?

var current = this.head;

 } else {

return null;

 }

 var size = 1;

 while(current.next !== null) {

size++;

67

current = current.next;

 }

 if(size < n) return null; // List needs to be bigger then n

 var index = size - n;

 current = this.head; // reset current to beginning

 for(i=0; i<index; i++)

current = current.next

 return current;

} else {

 return null; // not a valid number input

}

 }

We check for the input being a number and our list being empty or less then N. Notice that our
guard code is almost half of the function size! Up to now, we've been pretty lax on our guard code,
but this is more typical of real world functions. In fact, if we were being really thorough, we may
want to use try/catch/throw code as well. One thing we can do is to refactor some of the code into
a helper:

 findNthToLast: function (n) {

if(!isANumber(n) || this.isEmpty()) { return null; } // Guard code

// Set current to head - loop list to get size

var current = this.head;

var size = 1;

while(current.next !== null) {

 size++;

 current = current.next;

}

if(size < n) return null; // List needs to be bigger then n

var index = size - n; // Compute the index

current = this.head; // Reset current to beginning

68

for(i=0; i<index; i++) // Traverse to index and return

 current = current.next

return current;

 }

We've put all the ceremonious guard code into two helpers: isANumber and isEmpty and can
now put the guard code in one line! The essence of what this function does is now self-evident and
easier on the eyes. Notice that we've even managed to add space to make it read better? Having
moved out the helper functionality (input checks), we can know think more stylishly about our
code – before we were self conscious of the fact that our overall function length might be
excessive. Moreover, we can now call our helpers from other functions as well. If we discover an
issue with this, we only have to fx it in one place – always a nice gain.

So what did we just do? We essentially refactored working, albeit ugly, code. Having our unit tests
in place, we were able to move confdently, knowing that if we could reproduce our passes, our
code essentially worked as before. The refactored function is clearer and more maintainable by
other programmers. We've also shown that refactoring and testing go hand in hand.

JavaScript Builds
Contents:
JavaScript Builds...66

Validation...66
Installing Rhino..66
Run JSLint via the Rhino Shell..67
JSLint Options...67

Compression..68
YUI Compressor..68
Automated Builds..69

Ant Alternative...71

So far, we've been using a process that essentially involves: writing a test, watching it fail,
implementing some code, making the test pass. This is essentially the TDD process, and is great
for adding new functionality to an application one micro-feature at a time. However, there are
some other things we should do when it comes time to deploy our code:

• Validation: Use a tool to help validate whether we're adhering to best practices, style
conventions, etc. JSLint is one such tool for doing this which we'll look at soon.

• Compression: Rather than serving up a page with several JavaScript fles, it is better to
condense them into one fle and strip out comments, etc.

• Automation: Ideally, we should be able to automate the validation and compression steps.
Any build tool should help with this such as Ant, rake, make, etc.

• HTTP Compression: This essentially has to do with applying gzip compression to our
JavaScript fles before sending back from server. This is out of the scope of this document,
but if you are using Apache you may look into modules such as mod_gzip for doing this.

Before we try to completely automate our build, we should become familiar with the individual

69

components themselves. Let's start with validation.

Validation

JSLint, the tool we will use for validation, was written by Douglas Crockford. You can optionally
paste your individual scripts into an online version of JSLint to manually validate them, but we will
use another tool, the Rhino shell, to run JSLint from the command line. Rhino is a Java based
JavaScript engine created by the Mozilla Foundation which essentially converts JavaScript into
Java. It can be used in many ways, but we just want to use Rhino's shell to create a JavaScript
environment to run JSLint. Rhino requires Java and so you will need to make sure you have Java
installed on your system before proceeding.

Installing Rhino

First we need to download the Rhino bundle:

http://www.mozilla.org/rhino/download.html

Once you've downloaded the bundle and unzipped it, there will be a lot of stuf in the directory. As
a sanity check, let's make sure the Rhino shell is working as expected: open a terminal and cd to
your unzipped Rhino directory and execute the Rhino shell as follows:

$ java -jar js.jar

Rhino 1.7 release 2 2009 03 22

js> print("hi");

hi

Note that you will need to enter Control-D to exit the Rhino shell.

Run JSLint via the Rhino Shell

Now let's get JSLint and connect it to Rhino:

http://www.jslint.com/rhino/index.html or alternatively:

curl http://jslint.com/rhino/jslint.js > jslint.js

To get up and running quickly, let's copy the js.jar, jslint.js, and our test program mytest.js into the
same directory – in the repository, we already have these set up in /code/jslint_rhino_test/.

Now we should be able to run our program into JSLint with something like:

java -jar js.jar jslint.js mytest.js.

JSLint Options

Upon our frst run of JSLint, we got some errors like:
Expected 'alert' to have an indentation...
and,
'alert' is not defined.

This is because JSLint expects you to supply options for certain assumptions like:
• browser globals are predefned (i.e. 'alert' above)
• indentation should not be checked

70

http://www.jslint.com/rhino/index.html
http://www.mozilla.org/rhino/download.html

The following is how such options are supplied from within your script:

/*jslint browser: true, nomen: false, glovar: false, rhino: true, eqeqeq: true,
white: false */

Essentially, browser: true allows you to use the browser's globals, white: false fxes the indentation
check error from above, nomen: false turns of var name checking, eqeqeq: true makes sure you
use '===' not '=='. The full set of JSLint options available are listed here:
http://www.jslint.com/lint.html#options

Given the following JavaScript fle:

/*jslint browser: true, nomen: false, glovar: false, rhino: true, eqeqeq: true, white: false */
var person = {
 name: "Rob",
 foo: function() {

alert("OMG...BOOOORRRRING!!!!");
 }, // See if JSLint sees this?
};
var pickyBrackets =
{
 picky: "Doug likes brackets in K&R style"
}

We assumed that JSLint would complain about: the extra comma; the use of the ANSI C++ style
bracket placement. However, JSLint doesn't seem to mind the bracket placement:

$ java -jar js.jar jslint.js mytest.js
Lint at line 6 character 6: Extra comma.
}, // See if JSLint sees this?

Lint at line 11 character 2: Missing semicolon.
}

It does catch the extra comma as we expected, but also tells us about a missing semicolon at the
end (which we didn't expect because it was an actual human mistake!). So we fx these simple
issues and then get:

jslint: No problems found in mytest.js

Success!

Note that running JSLint as we develop is advisable, and will be easy once we defne it as it's own
“build task”. See build section presented later for details on how to do so.

Compression

There are several options available for minifcation of your JavaScript fles. Some of the popular
ones are:

• YUI Compressor(Julient Lecomte and the YUI team)
• jsmin (Douglas Crockford)
• packer (Dean Edwards)
• Dojo's ShrinkSafe

We will look at YUI Compressor as we feel it is the best option, but you are encouraged to review

71

http://www.jslint.com/lint.html#options

the other options as well.

YUI Compressor

YUI Compressor requires that your system has Java and Rhino installed. If you've been following
along you already have this set up. You can download the YUI Compressor library from:
http://yuilibrary.com/downloads

We have included the YUI Compressor jar fle, and our test code for the following example in our
github repository under:
/code/yui_compressor/

We will use the mytest.js script that we previously put through the JSLint.

java -jar yuicompressor-2.4.2.jar myfile.js -o myfile-min.js

This produced the following:

var person={name:"Rob",foo:function(){alert("OMG...BOOOORRRRING!!!!")}};var
pickyBrackets={picky:"Doug likes brackets in K&R style"};

As can be seen, by default YUI Compressor will remove spaces when possible. However, it didn't
replace our variable names because didn't have any local vars for it to rename. Let's put the
following code through the compressor (nested.js):

var person = {
 name: "Rob",
 foo: function() {

var aVeryLongVariableName = 'long var';
alert("OMG...BOOOORRRRING!!!!");
(function() {
 var nestedFunc = 'nest function value';
})();

 }
};

Compression applied produces (note that this document wraps but the following is essentially one
long line):

var person={name:"Rob",foo:function(){var a="long
var";alert("OMG...BOOOORRRRING!!!!");(function(){var b="nest function value"})
()}};

We can see that in addition to white space being stripped out, the local variables:
'aVeryLongVariableName' got renamed to 'a' and 'nestedFunc' got renamed to 'b'.

YUI Compressor works on CSS fles as well.

If you are working in a Ruby environment, you may want to try a wrapper for YUI Compressor
written by Sam Stephenson On github here:
http://github.com/sstephenson/ruby-yui-compressor

If you're looking for .NET:
http://yuicompressor.codeplex.com/

72

http://yuicompressor.codeplex.com/
http://github.com/sstephenson/ruby-yui-compressor
http://yuilibrary.com/downloads

An alternative compressor for PHP: http://code.google.com/p/minify/

None of the above have been tested by the author so you will have to check these out for your
self.

Automated Builds

We would like a way to automate validation, concatenation, and compression of our JavaScript fles
using the individual tools we've already looked at. Although this can be done by many tools such
as: Ant, make, etc., we will use rake as the author is in “Ruby-mode”. The syntax is simple enough
that it should be easy to transpose in to one of the other tools should you have a preference that
leads you to do so. If you don't already have rake you can get it from here:

http://rake.rubyforge.org/

The source code is in the /code/js_build directory of the github repository. The important fle for
your to edit is the Rakefle. Please fnd the line with the following comment:

 # ---------- EDIT THESE PROPERTIES! --------- #

You will need to edit the paths appropriately for your system. That said, the repository already has
the paths correct for this script. From within this directory you should be able to run:

rake js:min

As does make and Ant, rake allows you to create tasks and dependencies. A task is a specifc
action to carry out (i.e. delete all fles in current directory, compile some code, push *.js to
http://server.com/js_fles / , etc.) Dependencies are a list of prerequisite tasks the current task
depends on. For example, we choose to run JSLint validation before doing any sort of compression,
and so our :min (compression task) depends on :lint to execute successfully frst. :lint, in turn
depends on :clean, etc.

Essentially, the js:min rake task will recursively take all of the JavaScript fles (excluding the jslint.js
fle) and do the following:

• delete any previously created amalgamation.js fle - if exists (the :clean task)
• run JSLint validation (the :lint task)
• concatenate all of the fles (:min task)
• run the YUI Compressor on the concatenated fle producing: amalgamation.js (:min task)

If you happen to be a Ruby/Rails developer, there are some tools you may try which can leverage
the automated deployment: juicer or sprockets:
http://cjohansen.no/en/ruby/juicer_a_css_and_javascript_packaging_tool
http://github.com/sstephenson/sprockets

The following is the Rakefle found at /code/js_build/Rakefle in the github repository [RAKERDOC]
[RAKEGUIDE]:

require 'tempfile'
namespace :js do
 # ---------- EDIT THESE PROPERTIES! --------- #
 RHINO_JAR_PATH = "rhino/js.jar"
 JSLINT_PATH = "jslint/jslint.js"
 JAVA_JAR_CMD = "java -jar"
 JSLINT_SUCCESS = "^jslint: No problems found in"
 JS_EXCLUDE = JSLINT_PATH

73

http://github.com/sstephenson/sprockets
http://cjohansen.no/en/ruby/juicer_a_css_and_javascript_packaging_tool
http://server.com/
http://server.com/js_files
http://rake.rubyforge.org/
http://code.google.com/p/minify/

 YUI_DEV_PROPS = "--nomunge --line-break"
 YUI_COMP_JAR_PATH = "yui_comp/yuicompressor-2.4.2.jar"
 AMALGAMATION_FILE = "amalgamation.js"

 desc "Deletes the amalgamation file (if exists)."
 task :clean do

if File.exists?("#{AMALGAMATION_FILE}") then
 system "rm #{AMALGAMATION_FILE}"
 puts "Deleted: #{AMALGAMATION_FILE}."
else
 puts "Nothing to clean: #{AMALGAMATION_FILE} file does not exist."
end

 end

 # Modified the :jslint task from: http://jonathanjulian.com/
 desc "Puts each JS script through JSLint. Exits if there's a problem."
 task :lint => [:clean] do

failed_js_scripts = []
jsfiles = File.join("**", "*.js") # ** makes it recursive

A bit of ugliness to reject the jslint.js file itself (if it's in a subdir of the
cwd)

Dir.glob(jsfiles).reject{|path| path =~ /#{Regexp.quote(JS_EXCLUDE)}/ }.each do |js|
 command = "#{JAVA_JAR_CMD} #{RHINO_JAR_PATH} #{JSLINT_PATH} #{js}"
 jslnt_result = %x{#{command}}
 unless jslnt_result =~ /#{Regexp.compile(JSLINT_SUCCESS)}/

puts "#{jslnt_result}:"
puts jslnt_result
failed_js_scripts << js

 end
end
if failed_js_scripts.size > 0
 exit 1
else
 puts "---"
 puts "Passed JSLint tests for all JavaScript files"
 puts "---"
 puts
end

 end

 desc "Minify JavaScript by concatenating files, then apply YUI Compressor to
amalgamation file"
 task :min => [:lint] do

concat_file = Tempfile.new("temp_file.js", Dir.getwd)
jsfiles = File.join("**", "*.js") # ** makes it recursive
Dir.glob(jsfiles).reject{|path| path =~ /#{Regexp.quote(JS_EXCLUDE)}/ }.each do |js|
 open(js) do |f|

concat_file.write(f.read)
 end
end
concat_file.rewind
command = "#{JAVA_JAR_CMD} #{YUI_COMP_JAR_PATH} --type js #{concat_file.path} -o

#{AMALGAMATION_FILE}"
%x{#{command}}
puts "---"
puts "Minified JavaScript - resulting file: #{AMALGAMATION_FILE}"
puts "---"
puts

 end
end

74

In order to do the whole “shebang” you could do:

rake js:min

in the /code/js_build/ directory, and rake will run JSLint on each of your JavaScript fles,
concatenate them, and compress them using the YUI Compressor. You may also want to add a task
to fre of your unit tests, a :dev task to run JSLint then your unit tests, etc.

Ant Alternative

If you prefer using Ant, there's an excellent tutorial by the creator of YUI Compressor himself,
Julient Lecomte, which is very useful:
http://www.julienlecomte.net/blog/2007/09/16/

References
The following bibliography lists references to sources cited throughout this book:

Bibliography

BKTDD2002: Beck, Kent, Test Driven Development: By Example, November 18, 2002
ZNTDD2008: Zakas, Nicholas, Nicholas C. Zakas: Test-Driven Development with YUI Test, 2008,
http://yuiblog.com/blog/2008/10/20/video-zakas-yuitest/
NDBDDINTRO: North, Dan, Introducing BDD, 2006, http://dannorth.net/introducing-bdd
ZakasTDD2008: Zakas, Nicholas, Nicholas C. Zakas: Test-Driven Development with YUI Test, 2008,
http://yuiblog.com/blog/2008/10/20/video-zakas-yuitest/
RSPECBDD: Unknown, RSpec: Get Started Now, , http://rspec.info/
KYCTDS2008: Yehuda Katz , Writing Code That Doesn't Suck, 2008
CDJGS20: Crockford, Douglas, JavaScript: The Good Parts, 2008
CDJGP22: Crockford, Douglas, JavaScript: The Good Parts, 2008
FDDGJS48: Flanagan, David, JavaScript: The Definitive Guide, Fifth Edition, 2006
ZNPJWD158: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2009
ZNPJWD163: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2008
ZNPJWD166: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2008
CDJGP47: Crockford, Douglas, JavaScript: The Good Parts, 2008
ZNPJWD176: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2009
ZNPJWD181: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2009
ZNPJWD169: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2009
CDJGP52: Crockford, Douglas, JavaScript: The Good Parts, 2008
DDNSPACING: Dustin Diaz, Namespacing your JavaScript , 2006, http://www.dustindiaz.com/namespace-your-javascript/
ZNPJWD645: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2009
ECMA3-ParseInt: ECMA General Assembly, Standard ECMA-262 3rd Edition - December 1999, 1999
CDJGP109: Crockford, Douglas, JavaScript: The Good Parts, 2008
ZNPJWD192: Zakas, Nicholas, Professional JavaScript for Web Developers, 2nd Edition, 2009
FDDGJS22: Flanagan, David, JavaScript: The Definitive Guide, Fifth Edition, 2006
LRDSA145: Lafore, Robert, Data Structuresand Algorithms in 24 Hours, 1999
PIESLL: Noah Suojanen, John Mongan, Programming Interviews Exposed, 2000

75

http://www.julienlecomte.net/blog/2007/09/16/

PIESLL43: Noah Suojanen, John Mongan, Programming Interviews Exposed, 2000
RAKERDOC: Unknown, Rakefile Format (as of version 0.8.3), 2008, http://rake.rubyforge.org/
RAKEGUIDE: Jim Weirich, Rake User Guide, 2005

Notes to self
Contents:
Notes to self...45

Oreilly Template.. 45

• fb, next prime, towers/hanoi, data structues/algor., etc.

Oreilly Template

The following are from the Oreilly Open Ofce template:

76

1
ChapterTitle

All of the proper ORA styles are under “Custom Styles” (choose this at the bottom
of the Stylist). I highly recommend having the Stylist open at all times when using
the template. Please use only these styles and do not modify them in any way.

Use the ORATools→Insert... menu to insert an arrow character (→) or an em dash
(—). Don't add a space before or after either character.

Heading examples:

HeadA

HeadB

HeadC

HeadD—usually discouraged

Do not use any character styles in headings ever.

Inline font examples:

Body with Emphasis,f and Strong and Literal and Hyperlink and User Input and Replaceable
and User Input Replaceable and Technical Italic and Filename and some Superscript and then some

Subscript.

77

Here's XRefColor and XRefColorCW, which are only used in some books.

Note: Ignore the WW... styles in Character Styles section of the Stylist--they are not
part of the template

Here's a properly formatted table:

Table 1-1. Here's the TableTitle

CellHeading CellHeading

CellSubhead <----If necessary bsksdfkjsdfsdlfkjsdfkj

CellBody with Strong and Emphasis,fi CellCode

Some code examples:

Example 1-1. ExampleTitle (use only if you want a numbered example)
this is Code
this is CodeEmphasis

1 CodeNum
This is code with User Input and User Input Replaceable
Code may only be 85 characters wide for the widest books. Do not use carriage
returns—separate all lines onto separate paragraphs
0 10 20 30 40 50 60 70 80
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345

Here's a Figure:

FigureHolder

Figure 1-1. Figure Title (notice this para is below the FigureHolder, unlike
TableTitle and ExampleTitle)

Note: FigureTitle, ExampleTitle, and TableTitle paragraphs should always start
with the caption in the form:

Figure X-YY. [Caption Text]

X = ChapterLabel, YY = elements sequential number (1 digit for <10), notice
trailing period and space.

Examples:

• Figure 2-5. Stars in the Milky Way

• Table 12-15. C++ Functions

In-text cross references should match the element they want to point to (with the
capital Figure, etc) but should not include the period.

Examples:

78

• See Figure 2-5 for more on the Milky Way.

• Table 12-15 examines some common C++ functions...

And notes:

Note

Note>Code

• Note>ListBullet

1. Note>ListNumber this is literal

NoteWarning

NoteWarning>Code

• NoteWarning>ListBullet

1. NoteWarning>ListNumber

Lists:

ListSimple

• ListBullet
>Code, use instead of code (only) inside lists

ListBullet...

• >ListBullet

>ListBullet...

Note: the numbering on ListNumber won't restart correctly.. sorry. It'll look fne in
FrameMaker; just ignore it for now.

1. ListNumber

ListNumber...

a. >ListNumber

>ListNumber...

ListVariableTerm

ListVariable

>ListVariableTerm

>ListVariable

Sidebars:

79

SidebarTitle
SIDEBARTYPE (ONLY FOR SOME BOOKS

SidebarBody
SidebarCode

• SidebarListBullet

1. SidebarListNumber

Misc:
Quote

Comment (Production Note)

Epigraph

EpigraphAuthor

EpigraphCitation

Hacks books use EpigraphAuthor at the end of Hacks written by other
contributors.

RefName (again, only use these if you've been instructed to)

• RefPurpose

RefSynopsis

RefSectA

RefSectB

RefSectC

RefSectD
0 10 20 30 40 50 60 70 80
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345
12345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678
1234567890
1234567890

80

81

	Introduction
	 1.1. Why this book?
	 1.2. Rationale
	 1.3. Goals of this book
	 1.4. Who should read?
	 1.5. What this book is not?
	 1.6. Examples
	 1.7. Disclaimer

	Part I – Debugging Tools
	Firebug
	 2.1 Introduction
	 2.2 Installation
	 2.3 Usage

	Selenium IDE
	 3.1 Introduction
	 3.2 Installation
	 3.3 Usage
	Example of a Debugging Session

	Part II – Testing Tools
	 Testing Methodologies
	xUnit Frameworks
	BDD Frameworks

	YUI Test
	 4.1 Introduction
	 4.2 Installation
	 4.3 Usage
	 4.4 Setup, Teardown
	 4.5 Additional Features
	 4.6 YUI 3

	QUnit
	 6.1 Introduction
	 6.2 Installation
	 6.3 Usage
	 6.4 FireUnit

	jspec
	 7.1 Introduction
	 7.2 Installation
	 7.3 Usage
	 7.2 Additional Features
	Callbacks
	Options
	Server Formatting
	Other Tidbits

	Summary
	Unit Tests vs. Regression Tests

	Part III – Test Driving JavaScript
	Before we get started
	5 Minute Drill
	What just happened?

	Objects
	Object Creation
	Accessing Object Properties
	Object Assigned by Reference
	Prototypes
	Prototype Shadowing
	Reinventing Thyself
	Prototype Issue

	Inheritance
	Pseudoclassical
	Prototype Shared State Issue
	Constructor Stealing & Combination Inheritance
	Prototypal Inheritance
	Inheriting Prototypes Not Constructors
	Functional Inheritance
	Summary of Inheritance Patterns

	JavaScript Gotchas
	Namespace
	parseInt
	Equality and == vs ===
	Reserved Words in Object Literals
	Scope
	Privileged Singleton

	Part IV – Using What You've Learned
	TDD Example: Linked List
	Singly Linked Lists
	Decomposing Requirements
	Getting Started
	Regressions
	List Creation
	Insertion
	Traversing
	Removal
	Finding
	Extra Credit

	JavaScript Builds
	Validation
	Installing Rhino
	Run JSLint via the Rhino Shell
	JSLint Options

	Compression
	YUI Compressor
	Automated Builds
	Ant Alternative

	References
	Notes to self
	Oreilly Template

