
July 20, 2010

Collections
A collection is a data structure that holds an unspecified amount of data. This is different from an
array where the size of the array is specified when you first create it. Collections always start with a
size of 0.

Two types:

• Linear Collections: Maintain data in a sequential, one-dimensional line
• Non-Linear Collections: Maintain data in a network, grid, hierarchy, or no order at all.

A collection data structure should have these two operations at the very least:

• add: adds an element to the data structure, thus increasing the size by 1.
• remove: removes an element from the data structure, thus decreasing the size by 1.

Collections may have more operations, such as a way to access individual elements.

Goals of a collections:

• Abstraction: Hide the internal details of how it works. There are two different ways of
building a stack, and the user should not be aware of either of them.

• Encapsulation: Protect the internal data from tampering and restrict how the data is
inserted and accessed.

For every collection, we ask the following:

• How will the collection operate?
• How will the interface look?
• What problems will the collection solve?
• How will we implement the collection?
• What are the benefits and costs of each implementation?

Generics
Often times we need to make a library of data to hold data in a particular form. Many times we
don't care what that form is because the data itself isn't relevant to the problem. The linked list is a
good example of this. It stores and releases data regardless of the type of data. In the homework
assignment, we use the type “int” for convenience. When we define a class, if we add
<SomeType> out to the side, then the user of our library can specify what they want
<SomeType> to be. The drawback to generics is that it only works for objects. You can't specify
the generic type to be a primitive. The upside to this is that each of the primitive data types have
an analogous Object type. “int” is “Integer”, “double” is “Double”, etc. You can make the name of
SomeType to be whatever you want as long at the name doesn't conflict with another class or
type currently in Java. Typically, I just use ”<T>” (which is short for “type”) to be my generic data
type. Through out the textbook, the authors use ”<E>” to represent a generic type. I fail to
understand the author's reasoning behind this naming convention.

class MyClass<T> {

 T field; // The variable "field" can now be any data type that the user desires.

}

To instantiate a class that uses generics, it needs to be declared like this:

MyClass<Integer> m = new MyClass<Integer>();

Stacks
There are some data structures that limit how you access the data. A stack is a common data
structure for collecting data as needed. The stack allows you to add as much data to it as you like,
but you only have access to the most recent value. We call the stack a Last-In-First-Out (LIFO)
structure. The last value to get thrown on the stack is the first value to get removed from the
stack.

Think of a stack as a literal stack of plates on a buffet bar in a restaurant. The person eating will
walk up to the bar, grab the top plate, and starts to add food to their plate. When the stack gets
low, someone from the kitchen will come out and add clean plates to the stack. The first plate to
touch the stack is on bottom, so it is grabbed last. The top plate is still always grabbed first.

The back button on your web browser is also an example of a stack. Every time you go to a page,
the last page you were at gets added onto the stack. The top of the stack is always the last page
you visited. By hitting the back button, you are removing the last page from the stack and making
it the current page.

The “undo” button on your text editor will undo your last action on a file. Every action you perform
gets added onto a stack. The top of the stack is always your latest action. When you click “undo”,
you are removing the top action from the stack, making the previous action the new top of the
stack.

There are six stack operations:

• boolean isEmpty() - Returns true if stack is empty, false otherwise
• boolean isFull() - Returns true if stack is full, false otherwise
• int size() - Returns the size of the stack
• void push(T data) - Adds a value to the top of the stack (increasing size by 1)
• T pop() - Removes a value from the top of the stack and returns it (decreasing size by 1)
• T top() - Returns the top of the stack

Infix, Polish, and Reverse Polish Notation
When we write a math program, we usually use what's called “infix” notation. The best example of
this is “2 + 2”. We call it “infix” because the ”+” appears between “2” and “2”. Think of “2 + 2” as a
Java method. The ”+” is the method name. We'll call this method “add”. “add” requires two
parameters. We will call “add” in this manner: “add(2, 2)”. We can rewrite the four basic operations
as Java methods:

• int add(int a, int b) { return a + b; }
• int subtract(int a, int b) { return a - b; }
• int multiply(int a, int b) { return a * b; }
• int divide(int n, int d) { return n / d; }

Infix notation has a drawback. It requires you to memorize an order of operations, which include
parentheses to override certain operations.

 (2 + 2) * 9 // Infix notation

 multiply(add(2,2), 9) // Java methods

Look at the “Java methods” version. If we replace the words “multiply” and “add” with their
mathematical symbols, we get “Polish” notation:

 * + 2 2 9 // Polish notation

 *

There is no need for parentheses or order of operations to understand which actions take place
first. Someone (much smarter than me) realized a very interesting property if we take Polish
notation and reverse where the operations symbols go. Instead of before the operation, make it
after the operation.

 ((2,2)add, 9)multiply // Reverse Java Methods (This isn't legal, but I'm using this to demonstrate what
it might look like.)

 2 2 + 9 * // Reverse Polish Notation

How to “parse” and solve a Reverse Polish Notation expression.

 method RPN

 stack <- new stack

 WHILE nextToken

 token <- getNextToken

 if token is NUMBER

 PUSH stack token

 else if token is OPERATOR

 a <- POP stack

 b <- POP stack

 c <- a (operation of token) b

 PUSH stack c

 end if

 end while

 PRINT TOP stack

 end method

If everything works, at the end of the loop after all of the tokens are read, there should be only one
value on the stack, and that will be the result of the solution of the expression.

Parsing strings from an expression. This method will match strings of parentheses.

 method matchParens

 stack <- new stack

 WHILE nextToken

 token <- getNextToken

 if token is '(' OR token is '{' OR token is '['

 PUSH stack token

 else if token is ')' OR token is '}' OR token is ']'

 if IS_EMPTY stack

 return false

 end if

 if (TOP stack is '(' AND token is ')') OR (TOP stack is '{' AND token is '}') OR (TOP
stack is '[' AND token is ']')

 POP stack

 else

 return false

 end if

 end if

 end while

 return IS_EMPTY stack

 end method

Stack Implementation
 class Stack

 MAX_SIZE <- 100

 T[] elements <- Array of length MAX_SIZE

 top <- 0

 boolean isEmpty()

 return (top == 0)

 end isEmpty

 boolean isFull()

 return (top == MAX_SIZE)

 end isFull

 int size()

 return top

 end size

 void push(T data)

 if isFull()

 print "ERROR: Cannot push item on stack because stack is full."

 exit

 end if

 elements[top] <- t

 top <- top + 1

 end push

 int pop()

 if isEmpty()

 print "ERROR: Cannot pop item from stack because there is nothing to pop"

 exit

 end if

 top <- top - 1

 return elements[top]

 end pop

 T top()

 if isEmpty()

 print "Error: Cannot report top of stack because stack is empty."

 exit

 end if

 return elements[top-1]

 end top

 end Stack

	July 20, 2010
	Collections
	Generics
	Stacks
	Infix, Polish, and Reverse Polish Notation
	Stack Implementation

