
July 12, 2010

Review of Polymorphism
• A reference to an object can point to objects of equal type or derived from equal type.
• A reference pointing to a derived class holds these properties:

• It may execute non-overridden methods of the reference's type.
• It may execute the “updated” overridden methods in the derived type.
• It may not not execute methods unique to the derived type.

The Factory Method Pattern
Vehicle.java
abstract class Vehicle {

    private int speed;

    private String name;

    public Vehicle(String name, int speed) {

        this.name = name;

        this.speed = speed;

    }

    final public int getSpeed() {

        return speed;

    }

    public String toString() {

        return name;

    }

}

Plane.java
public class Plane extends Vehicle {

    private int seats;

    private int engines;

    public Plane(int speed, int seats, int engines) {

        super("Plane", speed);

        this.seats = seats;

        this.engines = engines;

    }

    public int getSeats() { return seats; }

    public int getEngines() { return engines; }



}

Train.java
public class Train extends Vehicle {

    private int cars;

    public Train(int speed, int cars) {

        super("Train", speed);

        this.cars = cars;

    }

    public int getCars() { return cars; }

}

Factory.java
import java.util.*;

public class Factory {

    public static Vehicle makeVehicle(String parts) {

        Scanner scan = new Scanner(parts);

        String type = scan.next(); // Read the vehicle type

        if (type.equals("Train")) {

            int speed = scan.nextInt();

            int cars = scan.nextInt();

            return new Train(speed, cars);

        }

        if (type.equals("Plane")) {

            int speed = scan.nextInt();

            int seats = scan.nextInt();

            int engines = scan.nextInt();

            return new Plane(speed, seats, engines);

        }

        System.out.println("Unknown vehicle: "+type);

        System.exit(1);

        return new Train(0,0); // Should never be called.

    }



}

FactoryTest.java
import java.util.*;

import java.io.*;

public class FactoryTest {

    public static void main(String[] args) throws Exception {

        Scanner scan = new Scanner(System.in);

        System.out.print("Enter a filename: ");

        String filename = scan.next();

        Scanner filehandle = new Scanner(new File(filename));

        int vehicle_count = filehandle.nextInt();

        filehandle.nextLine();

        Vehicle[] vehicles = new Vehicle[vehicle_count];

        for (int i = 0; i < vehicle_count; i++) {

            String parts = filehandle.nextLine();

            vehicles[i] = Factory.makeVehicle(parts);

        }

        for (int i = 0; i < vehicle_count; i++) {

            System.out.println(vehicles[i]+" runs at speed "+vehicles[i].getSpeed());

        }

    }

}

parts.txt
4

Train 15 20

Plane 300 100 6

Plane 100 2 1

Train 30 50

Putting it all together
jcchurch@mccarthy:~/code/java/FactoryPattern$ javac FactoryTest.java

jcchurch@mccarthy:~/code/java/FactoryPattern$ java FactoryTest

Enter a filename: parts.txt

Train runs at speed 15



Plane runs at speed 300

Plane runs at speed 100

Train runs at speed 30


	July 12, 2010
	Review of Polymorphism
	The Factory Method Pattern
	Vehicle.java
	Plane.java
	Train.java
	Factory.java
	FactoryTest.java
	parts.txt
	Putting it all together



