
csci 211 Assignment 1

Linear Data Structures
Due: Thursday, September 30 20101

This assignment provides experience with linear data structures, generics, inheritance, packages,
and testing.

Overview
This assignment asks you to implement several important linear data structures, and also to use
generics and inheritance. In addition, you are asked to verify your implementations by writing
test cases in a separate main() method for each class.

What to do
First, create a fresh project called a1, and add a new file called a1.java. Next, create a file called
List.java, and specify its package as “edu.olemiss.cs211.a1”. Use this same package for other
kinds of list, but a1.java should be in the default package.

Several files are provided on blackboard to get you started. You could either add them directly to
your project, or simply create your own files and copy and paste the contents of the provided
versions.

The List Class

The List class maintains a list of elements in no particular order. It does not check for duplicate
elements. This class is declared as

 public class List<T> implements Iterable<T> {

An existing List.java file available on Blackboard supplies the iterator() method, which creates
an iterator for the list, and satisfies the requirements for the Iterable interface. Paste the contents
of this file into your own List.java. You’ll want to use iterators in this assignment. Here are some
examples:

	 	 for(T n: this){ // “this” must be a List instance
	 	 	
	 	 	 foo.append(n); // append element n to foo
	 	 }

1 Assignments are not considered late until 8AM the following morning. After that, a late penalty of 5% per
day will be applied up to five days, after which the assignment cannot be accepted.

	 	 for(City neighbor: neighbors) // same for neighbors
	 	 	 System.out.println(neighbor)	

Inside the provided List class, there is also an inner class called ListNode, which uses Generics.
You can make a new node with something like:

head = new ListNode<T>(o, null);

Here’s the methods you need to implement:

public List() // construct an empty list

public void add(T o) // add the object to the list
public int size()	// return the number of elements
public String toString() // return a string representing the list

The Stack Class

You’ll have to write your own Stack.java from scratch. It should be a child of List, and should
provide the following methods, with the obvious meanings:

	 public Stack()
	 public void push(T e)
	 public T pop()
	 boolean isEmpty()

If the user attempts to pop() from an empty stack, you should do the following:

	 throw new java.util.NoSuchElementException();

The OrderedList Class
This class maintains an ordered list of unique elements. If add() is called with an argument a
that is equal() to an existing element, a is not added. Remember not to use == to test for equal-
ity.

public class OrderedList<T extends Comparable<? super T>> extends List<T> {

This confusing declaration says that OrderedList is a child class of List, and also uses Generics
to insist that the OrderedList contain only elements of type T, where T is determined at compile
time. The type T must implement the Comparable interface, meaning that a compareTo()
method is provided which determines an ordering of all T objects.

That is, if you say:

OrderedList myList = new OrderedList<City>();

then any attempt to insert objects that are not Cities will be caught by the compiler. Also, the
compiler will ensure that the City class implements the Comparable interface.

For this class you need only implement the following method:

public void add(T o){

This method inserts an object of type T into the list, but maintains the order of the list by insert-
ing it into the proper position, as determined by the compareTo() method of class T.

Be sure to handle the case where an element is inserted at the head of the list. This is somewhat
different from inserting in the middle.

Testing
For all three classes, you should test your code carefully by adding a main() method directly to
each class. This main method should create one or more instances of the class and test the behav-
ior of each method. As described in the book, take care to identify the boundary cases, and ex-
plicitly test them. The a1.java class will also exercise your code, but perhaps not exhaustively. To
run each of your main() methods individually, you can right click (control click for 1 button peo-
ple) on the text window of your class and select the “Run As...” option. Select “Java Applica-
tion”, and your test code should run.

Submission
It is important to put your name on all of your files. It also important to make a single zip ar-
chive (not 7zip, or any other weird formats) containing your project (You can do this from inside
Eclipse). Next, submit your archive file using the blackboard dropbox mechanism. Be sure to
complete the blackboard submission process entirely.

