
July 22, 2010

Nodes Reviewed
Queues
Yesterday we talked about the Stack. A Stack is a data collection structure which gives you fast
access to the most recent item passed to it. It is considered a Last-In-First-Out structure in that
whatever is the most recent data to be added to the stack is also the most recent data to be
removed from the stack. There are many applications for stacks in real world applications and
mathematical problems.

A Queue is the opposite of a stack. A Queue is a data collection structure which gives you fast
access to the oldest item passed to it. It is considered a First-In-First-Out structure in that
whatever is the first piece of data to be added is also the first piece of data removed.

The most common real world example of a queue is a grocery store checkout line. In the UK, the
word “checkout line” is “queue”. The checkout line is a “First-In-First-Out” system of processing
customers' shopping carts. The first customer in line is the first one out the door. The person who
arrives to the checkout line always has to start in the back and wait for everyone in front of him to
checkout. Once everyone in front of a cart has left, the cart now becomes the front of the line and
can be processed.

Queues do not appear as often as stacks in applications and real world problems. The most
common computer application of a queue is a networked printer that accepts print jobs. Back in our
Adler computer lab, we have a networked printer. If each of us are working on our programs and
had to print them, we use the print function in whatever application we are using. If someone on
the other side of the lab hits “print” just a few seconds before you hit “print”, then their document
is added to the queue first, and your document is added to the system in a “spool” for printing
later. The printer has an on-board memory for accepting jobs that it is not yet able to print.

Another example of a queue is parallel computing applications. One model of parallel computing is
the “worker bee” model. In this model, a series of computers are all networked to act as a cluster
computer. In cluster computing, the machines do not work together to solve a problem, but they
can communicate with each other and pass messages from machine to machine. One computer will
represent a queen bee. The remaining machines will be added to a queue of “waiting” machines.
The queen will accept jobs for processing and immediately assign the job to the first machine in the
queue of waiting machines. This machine is now in the state of “working” and is removed from the
queue. When the worker machine is finished with the task, it alerts the queen that the task is
finished and is added back to the end of “waiting” machines queue. In this system is the second
machine in the queue could be faster than the first machine. The second machine could finish its
job in a faster time than the first machine and return to the queue faster. The advantage to this
system is that for the first complete pass of the queue, each machine is used once. Faster
machines are assigned jobs and added back to the queue faster than slow machines. If one
machine in the queue is extremely slow, it only effects one job, and the rest of the system hums
along smoothly without even knowing that one machine has fallen behind.

Circular Queue implementation
In the stack, we required three fields: an array of elements, the top variable, and the MAX_SIZE
variable. In the queue, we need four fields: an array of elements, a front variable, a back variable,
and a MAX_SIZE variable.

class Queue<T>

 int MAX_SIZE = 100

 int front

 int back

 T[] elements

 Queue:

 front = 0

 back = 0

 elements = Array[MAX_SIZE]

 isEmpty:

 return front == back

 isFull:

 return front == (back + 1)%MAX_SIZE

 size:

 return (back - front + MAX_SIZE) % MAX_SIZE

 front:

 if isEmpty:

 print "Error: Queue is empty."

 exit

 return elements[front]

 enqueue(data):

 if isFull:

 print "Error: Queue is full."

 exit

 elements[back] = data

 back = (back + 1) % MAX_SIZE

 dequeue:

 if isEmpty:

 print "Error: Queue is empty."

 exit

 temp = elements[front]

 front = (front+1) % MAX_SIZE

 return temp

Priority Queue
The Priority Queue is a combination of the Queue and the Insertion Sort. All of the operations of
the queue are the same except for the “enqueue” operation. The enqueue operation acts as a
simple insertion sort, where you have to move around elements to find the proper place for your

next data point to live. There are several algorithms which can be solved with a Priority Queue:
most notably is the famous Dijkstra's algorithm for determining the shortest distance between two
points when given a network of roads.

http://en.wikipedia.org/wiki/Dijkstra's%20algorithm

	July 22, 2010
	Nodes Reviewed
	Queues
	Circular Queue implementation
	Priority Queue

