
Contents

Preface 4

Introduction 6

TDD . 6

Design Patterns . 7

Observer Pattern 7

Overview . 7

Observer Pattern Class Diagram . 8

Implementing Observer Pattern using TDD 8

Refactoring . 11

A Slight Detour: What should I test? 17

Testing both the “happy” and “sad” paths 18

Implementing Observers . 23

Final Implementation . 27

Considerations . 32

SPL . 32

Push vs. Pull . 32

Pitfalls . 33

Example Uses . 34

Exercises . 34

Summary . 35

Object Oriented Principles 35

Abstraction . 36

Class . 36

Interface . 36

Dynamic Binding . 37

Inheritance . 37

Encapsulation . 37

Polymorphism . 37

1

S.O.L.I.D. Principles . 38

SRP: The Single Responsibility Principle 39

Open/Closed Principle . 39

Liskov Substitution Principle . 39

Interface Segregation Principle . 41

Dependency Inversion Principle . 41

Decorator Pattern 42

Overview . 42

Decorator Pattern Class Diagram . 42

Decorator Pattern Implementation . 42

Java Implementation . 43

PHP Implementation . 46

Considerations . 48

Decorator vs. Inheritance . 48

Transparency . 49

Pitfalls . 49

Exercises . 50

Factory Pattern 50

Overview . 50

Factory Method . 52

Factory Method Variations . 55

Pitfalls . 56

Abstract Factory . 57

Pitfalls . 62

Static Factory . 63

Pitfalls . 65

Final Thoughts . 65

Singleton Pattern 65

Overview . 65

Implementation . 66

2

Builder Pattern 67

Overview . 67

Participants and Collaborations . 67

Implementation . 68

Implementation . 71

Pitfalls . 73

Summary . 73

Command Pattern 73

Overview . 73

Implementation . 74

The “Very Simplest” Command Pattern Implementation 75

Naming Conventions . 78

Example: A user interface toolkit . 78

Designing “on the go” . 79

Implementation . 79

Code walk-through . 90

Template Pattern 91

Overview . 91

Hollywood Principle . 93

Features . 93

Hooks . 93

Participants . 94

Implementation . 94

Example: Audio Decoder . 94

Exercises . 98

Pitfalls . 99

Summary . 99

3

Strategy Pattern 99

Overview . 99

Features . 100

Participants . 100

Implementation . 101

Pitfalls . 104

Summary . 104

State Pattern 104

Overview . 104

Participants and Collaborations . 105

Design Process . 105

Case Study: Audio Application . 107

Implementation . 109

Other Use Cases . 114

Exercises . 114

Benefits . 114

Issues . 115

Summary . 115

Composite Pattern 115

Overview . 115

Implementation . 116

Issues . 120

Summary . 121

Preface

I decided to write this book because I thought it would be interesting to cover
Design Patterns using a test-driven approach—I’m a sucker for “killing two
birds with one stone”. Because of this choice, the chapter on Observer pattern
serves dual purposes with a particular focus on getting the reader up to speed on
TDD basics. More advanced TDD topics like proper use of test doubles, writing
testable code, etc., will not be addressed (although I try to provide links for

4

further investigation where appropriate). All this said, the primary subject of
this book is not TDD, it’s Design Patterns! Also, please be forwarned that we
will not be able to be particularly rigorous in our test coverage and will likely
be omitting a lot of defensive code that would be required of a “real system”.
I have chosen understandibility over robustness for an obvious reason—I don’t
want the reader to get lost in details that don’t really pertain to the point being
made. This is a fairly typical approach, but I apologize in advanced if I somehow
insult your sensibilities!

Programming Languages

Most of the examples will be in Java, PHP, and JavaScript, but some might use
other languages. This should be fine since:

• TDD and Design Patterns should be language agnostic

• The examples will be simple enough to follow (even if in an unfamiliar
language)

Resources

I’ve generally listed any resources as clickable web links that you can learn more
from, or, as links to where you might purchase the book that I’m referencing.

Line breaks in code

I’ve taken the liberty of purposely wrapping long lines that won’t fit within the
width of the page.

Also, I’ve found that the generated code samples for PHP do not show up correctly
unless I start and end the sample code blocks out with corresponding PHP opening
and closing tags. So that’s why every darn PHP code snippet has these!

Contributions

I am definitely open to collaborative authorship (hey, I did put it on github!),
provided that other authors follow the general style and spirit of the book. At
some point, I’ll try to define this all in a more concrete way. If you do want to
contribute, you’ll probably want to have a good look at the commented Makefile,
and also notice the use of “extra lines” between code samples. I’ve managed to
find workarounds for the somewhat finicky pandoc/docbook tool-chain (and I’m
thankful that it works at all since these tools really make life so much easier!)

Special acknowledgement

I feel obliged to commend Addy Osmani on his countless community contributions,
particularly in developer education, and acknowledge that seeing the impact
of his work inspired me to write myself. Also, the book: Essential JS Design
Patterns is where I shamelessly lifted the pandoc build process being used here!

5

https://github.com/addyosmani
https://github.com/addyosmani

Introduction

Why should we study design patterns?
As design patterns help us to use object-oriented best practices, it is useful to
already have some meaningful experience in object oriented programming before
attempting a deep study of design patterns. In fact, we have seen some try to
dissuade a study of design patterns until the reader has reached an architect
or designer skill level (whatever exactly that means). Obviously, the more
prerequisite knowledge you have, the faster and you’ll be able to grasp difficult
abstract concepts; so perhaps there’s some truth to the level of readiness that’s
ideal.
However, we would assert that you need not yet be an object oriented master to
benefit from an initial study of design patterns. In fact, object oriented and good
design go hand in hand—therefore, studying good design should reinforce your
understanding of some object oriented concepts. Examples of design pattern
implementations show object-oriented best practices “in action”, and, since many
of us learn best by example, the study of the two at the same time just might
be complimentary.
Before reading this book, please take some of the following disclaimers and
suggestions in to account:

• design patterns are an ongoing study; you’ll likely learn new things when
you return to the material at a later date

• therefore, assume that you’ll need to return to the materials at later stages
of your career

• if we don’t explain something in a way that gets through to you, don’t give
up; try to look at a few similar examples on the web, or in other design
pattern books, and look for the similarities—it’ll start to make sense!

• Our goal is simply to “get your feet wet” with design patterns and not to
cover them exhaustively.

TDD

As we have stated, TDD is not the focus of this book, just an approach we’ve
used to examine design patterns. However, unlike the majority of the book, the
next chapter on Observer pattern does try to act as a sort of “TDD: up and
running” tutorial—we painstakingly examine a TDD session (as we implement
the Observer pattern) and go through each test case one by one in order to
quickly bring you up to speed in TDD.
If you already have a lot of experience doing test-driven development, you may
be “put off” by the verbosity of that chapter. Feel free to jump ahead, and, rest
assured that subsequent chapters will be much more “to the point”.

6

Design Patterns

We would be remiss not to mention the pioneers known as the Gang of Four
who, with their book Design Patterns: Elements of Reusable Object-Oriented
Software, described several reusable patterns that can be used to solve common
recurring software design dilemnas.

We will discuss several, but not all, of the GoF patterns, since they lay the
framework from which new design patterns have evolved. As every pattern has
its pros and cons, we will list the ones we’ve noticed as applicable. As we cover
each particular pattern, we will not be adhering to any rigid pattern structures
like those presented in the following section. Our goal is to distill the material in
an accessible way. Hence, we advise you to view this book as a supplementary
material on the subject.

Pattern Structures Formal design pattern descriptions are known to adhere
to certain well-defined pattern structures. Christopher Alexandar is an architec-
ture academic who, while pioneering the whole design pattern concept in the
first place, provided the Alexandrian Form. The Gang of Four uses the Portland
Form (which includes no less than: intent, motivation, applicability, structure,
implementation, sample code, known uses, and related patterns sections).

Observer Pattern

Tip: This is a long chapter that goes through the TDD process with a fine tooth
comb. If you’re already comfortable with TDD, feel free to skip to the bottom to
see the implementation.

Overview

Wikipedia describes the Observer Pattern as follows:

The observer pattern is a software design pattern in which an object,
called the subject, maintains a list of its dependents, called observers,
and notifies them automatically of any state changes, usually by
calling one of their methods. . .

There are many event based systems that are quite similar in spirit to the
Observer pattern such as: Pub/Sub, EventEmitter (node.js), NSNotification
(Cocoa), etc. These all have in common the ability to dynamically notify one to
many interested parties via some sort of broadcast mechanism. In the case of the
Observer, a subject calls the update method of one to many boserver instances
(it does this without needing to know anything specific about these parties other

7

http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y
http://en.wikipedia.org/wiki/Christopher_Alexander
http://c2.com/cgi/wiki?AlexandrianForm
http://c2.com/ppr/about/portland.html
http://c2.com/ppr/about/portland.html
http://en.wikipedia.org/wiki/Observer_pattern
https://github.com/millermedeiros/js-signals/wiki/Comparison-between-different-Observer-Pattern-implementations
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://github.com/joyent/node/blob/master/lib/events.js
https://github.com/joyent/node
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSNotificationCenter_Class/Reference/Reference.html
https://developer.apple.com/technologies/mac/cocoa.html

than that they implement a common interface to recieve said notifications).
In object oriented circles, this decoupled use of composition and interfaces is
called programming to an interface not an implementation. This is a key object
oriented principle that allows us to maintain orthogonality in our systems.

Another feature of this pattern is that observers can be added or removed at
runtime—thus providing a means to “hot swap” components easily when needed.

At its core the pattern involves the following steps:

1. Allow observers to register (and also unregister) to recieve notifications.

2. Keep these observer instances in a suitable data structure such as a List
or Array.

3. When state changes (e.g. a new article is published, a user logs in, a track
is played, etc.) these observers are notified by the subject who calls an
interface defined update method on each of the observers.

Observer Pattern Class Diagram

The following is a class diagram that represents the Observer Pattern we’ll be
discussing in this chapter:

Figure 1: Observer Pattern Class Diagram

Note that there can be 1..* concrete subjects or observers.

Implementing Observer Pattern using TDD

Let’s use TDD to implement this pattern. Specifically, we’ll be writing unit
tests to test our Observer Pattern implementation as an isolated unit. Please

8

http://en.wikipedia.org/wiki/Design_Patterns#Introduction.2C_Chapter_1
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing

be forwarned that I’ll start out going through each and every “Red, Green,
Refactor” cycle (so you can get a feel for this process), but will eventually start
to condense things as we move forward. We’ll be using the phpunit framework
for this chapter so make sure you have that installed if you’d like to follow along.

<?php
require_once(’Observer.php’);

class ObserverTests extends PHPUnit_Framework_TestCase
{

public function testSubscribing()
{

$publisher = new Subject();

}
}
?>

And when we run phpunit we get:

$ phpunit ObserverTest.php # outputs:
Fatal error: Class ’Subject’ not found in
/Users/rlevin/programming/labs/BOOK/research/observer/ObserverTests.php on line 8

So now we add the appropriate minimal code to get it green:

<?php
abstract class Subject
{
}
class ConcreteSubject extends Subject
{
}

And then we move on to finishing up our spec:

<?php
class ObserverTests extends PHPUnit_Framework_TestCase
{

public function testSubscribing()
{

$observer = array();
$subject = new ConcreteSubject();
$subject->register($observer);

9

http://www.phpunit.de/manual/current/en/index.html

$this->assertEquals(1, $subject->getNumberOfObservers(),
"Subscriber should have 1 observer when 1 registered.");

}
}
?>

Running phpunit again:

$ phpunit ObserverTest.php # outputs:
Fatal error: Call to undefined method ConcreteSubject::register() in
/Users/rlevin/programming/labs/BOOK/research/observer/ObserverTests.php on line 10

So we add the two methods:

<?php
public function register($observer)
{
}
public function getNumberOfObservers()
{
}
?>

And get following:

$ phpunit ObserverTests.php
Should be 1 observer when 1 added.
Failed asserting that null matches expected 1.

So we need to create the data structure to hold our list of observers:

<?php
abstract class Subject
{
}
class ConcreteSubject extends Subject
{

private $observers = array();
public function register($observer)
{

array_push($this->observers, $observer);
}
public function getNumberOfObservers()
{

10

return count($this->observers);
}

}
?>

Refactoring

So now that we have our first test spec defined (and we’re all green), we can
take a step back and think about what in this code could be better. This is
called refactoring (or Code Refactoring). Note that we only start refactoring
when our tests are green.

So, is there something about this code that strikes you as odd? It should! We
have an abstract class but we’re not defining any abstract methods. In this case,
the register method is really part of our Subject interface so we should add that
abstract method to Subject:

<?php
abstract class Subject
{

abstract public function register($observer);
// abstract public function unregister($observer);

}
?>

Notice that we take the liberty of also adding the unregister abstract method,
but we comment it out since we want to maintain a fairly fast “iterative rhythm”.

You may have also noticed that we made a pretend observer object (we could
have used a fake object, but in this case we knew we’d soon be implementing
real observers). Let’s get rid of that and create a very simple but real observer
now:

<?php
public function testSubscribing()
{

$observer = new ConcreteObserver();
...

?>

And we get a failure saying it’s not defined so. . .

<?php
interface iObserver
{

11

http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Mock_object

}
class ConcreteObserver implements iObserver
{
}
?>

Ok, so we’ve proven that we can push an object on to a PHP array. “Big deal!”,
you say. Sure, but we now have the benifit of having some test coverage to build
on top of as we introduce more “exciting” features.

“Hot swapping” components

One of the features of Observer pattern is the ability for observers to attach
and detach themselves at runtime. There are many uses for this, but let’s say
you wanted to temporarily re-route a minimal production logging system with a
more verbose logging system to track down an issue. Rather than taking down
the whole system, you could simply swap out the ProductionLogger observer
and swap in a VerboseLogger simply calling unregister and register respectively.
Then, upon fixing the issue, you could do the reverse, and thus, swap the
components back as they were.

So let’s get to work on that unregister method. . .

<?php
public function testUnsubscribing()
{

$observer1 = new ConcreteObserver();
$observer2 = new ConcreteObserver();
$subject = new ConcreteSubject();
$subject->register($observer1);
$subject->register($observer2);
$this->assertEquals(2, $subject->getNumberOfObservers(),

"Should be 2 observers when 2 added.");
$subject->unregister($observer1);
$this->assertEquals(1, $subject->getNumberOfObservers(),

"Should be 1 observer when 1 when one removed.");
}
?>

Of course we get:

**Fatal error: Call to undefined method ConcreteSubject::unregister()

At this point I’m not going to be listing every step (like when we define a class or
method when we have an undefined test error just to get the test to pass) but, if

12

you’re following along, remember to take small steps between coding and running
your tests.

We need to define an unregister method which we do as follows:

<?php
public function unregister($observer)
{

foreach ($this->observers as $k => $v)
{

if ($observer == $v)
{

unset ($this->observers[$k]);
return true;

}
}
return false;

}
?>

And we’re all green again. Our implementation so far is:

<?php
abstract class Subject
{

abstract public function register($observer);
abstract public function unregister($observer);

}

class ConcreteSubject extends Subject
{

private $observers = array();

public function register($observer)
{

array_push($this->observers, $observer);
}

public function unregister($observer)
{

foreach ($this->observers as $k => $v)
{

if ($observer == $v)
{

unset ($this->observers[$k]);
return true;

13

}
}
return false;

}

public function getNumberOfObservers()
{

return count($this->observers);
}

}

interface iObserver
{
}
class ConcreteObserver implements iObserver
{
}
?>

Refactoring Pull Up

At this point, it’s debatable whether Subject should be abstract or an interface
since we aren’t supplying any default behavior. Having a quick look, it seems
we can “pull up” the getNumberOfObservers method. We pull it up into our
abstract Subject class as follows:

<?php
abstract class Subject
{

protected $observers = array();
abstract public function register($observer);
abstract public function unregister($observer);
public function getNumberOfObservers()
{

return count($this->observers);
}

}
?>

Note that getNumberOfObservers is a method that I took the liberty of creating
to make the Subject more testable. It’s not actually part of the Observer pattern.

DRY (don’t repeat yourself)

Ok, that looks better but I don’t like our testUnsubscribing spec. It’s too long
for such a simple test and also, if you look caefully at testSubscribing, you’ll
see that we have duplicate code breaking the DRY Principle. Essentially, the

14

http://en.wikipedia.org/wiki/Pull_Up_refactoring
http://www.artima.com/intv/dry.html

DRY principle states that we want to avoid duplication since that requires us to
maintain duplicate code bases in parallel.

Setup and Teardown

We can pull that duplicate code up in to a setUp method (setUp is used to set
up state before each test case run; as expected, tearDown executes just after
each test case run). Doing so will mean we have to go through and change our
references from the local to class level like so:

<?php
require_once(’Observer.php’);

class ObserverTests extends PHPUnit_Framework_TestCase
{

private $observer = null;
private $observer2 = null;
private $subject = null;

public function setUp()
{

$this->observer = new ConcreteObserver();
$this->observer2 = new ConcreteObserver();
$this->subject = new ConcreteSubject();

}
public function tearDown()
{

$this->observer = null;
$this->observer2 = null;
$this->subject = null;

}

public function testSubscribing()
{

$observers = $this->registerMany(1);
$this->assertEquals(1, $this->subject->getNumberOfObservers(),

"Subscriber should have 1 observer when 1 observer registered.");
}

public function testUnsubscribing()
{

$this->subject->register($this->observer);
$this->subject->register($this->observer2);
$this->assertEquals(2, $this->subject->getNumberOfObservers(),

"Should be 2 observers when 2 added.");
$this->subject->unregister($this->observer);
$this->assertEquals(1, $this->subject->getNumberOfObservers(),

15

"Should be 1 observer when 1 when one removed.");
}

}
?>

You should now notice that—since our last refactoring—the test case has become
much more readable and easy to understand. Thus we didn’t just reduce
duplication (but more importantly) made our tests self documenting.

For this exercise, we’re using phpunit’s setUp/tearDown combination (similar
to JUnit if you’re a Java developer), but you’ll see other similar hooks in
other frameworks like beforeEach/afterEach (Jasmine), begin/done (QUnit), etc.
These methods are called just before and after each test case allowng you to
set up (and tear down) state. This ensures that each test is ran in isolation not
depending on any leftover state from previous test case runs.

Helpers

I’d like to do one more refactoring before moving on—I’m not happy with the
way we’re registering our observers within each test case. Let us try moving that
code in to a helper function:

<?php
public function testUnsubscribing()
{

$observers = $this->registerMany(5);
...

private function registerMany($n)
{

$observers = array();
foreach (range(0, $n-1) as $key) {

$observers[$key] = new ConcreteObserver();
$this->subject->register($observers[$key]);

}
return $observers;

}
}
?>

The above helper method is a direct lift from the rollMany helper function in
the famous bowling game kata. If you haven’t heard of it you should take a quick
look at Uncle Bob’s Bowling Game Kata. Read the short article and perhaps
schedule time in your calendar to go through the power point presentation step
by step. Better yet, play with the kata using your favorite language(s) in your
“spare time”. . . it’s quite instructive. Here’s an example of using phpunit with
BDD to solve Bowling Game.

16

http://en.wikipedia.org/wiki/Self-documenting
http://pivotal.github.com/jasmine/
http://qunitjs.com/
http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
http://www.phpunit.de/manual/current/en/behaviour-driven-development.html#behaviour-driven-development.bowlinggame-example
http://www.phpunit.de/manual/current/en/behaviour-driven-development.html#behaviour-driven-development.bowlinggame-example

A Slight Detour: What should I test?

Determining just what to test is a difficult task but here are some general
guidelines to help with that process.

Structured Basis Testing The main idea of Structured Basis Testing is that
your test cases, for a particular peice of code, are derived from the code’s logic
and you try to have tests in place for every possible branch. So at it’s simplest:

<?php
function foo() { // count 1 for the function itself

if (something) { // count 2 for this condition
// ...

} else if (somethingElse) { // count 3 for this condition
// ...

}
// We count one for function itself because this might be
// all that’s executed if neither above are truthy!
return true;

}
?>

This is also sometimes referred to as logic coverage testing. The programmer’s
tome Code Complete 2 discusses this in depth in it’s Chapter 22: Developer
Testing.

Boundary Conditions Testing The Practice of Programming tells us that
we should:

Test code at its boundaries. . . The idea is that most bugs occur at
boundaries.

When you test production code that can take a range of valid values, use just
below minimum, minimum, maximum, and just below and exceeding maximum
values. This takes discipline and time (but given that boundaries are likely
places where errors creep up) it’s well worth the effort.

Also keep in mind that there might be compound boundaries when 2 or more
variables interact. An obvious example is when you multiply two numbers. In
this case, you have the potential to inadvertantly exceed the maximum value.

17

http://www.testingstandards.co.uk/living_glossary.htm#S
http://www.cc2e.com/Default.aspx
http://www.informit.com/store/practice-of-programming-9780201615869

Known Error Testing Is there an area that is likely to be problemattic? If
so, make sure to test for that area.

An example might be if you were to implement a “time picker”. Setting aside
time zone and daylight savings concerns, we’d want heavy coverage on times
known to be error prone such as: 00:00, 12:00am, 12:00pm (keep in mind the
user’s time format might be 12 or 24 hour format!) In addition, you may also
want to use: 23:59, 11:59pm, 11:59am, 00:01, 12:01am, 12:01pm, etc.

Data-Flow Testing This is also discussed in the Code Complete 2 book, and
you should turn to that resource for more in depth coverage. However, essentially,
data-flow testing provides that data usage is just as problemattic as control flow,
and that you therefore need to take into account of the various possible states
your data structures might be in (e.g. Defined, Used, Killed, Entered, Exited,
etc.) Data flow testing is beyond the scope of this book but you can read more
in this paper if you’re interested.

Cross Checking If you have to implement something that’s been reliably
implemented elsewhere, you may be able to cross check your results against the
existing implementation:

actual = MyMath.squareRoot(n);
expected = Math.sqrt(n);
assertEquals(actual, expected,
"My implementation of square root should be same as Java’s");

In this chapter, we are focusing on using TDD to unit test our Observer imple-
mentation thus leaving out many other important types of testing: Integration
Testing, Systems Testing, Stress Testing, etc. In a real system, you will ideally
have a suite of complimentary tests that include all of the aformentioned within
an Continuous Integration System. You should also consider using a tool to
measure your test code coverage.

Testing both the “happy” and “sad” paths

Gary Bernhardt, of Destroy All Software, uses “happy” and “sad” to describe the
normal and abnormal code paths. At minimum, both of these paths—sometimes
also called the nominal and non-nominal paths (but I like Gary’s happy/sad
better!)—should get proper test coverage. Perhaps so far we’ve been a bit too
joyful!

<?php
public function testSubscribingWithFalsy()

18

http://www.cc2e.com/Default.aspx
http://www.cs.swan.ac.uk/~csmarkus/CS339/dissertations/NewM.pdf
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Stress_testing
http://en.wikipedia.org/wiki/Continuous_integration
http://martinfowler.com/bliki/TestCoverage.html
https://www.destroyallsoftware.com

{
$observers = $this->subject->register(null);
$this->assertEquals(0, $this->subject->getNumberOfObservers(),

"Should be 0 observers if register called with a falsy.");
}

?>

Which results in:

Failed asserting that 1 matches expected 0.

So we change our system under test to be:

<?php
public function register($observer)
{

if (!empty(\$observer))
{

$this->observers[] = $observer;
}

}
?>

And we’re back to passing. However, not only could we pass in falsy arguments,
but we might also pass in a non-observer as well. So we need to defend against
that as well:

<?php
public function testSubscribingWithNonObserver()
{

$nonObserver = "I’m not a legal observer!";
$observers = $this->subject->register($nonObserver);
$this->assertEquals(0, $this->subject->getNumberOfObservers(),

"Should be 0 observers if register called with a falsy.");
}

?>

Obviously, we need some type hinting help here and so we try to change our
abstract Subject’s interface to be like:

<?php
abstract public function register(iObserver $observer);
abstract public function unregister(iObserver $observer);

?>

19

But doing this results in the following goliath error output:

1) ObserverTests::testSubscribingWithFalsy
Argument 1 passed to ConcreteSubject::register()
must implement interface iObserver, null given...

2) ObserverTests::testSubscribingWithNonObserver
Argument 1 passed to ConcreteSubject::register()
must implement interface iObserver, string given...
...

But if we look carefully at these errors, we see that the type hinting is actually
doing it’s job thus disallowing us to pass both NULL and String to register!
Let’s remove the following two test cases:

// public function testSubscribingWithFalsy()
// {
// $observers = $this->subject->register(null);
// $this->assertEquals(0, $this->subject->getNumberOfObservers(),
// "Should be 0 observers when register called with a falsy.");
// }
// public function testSubscribingWithNonObserver()
// {
// $nonObserver = "I’m not a legal observer";
// $observers = $this->subject->register($nonObserver);
// $this->assertEquals(0, $this->subject->getNumberOfObservers(),
// "Should be 0 observers when register called with a falsy.");
// }

After said removal, we’re back to passing again, and we’ve made our production
code easier to read:

<?php
public function register(iObserver $observer)
{

$this->observers[] = $observer;
}

?>

Obviously, in a real system we’d need to think of other “sad paths”, but it’s
interesting to note that the mere process of testing has helped us to remove
needless code. For example, we don’t have to add code like:

if (is_object($newSubject) &&
$newSubject instanceof Subject) {

...

20

Let’s continue to look for other possible “sad paths”:

<?php
public function testUnsubscribingWhenNone()
{

$actual = $this->subject->unregister(new ConcreteObserver());
$this->assertEquals(false, $actual,

"Unregister returned status should be false if no observers");
}
public function testGetNumberObserversWhenNone()
{

$this->assertEquals(0, $this->subject->getNumberOfObservers(),
"Should be 0 observers when none.");

}
?>

We try the above and they both pass without any changes. Since the getNum-
berOfObservers is really just a helper to facilitate testing (and is quite simple),
let’s remove that test. We only want “useful” tests.

Before we can implement our observers we need to add a capability to the subject.
In order to be useful, we need to be able to set and get some sort of meaningful
data from the Subject. Let’s do that now:

<?php
public function testSubjectShouldHoldState()
{

$stateAsString = "some state";
$this->subject->setState($stateAsString);
$actual = $this->subject->getState();
$this->assertEquals($stateAsString, $actual,

"Should get/set state as string");

$stateAsArray = array(’foo’ => ’foo val’);
$this->subject->setState($stateAsArray);
$actual = $this->subject->getState();
$this->assertSame($stateAsArray, $actual,

"Should get/set state as array");
}

?>

And the obvious implementation:

<?php
public function setState($state)

21

{
$this->state = $state;

}
public function getState()
{

return $this->state;
}

?>

I’m not pleased with the length of the test case and don’t think it’s too useful
to test both for types String and Array. It was the first time through but not
for repeatable test suite runs. So I’ll remove the String part leaving just:

<?php
public function testSubjectShouldHoldState()
{

$stateAsArray = array(’foo’ => ’foo val’);
$this->subject->setState($stateAsArray);
$actual = $this->subject->getState();
$this->assertSame($stateAsArray, $actual,

"Should get/set state as array");
}

?>

Again, we want readable and meaningful tests so we sometimes have to make
these sorts of judgement calls, and I’m going to favor brevity in this case.

Now that we have a way to hold state, we can start implementing our observer
interface:

<?php
public function testObserverGetsNotified()
{

$subject = new ConcreteSubject();
$observer = new ConcreteObserver($subject);
$state = ’yogabbagabba’;
$subject->setState($state);
$this->assertEquals($state, $observer->getState(),

"Setting state in subject notifies observer");
}

?>

And then:

22

<?php
interface iObserver
{

public function update (iSubject $subject);
}
class ConcreteObserver implements iObserver
{

private $state;
public function update (iSubject $subject)
{

$this->state = $subject->getState();
}
public function getState()
{

return $this->state;
}

}
?>

Resulting in:

1) ObserverTests::testObserverGetsNotified
Setting state in subject notifies observer
Failed asserting that null matches expected ’yogabbagabba’.

Our observer looks ok, but it’s likely not getting notified (duh, we didn’t
implement that yet!). . .

Implementing Observers

So we’re at a sort of critical point here. We’ve implemented quite a bit of code,
and we still have more (the notify observers routine for example). Moreover, we
can feel our blood pressure rise and our confidence level dropping. What to do?
Simply back up a step. Get those tests green again!

// public function testObserverGetsNotified()
// {
// $subject = new ConcreteSubject();
// $observer = new ConcreteObserver($subject);
// $state = ’yogabbagabba’;
// $subject->setState($state);
// $this->assertEquals($state, $observer->getState(),
// "Setting state in subject notifies observer");
// }

23

We’ve simply commented out our last test case, re-ran our tests and we’re green:

OK, but incomplete or skipped tests!
Tests: 6, Assertions: 6, Incomplete: 1.

We can take a deep breath feeling reassured that we haven’t created a 30
minute debugging session for ourselves. Also note that we’ve left the “partially
implemented” changes in our production code. So we’ve actually made some
progress given that, so far, we haven’t caused a regression. We’ll take a bit of a
risk, and leave those change in while we implement notifications:

<?php
public function testObserverGetsNotified()
{

$this->subject->register($this->observer);
$state = ’yogabbagabba’;
$this->subject->setState($state);
$this->subject->notify();
$this->assertEquals($state, $this->observer->getState(),

"Setting state in subject notifies observer");
}

?>

This was derived from the test case we commented out earlier. If it’s not obvious,
we’ve defined $this->observer in setUp. Here’s our full implementation so far:

<?php
abstract class Subject
{

protected $observers;
protected $state;

abstract public function register(iObserver $observer);
abstract public function unregister(iObserver $observer);

public function getNumberOfObservers()
{

return count($this->observers);
}

}

class ConcreteSubject extends Subject
{

public function __construct()

24

{
$this->observers = array();

}
public function register(iObserver $observer)
{

$this->observers[] = $observer;
}

public function unregister(iObserver $observer)
{

foreach ($this->observers as $k => $v)
{

if ($observer == $v)
{

unset ($this->observers[$k]);
return true;

}
}
return false;

}

public function notify()
{

foreach ($this->observers as $observer) {
$observer->update($this);

}
}
public function setState($state)
{

$this->state = $state;
}

public function getState()
{

return $this->state;
}

}

interface iObserver
{

public function update (Subject $subject);
}
class ConcreteObserver implements iObserver
{

private $state = null;
public function update (Subject $subject)

25

{
$this->state = $subject->getState();

}
public function getState()
{

return $this->state;
}

}
?>

Notice that by using a sprinkle of type hinting, we don’t have to resort to using
things method_exists checks to determine if the subject passed into update
actually has a getState method. . . it can be safely assumed since Subject defines
that as an abstract (thus required) method.

Unique observers We’d like to prevent an exact observer instance getting
included in our subject’s observer List twice. There are several approaches we
could take to solve this, but let’s go with adding an id property to each observer
instance and then utilizing array_unique.

First the ID part:

<?php
// we add this test

public function testObserversHaveIds()
{

$this->assertNotNull($this->observer->getID());
}

// and we add this to observer:
private $state = null;
private $id;
public function __construct()
{

$this->state = null;
$this->id = uniqid (rand(), true);

}
public function getID()
{

return $this->id;
}

?>

Now that our observers have IDs, we can have our subject enforce uniqueness in
register. First let’s see this fail:

26

http://php.net/manual/en/language.oop5.typehinting.php
http://php.net/manual/en/function.method-exists.php

<?php
public function testAddingDuplicates()
{

$this->subject->register($this->observer);
$this->subject->register($this->observer);
$this->assertEquals(1, $this->subject->getNumberOfObservers(),

"Should only add a particular observer instance once");
}

?>

This results in:

1) ObserverTests::testAddingDuplicates
Should only add observer once
Failed asserting that 2 matches expected 1.

In order to use array_uniquewe need to first implement a __toString in our
observer.

We first comment out testAddingDuplicates, verify our tests are again passing,
add the toString method, and once more verify our tests are still pass-
ing. After safely adding toString, we uncomment testAddingDuplicates and
continue onwards on our mission to disallow duplicates. All we have to at this
point is to call array_unique when we register our observers like so:

<?php
public function register(iObserver $observer)
{

$this->observers[] = $observer;
$this->observers = array_unique($this->observers);

}
?>

Our test is now passing and we’ve ensured all our observers are, in fact, unique
instances.

Final Implementation

At this point, we have a fairly complete Observer implementation that could be
further extended easily should we so desire.

27

ObserverTests.php

<?php
require_once(’Observer.php’);

class ObserverTests extends PHPUnit_Framework_TestCase
{

private $subject = null;
private $observer = null;

public function setUp()
{

$this->subject = new ConcreteSubject();
$this->observer = new ConcreteObserver($this->subject);

}
public function tearDown()
{

$this->subject = null;
$this->observer = null;

}

public function testSubscribing()
{

$observers = $this->registerMany(1);
$this->assertEquals(1, $this->subject->getNumberOfObservers(),

"Subscriber should have 1 observer when 1 observer registered.");
}

public function testUnsubscribing()
{

$observers = $this->registerMany(5);
$this->assertEquals(5, $this->subject->getNumberOfObservers(),

"Should be 5 observers when 5 added.");
$this->subject->unregister($observers[0]);
$this->assertEquals(4, $this->subject->getNumberOfObservers(),

"Should be 4 observers when 1 when one removed.");
}
public function testUnsubscribingWhenNone()
{

$actual = $this->subject->unregister(new ConcreteObserver());
$this->assertEquals(false, $actual,

"Unregister returned status should be false if no observers");
}
public function testSubjectShouldHoldState()
{

$stateAsArray = array(’foo’ => ’foo val’);

28

$this->subject->setState($stateAsArray);
$actual = $this->subject->getState();
$this->assertSame($stateAsArray, $actual,

"Should get/set state as array");
}
public function testCreateObserver()
{

$actual = new ConcreteObserver(new ConcreteSubject());
$this->assertNotNull($actual, "Should create observer");

}
public function testObserverGetsNotified()
{

$this->subject->register($this->observer);
$state = ’yogabbagabba’;
$this->subject->setState($state);
$this->subject->notify();
$this->assertEquals($state, $this->observer->getState(),

"Setting state in subject notifies observer");
}
public function testObserversHaveIds()
{

$this->assertNotNull($this->observer->getID());
}
public function testAddingDuplicates()
{

$this->subject->register($this->observer);
$this->subject->register($this->observer);
$this->assertEquals(1, $this->subject->getNumberOfObservers(),

"Should only add a particular observer instance once");
}
private function registerMany($n)
{

$observers = array();
foreach (range(0, $n-1) as $key) {

$observers[$key] = new ConcreteObserver();
$this->subject->register($observers[$key]);

}
return $observers;

}
}
?>

Observer.php

29

<?php
abstract class Subject
{

protected $observers;
protected $state;

abstract public function register(iObserver $observer);
abstract public function unregister(iObserver $observer);
abstract public function notify();

public function getNumberOfObservers()
{

return count($this->observers);
}

}

class ConcreteSubject extends Subject
{

public function __construct()
{

$this->observers = array();
}
public function register(iObserver $observer)
{

$this->observers[] = $observer;
$this->observers = array_unique($this->observers);

}

public function unregister(iObserver $observer)
{

foreach ($this->observers as $k => $v)
{

if ($observer == $v)
{

unset ($this->observers[$k]);
return true;

}
}
return false;

}

public function notify()
{

foreach ($this->observers as $observer) {
$observer->update($this);

}

30

}
public function setState($state)
{

$this->state = $state;
}

public function getState()
{

return $this->state;
}

}

interface iObserver
{

public function update (Subject $subject);
}
class ConcreteObserver implements iObserver
{

private $state = null;
private $id;
public function __construct()
{

$this->state = null;
$this->id = uniqid (rand(), true);

}
public function getID()
{

return $this->id;
}
public function __toString()
{

return "id: " . $this->getID();
}
public function update (Subject $subject)
{

$this->state = $subject->getState();
}
public function getState()
{

return $this->state;
}

}
?>

31

Considerations

Here are some further considerations when implementing Observer pattern that
we haven’t discussed. . .

SPL

It should be noted that we could have used the PHP 5 Standard Library’s
SplObserver and SplSubject instead of rolling our own interfaces. However,
doing so was helpful in getting a clear understanding of exactly how the Observer
Pattern works. If you’re interested learning more about SPL, you may want to
have a look at the following resources: SPL, SplSubject, and SplObserver. Note
that instead of register/unregister they use the names attach/detach.

Push vs. Pull

It should also be noted there are different strategies for how the state is obtained
by the observers. In this chapter’s example, we used the pull method since our
observers called:

$subject->getState()

Thus, upon being notified, we “pulled in” the changes from the subject. However,
the inverse is also possible—where the subject pushes changes down to the
observers—and, approriately enough, is called the push method. An example of
how push method might work is the following:

$observer->update($this, $user, $trackPlayed,
$action, [..more state info..]);

Here, the subject has explicitly included the pertinent state information in the
call to update.

The up side here is that the observers need not call:

subject->getState()

However, there’s bigger downside—loss of reuse. When we keep the state object
in the subject generic enough, it’s easy to reuse the Observer code (since the
state object abstracts itself in a model, value object, etc.) However, if we (in
contrast to using a generic state object) use a specific method signature to push
state, we tightly couple our subject to the observers. In general, favor the pull
method over the push method.

32

http://php.net/manual/en/book.spl.php
http://php.net/manual/en/class.splsubject.php
http://php.net/manual/en/class.splobserver.php

Pitfalls

Warning: This section contains some opinionated suggestions. Use your own
judgement and form your own opinions!

The following are some potential issues to look out for when implementing
Observer pattern:

• Cyclic dependencies: Allowing observers to set state reduces orthogonal-
ity. It is our opinion that another “impartial module” should be responsible
for providing state updates to the subject. If you do need this coupling
consider another design approach or implementing a Mediator to manage
these interactions.

• Relationship hierarchies: Insidious coupling can occur if you allow
observers to interact with each other. Strive to design observers to be
completely unaware of each other.

• Wasteful updates: If an observer only has a particular interest, recieving
all updates is wasteful. This can be remedied by adding an interest input
to the register signature and checking on a per observer basis before
broadcasting to that observer.

• Spurious updates: In a high throughput system with many observers,
there are potential temporal issues. For example, a call to setState() before
a previous state has been fully pushed out could result in notifications
being sent to observers that have yet to receieve the previous state. The
obvious workaround is to queue these states and only start notifications for
the “newest state” once “previous state” notification are complete. This of
course adds additional complexity.

• Unpredictable ordering: This pattern does not provide predictable
ordering of observer updates and doing so increases coupling.

• Inconsistent state: If setting state is more than a simple assignment,
you must ensure consistent state before broadcasting updates.

• Duplicate observers: It’s easy to inadvertandly create a system where
an observer is recieving “double updates” as a result of duplicates observers
having been registered.

We have other decisions to make when we design our implementation (who should
call notify? what happens when a subject is deleted? will there be orphaned
observers?). These require further research and are beyond the scope of this
chapter.

33

Example Uses

What are some example applications that might benefit from the
Observer Pattern?

Here are a couple ideas:

• Mailing List: Let’s say you have a system that periodically adds new
articles to be published. Upon a new article becoming available, the
system could make a call to setState and thereafter notify allowing ob-
servers: EmailObserver, RSSFeedObserver, GooglePlusObserver, Face-
bookObserver, etc., to deal with the particulars of broadcasting said article
as appropriate for that broadcast method.

• Login system: Say you want provide notifications to various sub-systems
when a user logs in. For example you want a “Security Observer” and
perhaps a “User Stats Observer” (for the marketing department), Logger
(for troubleshooting), etc. You could do so easily with the Observer pattern.
This article has a nice example Login system using Observer.

• Social Music: A social music application could choose to broadcast
notifications when a user plays, pauses, stops, fast forwards, seeks, etc.
Perhaps your company is fortunate enough to be partnered with Facebook
and needs to broadcast to the Music Dashboard via the Open Graph API.
But then another partner comes along and offers a similar deal to broadcast
to the tunein online radio site. And then another. . .

In the above example, each partner’s API is likely to be quite different. You’d
want your user tracking system to be completely orthogonal from the various
broadcasting modules that will integrate with the above APIs. The Pragmatic
Programmer book has a wonderful chapter on the advantages of writing orthogonal
software if you’re interested in further investigating the concept.

• GUI Notifications: You have some “live stats” that need to be reflected
in real time by various components. For example, when the price of Apple
stock changes, you need to update corresponding charts, graphs, text in
callout boxes, etc.

Exercises

Do one of the following:

• Implement one of these systems using simple print statements. For example,
when the RSSFeedObserver’s update is called you can just do something
like:

34

http://www.craigsefton.com/programming/php-patterns-the-observer-pattern/
https://developers.facebook.com/docs/technical-guides/opengraph/opengraph-tutorial/
http://tunein.com
http://en.wikipedia.org/wiki/Orthogonality#Computer_science
http://pragprog.com/book/tpp/the-pragmatic-programmer
http://pragprog.com/book/tpp/the-pragmatic-programmer

<?php
public function update($subject)
{

$article = $subject->getState();
print "RSSFeedObserver::update called: " .

"About to syndicate article " . $article->getTitle();
}
?>

• Come up with your own problem that lends itself to the Observer pattern
and implement it.

Summary

In this chapter we’ve taken a look at the Observer Pattern and learned the
following:

• What the Observer Pattern is and how to implement it

• Observer allows us to program to an interface, not an implementation—
subjects need not know about what the observers will do with state. . . they
just call the update method—thus decoupling modules that interact

• Observers can be “hot swapped” via the register and unregister routines

• We discussed the differences and trade offs between the pull method and
the push method strategies

• Programming to an interface can result in less boiler-plate “guard checks”
if type hinting used within the update routine

• We also learned about some of the subtleties of TDD as we iterated on
our Observer implementation

Other references not linked above

Design Patterns in Ruby, Gang of Four, Easles on Observer, IBM Article,
GOF Patterns, Pitfalls of Observer Pattern, Derkeiler on Observer, Rice - CPP
Resources, Addy Osmani Patterns Book PHP Design Patterns, Andy Pangus
Article

Object Oriented Principles

This book assumes fundamental knowledge of basic object oriented concepts—a
prerequisite to understanding the patterns we’ll be covering in this book—and so

35

http://www.informit.com/articles/article.aspx?p=1150294&seqNum=5
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y
http://www.citrenz.ac.nz/conferences/2005/concise/eales_observer.pdf
http://www.research.ibm.com/designpatterns/example.htm
http://www.gofpatterns.com/design-patterns/module6/tradeoffs-implementing-observerPattern.php
http://askldjd.wordpress.com/2010/03/18/pitfalls-of-observer-pattern/
http://coding.derkeiler.com/Archive/General/comp.object/2006-07/msg00234.html
http://www.bandgap.cs.rice.edu/classes/comp410/resources/CppResources/DesignPatterns/observer.html
http://www.bandgap.cs.rice.edu/classes/comp410/resources/CppResources/DesignPatterns/observer.html
https://github.com/addyosmani
http://www.evilprofessor.co.uk/211-php-design-patterns-observer-pattern/
http://www.andypangus.com/tags/design-patterns
http://www.andypangus.com/tags/design-patterns

the discussion here will be purposely short for for the sake of brevity. If you’re
already an “object oriented guru”, feel free to skip this chapter (although may
want to peruse the section on S.O.L.I.D. principles for review).

Abstraction

Dictionary.com provides the following definition for abstraction: > Considering
something as a general quality or characteristic, apart from concrete realities,
specific objects, or actual instances.

From a programming perspective, an abstraction is a focused representation
of the essential properties of a particular thing. Further, an abstract date type
(ADT), will, typically, provide self-evident and immediate understanding of what
that thing is. For example, when we mention the word “Car”, it is immediately
understood that we are talking about a specific type of thing that can be driven,
has a steering wheel, breaks, etc. So, although a car mechanic may additionally
think of internal combustion systems, crankshafts, cylinders, pistons, etc.—your
crazy Aunt Helen surely does not! It’s the first set of car qualities described that
are at a higher level of abstraction, and therefore, easier to understand. When
we make good use of abstraction while designing our interfaces, we keep the
inner workings and gory details of our implementations hidden; they become
“black boxes”, that, “just work”.

Class

A class can be thought of as a blueprint that defines an abstract data type (or
ADT; see above). Thinking in terms of the nouns in a problem statement (e.g. an
employee, customer, bank account, etc.), one can derive classes from real world
things.

For brevity’s sake, we assume you have some knowledge in this area. If not, see
Wikipedia’s page on Classes.

Interface

The set of all signatures defined by an object’s operations is called
the interface to the object. An object’s interface characterizes the
complete set of requests that can be sent to the object . . . type is a
name used to denote a particular interface . . . a type is a subtype of
another if its interface contains the interface of its supertype—GoF

The word type supports the notion that something is a particular type of thing,
and so it may brings some semantic benefits in that it helps us to visualize that
thing in our minds. We will, therefore, use it interchangably with interface .

36

http://en.wikipedia.org/wiki/Class_(computer_programming)

Dynamic Binding

Through the use of interfaces we can achieve dynamic binding—the run-time
association of a method call on an object and one of its methods. Since an
interface provides a guarantee that certain operations will be available, we can
substitute objects that have identical interfaces for each other at run-time. This
substitutability is, in fact, known as polymorphism, and will be discussed in more
detail below.

Inheritance

A superclass (also known as a base, or parent class) contains the core properties
of a type, and may be “inherited from” by a subclass (also known as a derived,
extended, or child class). The ability to inherit provides a way to reuse fields
and methods since sub-types are able to derive properties from their ancestors.

Encapsulation

Grady Booch defines encapsulation as: > “the process of compartmentalizing
the elements of an abstraction that constitute its structure and behavior”.

Encapsulation is a means of achieving information hiding such that the internal
properties of an object are only allowed to be accessed or modified in a centralized
and controlled manner. This is typically done via accessors and mutators (also
known as getters and setters). The encapsulated property can then be changed
(or completely replaced, reimplemented, etc.), and—provided the public interface
remains the same—external components will not be impacted.

Encapsulation provides another “protective benefit”—the prevention of internal
data from being changed throughout a system—and, thus, helps us to maintain
proper data integrity. Further, encapsulation reduces system complexity by
limiting interdependencies between software components.

To recap, the following are benefits of encapsulation: * data management is
centralized * data integrity is maintained * modules remain decoupled since each
manage their own data

These concepts are explored in much greater detail in the seminal work by Grady
Booch, Object-Oriented Analysis and Design with Applications. The following
two pages are also useful: Encapsulation, and Information Hiding Wikipedia
pages for more details.

Polymorphism

Wikipedia: >Polymorphism is a programming language feature that allows
values of different data types to be handled using a uniform interface.

37

http://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X
http://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X
http://www.amazon.com/Object-Oriented-Analysis-Design-Applications-3rd/dp/020189551X
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Polymorphism_(computer_science)

The word polymorphism refers to the ability for one thing to take on many
different forms. Similarly, in programming, polymorphism is the ability for
one interface to represent many implementations. This is generally achieved
by having an interface that is implemented by one or more sub-types (concrete
implementations of that interface). While the sub-types may contain varying
implementation details, the fact that they all support the same interface allows
them to be used interchangeably.

Computer programs can utilize polymorphism and achieve runtime flexibility. If
we take our Car example from earlier, and assume the Car interface has a drive
method, we can pass instances that implement this interface dynamically. The
users of these instances will be able to “blindly” call drive:

Car honda = new HondaAccord();
Car toyota = new ToyotaCamry();
someObject.doSomethingUsefulWithCars(honda);
someObject.doSomethingUsefulWithCars(toyota);
...
public void doSomethingUsefulWithCars(Car car) {

// We don’t have to care what kind of car it is, we just call drive:
car.drive();

}

The most interesting part here is that—while we have instantiated two completely
different car implementations (a Honda and a Toyota)—we have set them both to
the type Car (an interface). In doing so, we guarantee that they have both have
the drive method available. This is known as “programming to an interface not
an implementation”, and becomes quite important as we strive for more flexibile
systems. See the chapter on Strategy pattern for a more detailed example.

GoF succinctly states some of polymorphism’s key benefits:

Polymorphism simplifies the definitions of clients, decouples objects
from each other, and lets them vary their relationships to each other
at run-time.

S.O.L.I.D. Principles

The mnemonic acronym SOLID was: > introduced by Michael Feathers for
the “first five principles” identified by Robert C. Martin in the early 2000s that
stands for five basic principles of object-oriented programming and design. The
principles when applied together intend to make it more likely that a programmer
will create a system that is easy to maintain and extend over time.

38

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y
http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

SRP: The Single Responsibility Principle

The SRP principle is related to a broader concept called cohesion—the degree
to which elements of a class or module are related. If you have a Customer class
that deals with saving this customer to a file or database, generating reports for
the customer, etc., it would be said to have low cohesion since these are not the
responsibilities of a customer.

The SRP provides that: A class should have one, and only one, reason to change.
Inverting this we could say that: a class with only one responsibility only has
one reason to change. For an interesting discussion on the SOLID principle see
the Hanselminutes Podcast #145 where Robert Martin interviewed on the topic.

Open/Closed Principle

The open/closed principle provides that: classes may be open for extension but
closed for change. So, if we want augment a classes behavior, we must do so
without actually modifying the class itself! Strategies for accomplishing this will
be discussed in more detail in later chapters, but we may:

• Use compositional delegation to compose various abstractions at runtime,
all acting in accordance with a common interface. We will see this technique
in action in the chapter on the Strategy pattern.

• Use an asynchronous messaging scheme, where objects are notified on an
“as-needed basis”, via a common defined interface.This technique will be
seen in the chapter on the Observer pattern.

• Use a plugin based archetecture that instantiates dynamic plugins, perhaps,
searching a common directory and/or using common naming conventions,
etc.

The take away, is that we should strive to design our modules, such that, once
they’ve been fully tested and deployed in to production, we don’t have to make
any more direct changes to them. While this may seem overly ambitious, it turns
out to be accomplishable.

Liskov Substitution Principle

In his interview with Scott Hansen (show #145), Robert C. Martin describes
how the substitution principle may be understood in terms of how inherited
instances may be used within a program: > “If you have an expectation of some
object or some entity and there are several possible sub-entities, we’ll call them
sub-types that could implement that original entity. The caller of the original
entity should not be surprised by anything that happens if one of the sub-entities

39

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://hanselminutes.com/145/solid-principles-with-uncle-bob-robert-c-martin
http://hanselminutes.com/145/solid-principles-with-uncle-bob-robert-c-martin

is substituted. So, the simple way to think about this is, if you’re used to driving
a Chevrolet you shouldn’t be too surprised when you got into a Volkswagen,
you’d still be able to drive it. That’s the basic idea, there’s an interface, you can
use that interface, lots of things implement that interface one way or another
and none of them should surprise you.”

He has also covered this in his writings by succinctly stating: “Derived classes
must be substitutable for their base classes.”

Another example might be if we were to create a Stack class by inheriting from
a LinkedList super class. Although we’d be able to conveniently use the list’s
functionality to push and pop elements from off the front of the list, we could
not pass around the stack instance without surprising users with inappropriate
methods (those inherited from the linked list like: contains, indexOf, etc.) These
operations are not what one might expect from a stack, and therefore, we’d be
violating the substitution principle.

In this case, we should, instead, compose the Stack with an internal property
that references an instance of linked list. With that in place, the Stack can then
choose to expose only the appropriate push and pop operations—these would, in
turn, delegate to the list “under the hood”. The concept of delegation can be
distilled as:

• a class property holds a reference to another module (the delegate)

• that property is used to call one of the delegate’s instance methods

By using a list instance (rather than inheriting from list) and then delegating
to it, we are favoring composition over inheritance. Here’s naive but easy to
understand example of how that might work (please humor our assumptions):

class Stack {
// Here we are "composing" our stack with a list
// Assume we later initialized with: list=new LinkedList()
private List list;

public void push(Object someObject) {
// Assume the linked list inserts at index 0
list.insert(someObject);

}

public Item pop() {
// Assume the linked list returns the first item on delete
return list.delete();

}
}

40

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

If we were to now create an instance of this version of Stack class, it would no
longer expose inappropriate list methods as it did before. Only push and pop are
exposed (which is what one would expect of a simple Stack), and thus, it does
not surprise it’s users. Incomplete as this implementation might be, it would
not be in violation of the Liskov Substitution Principle.

When ISA “falls down” A heuristic that’s popular for determining class
relationships is to check if the “ISA” statement holds true. For example, we
could classify an Espresso by saying that it isa (yes, that’s one word!) type
of beverage. It holds that if something is a type of something else, it must
share some properties. For example, both a Beverage and an Espresso have a
density. Since density is fairly low level thing, it’s nice to have that defined
in Beverage, so Esspresso doesn’t have to deal with such details. We can then
focus on more interesting features of Esspresso like caffeine and perhaps define
an operation like: getAmountOfCaffeine. Therefore, we are able to contemplate
Esspresso from a higher level of abstraction. Unfortunately, though, performing
such classifications using the isa technique has some issues. . .

Robert Martin provides that the above heuristic can break down with the
canonical example: a square is a rectangle. While this holds (from a geometry
perspective), if you derive a Square class from a Rectangle class, you will get
inappropriate behavior. For example, setHeight from Rectangle, will not need to
do anything to it’s width, whereas the Square must be sure to keep its width
and height the same. In fact, the square might not even want to separate width
and height, and prefer to have a “side” property instead (since a square’s sides
will always have the same length!). Being lazy, you may decide that, “well, I
can override setHeight, and put in a simple conditional check”). As you do so,
you realize that you will also need the exact same conditional check in setWidth.
Obviously, this scenario will result in an abysmal state of affairs for the poor
maintainer of the inconsistent Square.

Interface Segregation Principle

ISP, essentially, provides that one large interface must be “segregated” into
(separated), more specific, individual interfaces. This is really a corollary to
single responsibility and cohesion principles which provide that a particular
module should have one, and only one, focused responsibility.

“Make fine grained interfaces that are client specific.”—Robert Martin

Dependency Inversion Principle

The dependency inversion explicity states that we should: “depend on abstrac-
tions, not on concretions.”—Robert Martin. So, if you’re calling a function, it
should be an abstract function; if you’re holding a reference to an object, that
reference must point to an abstraction, etc. In practice, this is impossible to

41

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

achieve throughout an entire system, since, at some point, somewhere, we’ll need
to instantiate an object instance. We can, however, be mindful to encapsulate
these object creations using creational patterns we’ll discuss later. By doing so,
we compartmentalize areas that are likely to change.

Decorator Pattern

Overview

Design Patterns: Elements of Reusable Object-Oriented Software provide the
following intent for decorators:

Attach additional responsibilities to an object dynamically. Dec-
orators provide a flexible alternative to subclassing for extending
functionality.

They further state that decorators may be used to:

add responsibilities to individual objects dynamically . . . for respon-
sibilities that can be withdrawn . . . when extension by subclassing
is impractical . . .

Decorators, also known as wrappers, conform to the interface of the component
they decorate. When the decorator is called, it in turn, calls the same method for
the component it decorates (it can do so since they share a common interface).
This arrangement allows us to nest decorators recursively, and add or remove
them as needed.

Decorator Pattern Class Diagram

The following is a class diagram that represents the Decorator Pattern we’ll be
discussing in this chapter:

Decorator Pattern Implementation

Here are the steps to implementing the decorator pattern:

• Define your main component’s interface

• Define your concrete implementations of that interface

42

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

Figure 2: Decorator Pattern Class Diagram

• Define a Decorator interface or abstract class. It must also implement the
main component’s interface!

• Define concrete decorators that conform to above interface. You may
be able to “pull up” the method in to the above abstract Decorator if the
decorated operation is simple and/or there is duplication (we did so in our
examples below).

• In the client code (code that uses the decorator(s) defined above):

– Instantiate the main component
– Instatiate one or many decorators being careful to “wrap” each one

around the main component
– Call decorated operations as needed

Java Implementation

Let us imagine that we have a store that sells tennis rackets that are set at
various prices as expected. However, a customer may also choice to customize
the string, grip, etc., when making their purchase. Thus we need a way to
account for the change in price depending on these customizations. We can do

43

so easily by simply wrapping each customization in respective decorators. Let’s
look at how this might be implemented using Java. . .

Disclaimers: for the sake of brevity and understandability, we have not been
“thorough” in either our tests or implementation. We may continue to take such
liberties throughout the rest of the book. Also note that we have combined the tests
and implementation below (whereas the project in the book’s repo has separate
files)

/**
* Tests
*/

import static org.junit.Assert.*;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class RacketTests {

private ConcreteRacket racket;

@Before
public void setUp() throws Exception {

racket = new ConcreteRacket();
}

@After
public void tearDown() throws Exception {

racket = null;
}

@Test
public void testShouldDecorateComponentWithSynthGut() {

RacketDecorator decorator = new PrinceSyntheticGutStringDecorator(racket);
assertEquals("Should wrap with Synthgut decorator and add it’s price",

105.00, decorator.getPrice(), 0.01);
}
@Test
public void testShouldDecorateComponentWithVSGut() {

RacketDecorator decorator = new VSGutStringDecorator(racket);
assertEquals("Should wrap with Synthgut decorator and add it’s price",

140.00, decorator.getPrice(), 0.01);

44

}
@Test
public void testShouldAddMultipleDecoratorTypes() {

RacketDecorator decorator =
new WilsonProOvergripDecorator(new VSGutStringDecorator(racket));

assertEquals("Should wrap with VSGut decorator and add it’s price",
143.00, decorator.getPrice(), 0.01);

}
@Test
public void testShouldAddSameDecoratorsMultipleTimes() {

RacketDecorator decorator =
new WilsonProOvergripDecorator(new VSGutStringDecorator(racket));

RacketDecorator wrappedAgain = new WilsonProOvergripDecorator(decorator);
assertEquals("Should wrap with multiple decorators and adding all to price",

146.00, wrappedAgain.getPrice(), 0.01);
}

}

/**
* Implementation
*/

public interface Racket {
public double getPrice();

}

public class ConcreteRacket implements Racket {

// In a "real program", we’d create a "value object"
private double price;

public ConcreteRacket() {
price = 100;

}

@Override
public double getPrice() {

return price;
}

}

public abstract class RacketDecorator implements Racket {

protected Racket racket;
protected double price;

45

public RacketDecorator(Racket component) {
racket = component;

}

@Override
public double getPrice() {

return racket.getPrice() + price;
}

}

public class PrinceSyntheticGutStringDecorator extends RacketDecorator {

public PrinceSyntheticGutStringDecorator(Racket component) {
super(component);
this.price = 5;

}
}

public class VSGutStringDecorator extends RacketDecorator {
public VSGutStringDecorator(Racket component) {

super(component);
this.price = 40;

}
}

public class WilsonProOvergripDecorator extends RacketDecorator {

public WilsonProOvergripDecorator(Racket component) {
super(component);
this.price = 3;

}

}

PHP Implementation

Let us now look at the PHP version of this same implementation. It’s virtually
identical!

<?php

interface iRacket

46

{
public function getPrice();

}

class Racket implements iRacket
{

private $price;

public function __construct()
{

$this->price = 100;
}

public function getPrice()
{

return $this->price;
}

}

// We use abstract instead of interface here so we can define
// the properties $component and $price properties just once
// Also note that by implementing iRacket, it "gets" getPrice.
abstract class RacketDecorator implements iRacket
{

protected $component;
protected $price;
public function __construct($racket)
{

$this->component = $racket;
}
public function getPrice()
{

return $this->component->getPrice() + $this->price;
}

}

class PrinceSyntheticGutStringDecorator extends RacketDecorator
{

public function __construct($racket)
{

parent::__construct($racket);
$this->price = 5;

}
}
class VSGutStringDecorator extends RacketDecorator
{

47

public function __construct($racket)
{

parent::__construct($racket);
$this->price = 40;

}
}
class WilsonProOvergripDecorator extends RacketDecorator
{

public function __construct($racket)
{

parent::__construct($racket);
$this->price = 3;

}
}

?>

We have omitted the PHP tests to save space, but, if you’d like to see them, they
are in the book’s repo.

We have coded the above implementation quite close to the racket domain, but
we could have chosen to make a more general Product module, in place of what
we called Racket, and thereafter embody various different types of products
within Product. This might be useful in a general shopping cart scenario.

Considerations

Let us now examine the benefits and drawbacks of this pattern, and also, look
at why it might be a better choice than inheritance.

Decorator vs. Inheritance

Decorators are often contrasted to using static inheritance to achieve the same
thing—after all, we do have the option to simply create new sub-classes for each
new responsibility discovered. In doing so, however, we increase the complexity
of our system and pollute our base class with unrelated responsibilities.

Let’s take an example that leads to having child classes that need to share
properties with each other. Many derived Beverage types might need to have
a Milk property, for example: Egg Nog, Shake, Mocha, while others do not
(Juice should not have a Milk property). This leads to the following quandary:
if we add milk to each derived class we will end up with duplication, but, if
we instead add milk to the base class we violate the substitution principle (as
one will undoubtedly be surprised to find a Milk property in their orange juice
instance!).

48

We can avoid these inheritance problems altogether as the decorator pattern
allows us to: change the skin of an object versus changing its guts—GoF. We
simply add or remove decorators as needed. Doing so will simply extend the
functionality of our classes, while acting in accordance with the open/closed
principle—which, as you recall, states that we can extend a class, but must not
not change it directly.

Transparency

One key benefit of the decorator pattern is that, by using the component’s
original interface, we can transparently add capabilities. This unburdens clients
from having to keep track of things like: how many times has the component
been decorated, in what way, etc. We simply add responsibilities, as needed, by
merely wrapping the component with new decorators.

Pitfalls

Explosion of decorator objects

Use of this pattern will often lead to a proliferation of small, similar classes,
decreasing both understandability and maintainability. One can imagine a whole
product catalog implemented this way (and get an immediate migrane headache
as a result!)

Identity tests

Decorators are not identical to the components they wrap, and thus, tests for
object types will not work.

Removal/reordering of decorators

As you recall, GoF provides that you might use decorators:

for responsibilities that can be withdrawn

This would seem to imply the ability to withdraw decorators (perhaps at run-
time). If we consider the underlying mechanics of how decorators reference
one another—similar to a linked list, where one link has a direct relationship
to the next or previous—one might simply manipulate references to achieve
this. However, this would result in objects that need to know too much, adding
complexity and coupling to a system. In practice, removal won’t be required,
but, if you absolutely must have this functionality, you might want to consider
another approach.

It not be idiomatic for the language you’re using

The decorator pattern is more pervasive in certain (usually statically typed)
languages than others. Java and .NET, both use the decorator pattern extensively

49

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

in their own I/O Stream implementations. Also, most GUI programming done
in Java will involve the wrapping of nested UI components. Thus, if you’re on
a team that’s doing Java, C#, etc., the decorator pattern might be perfectly
appropriate. However, if you’re using a more dynamic language (like Ruby), it
may not be an idiomatic choice. Since such languages allow you to add methods
to objects at runtime—known as duck typing (“if it walks like a duck, and quacks
like a duck, treat it as a duck”)—you might entirely avoid the decorator pattern.

Exercises

We mentioned that while our implementation is quite specific to tennis rackets,
one could implement a shopping cart system utilizing the decorator pattern to
represent the products in that system. Do so. You don’t need to implement
a “full blown” shopping cart system, simply use print statements to stub out
details that are not pertinent to the exercise.

Once you’ve done the above, add more and more products to your store’s catalog.
What do you notice?

Factory Pattern

Overview

In this chapter, we will discuss object creation, and specifically, how you can
use factories to encapsulate such creational responsibilities. You’ll see that
instantiation is a rather volatile affair that should be compartmentalized before
it gets “out of control”. But before we dive in to factory patterns, let’s revisit
some prerequisite object-oriented principles.

Encapsulate what varies

Any portion of code that instantiates a new object is taking on a creational
responsibility; and further becomes coupled to the type being instantiated. This
defeats our goal to create classes that are cohesive units that do “one thing
well”. Even more insidious is the fact that there’s no guarantee what new objects
we’ll need tomorrow. . . today we need an Oracle connection, tomorrow a MySQL
connection. . . today we’re sending Email messages, tomorrow RSS feeds. . . and so
on. We’ve already learned that we should encapsulate areas likely to change—and
creational code, as we’ve seen, is always likely to change.

Dependency Inversion Principle

If you recall from our object-oriented chapter, we discussed the S.O.L.I.D.
principles which included the Dependency Inversion Principle. Let’s dig a bit
deeper into that principle which states that:

50

A. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

B. Abstractions should not depend upon details. Details should depend upon
abstractions.

What are high and low level modules? High-level modules deal with larger sets
of functionality, whereas lower level modules deal with more detailed operations.
For example, a module that generates SQL, connects to a Database, and then
executes that SQL’s query, would be a low-level module. A related, but higher-
level module, might be a Persistance class responsible for allowing general data
persistence. While it may use the aforementioned low-level database module to
write to the database, it may also work with other low-level modules like an I/O
module for writing to files, a Console module for writing to standard output, and
so on. So, if in this example, our Persistance class directly creates instances of
any of the lower-level classes (DB, I/O, Console, etc.), it breaks the Dependency
Inversion Principle since instantiation causes a direct dependency.

Let’s make this all a bit more concrete with another example. Assume you have
a Messenger module that’s in charge of sending things. Perhaps your first set of
requirements state that the Messenger need only send via the post office (“snail
mail”):

class Messenger {
private SnailMail mail;
public Messenger () {

mail = new SnailMail();
}
public void send(String destination, Package package) {

mail.send(String destination, Package package);
}

}
class SnailMail {

public void send(String destination, Package package) {
System.out.println("Postal service sending package");

}
}

The key violation of DIP above is the ‘mail’ property of type SnailMail. Since
Messenger is a high level module, and it now depends on the SnailMail module,
DIP has been violated. We can see why this violation matters if we imagine that
tomorrow our Messenger needs to additionally support a Fedex sender. Having
a crazy deadline to meet we nervously code up the following:

class Messenger {
private SnailMail mail;
private Fedex fedex;

51

public enum Speed {FAST, SLOW};

public void send(Speed speed,
String destination, Package package)

{
if (speed == Speed.FAST) {

this.fedex = new Fedex();
this.fedex.send(String destination, Package package);

} else {
this.mail = new SnailMail();
this.mail.send(String destination, Package package);

}
}

}

Hopefully, you find this code objectionable! We now have the following unfortu-
nate code smells:

• the unfortunate addition of the ‘speed’ enum property

• extra type-based fields making code harder to read

The rather inprecise ‘speed’ property will be problematic when we add senders
that send things at approximately the same speed, or have new speeds requiring
us to add new enum values.

Also, what happens next week when we decide to support international mail
and have opportunities to add new carriers? We’ll have to directly modify the
conditional code adding these carriers (and we’ll be breaking the open/closed
principle since we’ll have to modify our class directly!)

So how can we solve these sorts of problems without breaking DIP? Let’s see
how the Factory Method might help to circumnavigate such issues.

Factory Method

The factory method is a creational design pattern that allows you to encapsulate
the creation of concrete types by defining an abstraction through which objects
are created:

“Define an interface for creating an object, but let subclasses de-
cide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.”—Gang of Four

52

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

Figure 3: Factory Method

As we’ll see shortly, the Factory Method has two main variants, one using sub-
classing, the other a parameterized factory method. We’ll start out looking at
the sub-classing variant which is implemented as follows:

• Product defines the interface for products

• ConcreteProduct implements the product interface

• An abstract class Creator defines a factory method, which creates and
returns a Product

• A ConcreteCreator overrides the factory method to return actual instances
of a ConcreteProduct

Let’s toss our earlier Messenger code and try implementing a Sender that’s
created using the Factory Method pattern. We’ll start with a test that ensures
that we can generate an appropriate sender via its corresponding factory:

<?php
// ... code intentionally omitted

public function testFactoryBegetsProduct() {
$fedexFactory = new FedexFactory();
$fedexProduct = $fedexFactory->createSender();
$this->assertInstanceOf(’FedexSender’, $fedexProduct,

"Should get correct sender from factory");
$this->assertEquals(SenderTypes::Fedex, $fedexProduct->getType(),

53

"Should be able to call sender’s operations");
}

// ... code intentionally omitted
?>

The test above simply confirms that a “Fedex Factory” should be able to generate
a “Fedex Sender” product. Here’s the implemention. . .

<?php

// Factories
interface Factory {

public function createSender();
}
class FedexFactory implements Factory {

public function createSender() {
return new FedexSender();

}
}
class SnailMailFactory implements Factory {

public function createSender() {
return new SnailMailSender();

}
}
class AramexFactory implements Factory {

public function createSender() {
return new AramexSender();

}
}

// Products
class SenderTypes {

const SnailMail = 0;
const Fedex = 1;
const Aramex = 2;

}
interface Sender {

public function send($destination, $package);
public function getType();

}
class FedexSender implements Sender {

public function send($destination, $package) {
echo ("Fedex sending...\n");

}
public function getType() {

54

return SenderTypes::Fedex;
}

}
class SnailMailSender implements Sender {

public function send($destination, $package) {
echo ("Snail mail sending...\n");

}
public function getType() {

return SenderTypes::SnailMail;
}

}
class AramexSender implements Sender {

public function send($destination, $package) {
echo ("Aramex sending international...\n");

}
public function getType() {

return SenderTypes::Aramex;
}

}

?>

With the above code in place, our messenger no longer needs to worry about
which type of sender it’s working with; that burden becomes the client’s. For
example, if a client wanted to send a package via Fedex it would simply do:

$fedexFactory = new FedexFactory();
$sender = $fedexFactory->createSender();
$sender->send($someDestination, $somePackage);

While the client does have to instantiate the factory itself, the product gets
created “behind the scenes”, and is therefore encapsulated.

Factory Method Variations

We mentioned earlier that there are two main variations of Factory Method:

• The sub-class approach

The Factory Method is defined in a base abstract class or interface (the Creator),
and then overriden by concrete sub-classes (see the above Sender example).

• Parameterized Factory Method approach

55

In this version, there is generally just one Creator who’s factory method takes a
“type” parameter which is used to determine which type to of object create:

<?php
// ... code intentionally omitted
class SenderFactory {

public function createSender($type) {
$sender = null;

if ($type == SenderTypes::Fedex) {
$sender = new FedexSender();

} else if ($type == SenderTypes::Snail) {
$sender = new SnailMailSender();

} else if ($type == SenderTypes::Aramex) {
$sender = new AramexSender();

} else {
// An arbitrary default might be snail mail
$sender = new SnailMailSender();

}
return $sender;

}
}
?>

The above conditional would appear to be a flagrant abuse of open/closed
principle (as you’ll have to directly modify the SenderFactory as soon as you need
to add a new sender type). On the other hand, it might be more straightforward
(since we don’t need to create sub-classes). In any event, both variants give us
the benefit of encapsulating that which varies.

Pitfalls

Layers of indirection: The sub-class variant requires us to create an inheri-
tance hierarchy which adds some complexity.

Conditional code: In the parameterized factory method variant we end up
with ugly conditional code that violates open/closed principle.

Complicated: Using a constructor to create a new object is immediately
understandable, whereas, a factory method might not be. This might be helped
by standardizing on factory naming conventions throughout your code base.

56

Abstract Factory

The GoF definition for Abstract Factory states that it:

Provides an interface for creating families of related or dependent
objects without specifying their concrete classes.

Figure 4: Abstract Factory

• AbstractFactory defines the interface for product creation

• ConcreteFactory creates the concrete products

• AbstractProduct defines the interface for the product

• ConcreteProduct defines the concrete product objects themselves

It is easy to get confused when trying to diffrentiate the Factory Method and
the Abstract Factory; especially, since the Abstract Factory may, in fact, use
the Factory Method in its implementation! Try to remember that the primary
intent of the Abstract Factory pattern is to allow us to return “familes of related
objects”.

57

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

We’re going to use the Abstract Factory pattern to model a car factory which
allows us to create families of car products. In order to keep things easier to
follow, we’ll only worry about creating the engine and passenger compartment
components.

Let’s start with some tests. We want to know that when we use a particular
concrete factory, we can, in turn, receive the correct corresponding concrete
component:

<?php
// ... code intentionally omitted

// Abstract Factory - Tests
public function testFactoriesGetCorrectStandardEnginePart() {

$standardCarFactory = new StandardCarPartsFactory();
$this->assertInstanceOf(’CombustionEngine’,

$standardCarFactory->createEngine(),
"Standard gets correct CombustionEngine");

}
public function testFactoriesGetCorrectMuscleEnginePart() {

$muscleCarFactory = new MuscleCarPartsFactory();
$this->assertInstanceOf(’V8Engine’,

$muscleCarFactory->createEngine(),
"Muscle gets correct V8Engine");

}
public function testFactoriesGetCorrectHybridEnginePart() {

$hybridCarFactory = new HybridCarPartsFactory();
$this->assertInstanceOf(’HybridEngine’,

$hybridCarFactory->createEngine(),
"Hybrid car gets correct HybridEngine");

}
public function testGetCorrectStandardPassengerCompartment() {

$standardCarFactory = new StandardCarPartsFactory();
$this->assertInstanceOf(’StandardPassengerCompartment’,

$standardCarFactory->createPassengerCompartment(),
"Standard gets correct StandardPassengerCompartment");

}
public function testGetCorrectMusclePassengerCompartment() {

$muscleCarFactory = new MuscleCarPartsFactory();
$this->assertInstanceOf(’MusclePassengerCompartment’,

$muscleCarFactory->createPassengerCompartment(),
"Muscle car gets correct MusclePassengerCompartment");

}
public function testGetCorrectHybridPassengerCompartment() {

$hybridCarFactory = new HybridCarPartsFactory();

58

$this->assertInstanceOf(’HybridPassengerCompartment’,
$hybridCarFactory->createPassengerCompartment(),
"Hybrid car gets correct HybridPassengerCompartment");

}
?>

And here’s the implementation.

<?php

abstract class CarPartsFactory {
abstract public function createEngine();
abstract public function createPassengerCompartment();
// ... Doors, Wheels, etc., etc.

}

class StandardCarPartsFactory extends CarPartsFactory {
public function createEngine() {

return new CombustionEngine();
}
public function createPassengerCompartment() {

return new StandardPassengerCompartment();
}

}

class MuscleCarPartsFactory extends CarPartsFactory {
public function createEngine() {

return new V8Engine();
}
public function createPassengerCompartment() {

return new MusclePassengerCompartment();
}

}

class HybridCarPartsFactory extends CarPartsFactory {
public function createEngine() {

return new HybridEngine();
}
public function createPassengerCompartment() {

return new HybridPassengerCompartment();
}

}

interface Engine {
public function start();

59

public function stop();
public function accelerate();

}

class HybridEngine implements Engine {
public function start() {

echo "Starting hybrid engine\n";
}
public function stop() {

echo "Stopping hybrid engine\n";
}
public function accelerate() {

echo "Accelerating hybrid engine\n";
}

}

class V8Engine implements Engine {
public function start() {

echo "Starting V8 engine\n";
}
public function stop() {

echo "Stopping V8 engine\n";
}
public function accelerate() {

echo "Accelerating V8 engine\n";
}

}

class CombustionEngine implements Engine {
public function start() {

echo "Starting Combustion engine\n";
}
public function stop() {

echo "Stopping Combustion engine\n";
}
public function accelerate() {

echo "Accelerating Combustion engine\n";
}

}

interface PassengerCompartment {}
class StandardPassengerCompartment implements PassengerCompartment {}
class HybridPassengerCompartment implements PassengerCompartment {}
class MusclePassengerCompartment implements PassengerCompartment {}
?>

60

With the above in place, client code can simply instantiate the desired factory,
and then use that instance to create the parts as needed:

$factory = new MuscleCarPartsFactory();
$this->engine = $factory->createEngine();
$this->interior = $factory->createPassengerCompartment();
// ... and so on

An alternative is create a ‘product’ class that uses the factory to generate a fully
built product. In the following we create a Car class that takes a parts factory in
its constructor, and then, essentially, builds itself:

<?php
class Car {

protected $engine = null;
protected $passengerCompartment = null;

public function __construct(CarPartsFactory $partsFactory) {
$this->engine = $partsFactory->createEngine();
$this->passengerCompartment =

$partsFactory->createPassengerCompartment();
}
public function start() {

$this->engine->start();
}
public function stop() {

$this->engine->stop();
}
public function accelerate() {

$this->engine->accelerate();
}
protected function __ensureBuilt() {

if ($this->engine == null) {
$this->build();

}
}
public function getEngine() {

return $this->engine;
}
public function getPassengerCompartment() {

return $this->passengerCompartment;
}

}
?>

61

Allowing a Car class to essentially build itself, does add a creational responsibility
to Car; but given that all objects that implement a constructor are, in essence,
intializing themselves, we’d argue this hasn’t really weakened cohesion.

In this arrangement, we have the Car’s constructor taking the CarPartsFactory
in its constructor (letting clients be burdened with deciding which type of car
parts factory to use). This is called Dependency Injection. Please do not confuse
injection with inversion as it’s so easy to do (see Dependency Injection Is NOT
The Same As The Dependency Inversion Principle).

By allowing client code to inject the “depended on component” (DOC), we are
afforded more flexibility in our tests (since our tests can create these depended
on components and “pass them in”):

<?php
public function testCarPartsFactoryCreateEngineCalled() {

$hybridEngine = new HybridEngine();
$factoryStub = $this->getMock(’HybridCarPartsFactory’);
$factoryStub->expects($this->once())

->method(’createEngine’)
->will($this->returnValue($hybridEngine));

// Here we "inject" Car with a factory
$car = new Car($factoryStub);
$car->start();

}
// ... code intentionally omitted
?>

In the above test, we are able to create a mock object, which takes place of
the hybrid factory, and confirm that it in fact gets called from within the Car’s
constructor.

Pitfalls

Adding new components: The biggest issue with the Abstract Factory is
that anytime you want to add an additional component, you will have to modify
your factory and component code as such. For example, if we add a ‘createWheels’
method, look at the hoops we must jump through:

• Add the new wheels component:

– Add new abstract wheel product
– Add new wheel implementation

• Add a ‘createWheels’ to our abstract factory

62

http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://lostechies.com/derickbailey/2011/09/22/dependency-injection-is-not-the-same-as-the-dependency-inversion-principle/
http://lostechies.com/derickbailey/2011/09/22/dependency-injection-is-not-the-same-as-the-dependency-inversion-principle/
http://xunitpatterns.com/DOC.html
http://en.wikipedia.org/wiki/Mock_object

• Add a ‘createWheels’ to all derived concrete factories: StandardCarParts-
Factory, HybridCarPartsFactory, MuscleCarPartsFactory

This is tedious at best. Also, since we’re having to reopen our code, we cannot
assert conformance to the open/closed principle.

Complexity: Perhaps your reaction to the Car example above was, “Wow,
that’s a lot of code there!”. We’d agree, and this is arguably another disadvantage
of the Abstract Factory—the sheer number of classes involved. Imagine how
complicated things will become when we start adding all the common car
components you’d expect like the transmission, drive train, break system, wheels,
doors, etc.

Static Factory

There is another way in which we may supply factory-like functionality which is
not an official design pattern per se, but useful all the same. Joshua Bloch calls
it a static factory method. In Effective Java, he describes this as simply:

a static method that returns an instance of the class.

He goes on to provide some advantages of static factories:

• they have descriptive names, unlike constructors

• whereas a class can only have a single constructor with a given signature,
you can have as many static factories as needed

• they don’t have to create new objects each time called

• they can return subtypes

He goes on to provide an example of how a service provider framework might
supply a mechanism for registering alternative implementations via a well-known
properties file (similar to what the Pragmatic Programmers might call ametadata-
driven approach). Using this metadata-driven approach, a client passes in a key
to the provider framework’s static factory method, which is then used to look up
and instantiate the appropriate class. The following is a variation on this theme:

<?php
// ... code intentionally omitted

// Tests
public function testGetDefinedInstance() {

63

http://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
http://pragprog.com/book/tpp/the-pragmatic-programmer

$returnedInstance = ProviderFramework::getInstance("moduleA");
$this->assertInstanceOf(’ModuleA’, $returnedInstance,

"Should get the correct instance");
}

public function testGetUndefinedInstanceReturnsDefault() {
$returnedInstance = ProviderFramework::getInstance("bogus");
$this->assertInstanceOf(’DefaultModule’, $returnedInstance,

"Should fall back to a default instance if undefined key");
}

// ... code intentionally omitted

// Provider Framework - Implementation
class Metadata {

public function getModules() {
// Let’s imagine that in a "real system" we’d be getting
// these from a known metadata configuration file.
return array(

"moduleA" => "ModuleA",
"moduleB" => "ModuleB",

);
}

}

class DefaultModule {
}
class ModuleA {
}
class ModuleB {
}

class ProviderFramework {
private static $modules = null;

private static function initMetadata() {
if (self::$modules == null) {

$meta = new Metadata();
self::$modules = $meta->getModules();

}
}

public static function getInstance($key) {
self::initMetadata();
if (!isset(self::$modules[$key])) {

return new DefaultModule();

64

}
$klass = self::$modules[$key];
return new $klass();

}
public static function reset() {

self::$modules = null;
}

}

?>

Pitfalls

Some disadvantages of the static factory approach are:

• we cannot subclass (due to the private constructor)

• they’re not distinguishable from other static methods

Final Thoughts

In this chapter we’ve presented three patterns to help aid in object creation
(well, actually two patterns and one idiom—static factory isn’t really an “official
pattern”). These patterns can help you to maintain cohesion in your modules,
pushing any creational responsibility to encapsulated factories.

Singleton Pattern

Overview

The Singleton pattern provides a means of ensuring that only one instance of a
particular class is created. This is generally achieved by marking the constructor
of that class as private, and then providing a public method that returns the
one shared instance (e.g. ‘getInstance’).

Singletons may be applicable when:

“there must be exactly one instance of a class, and it must be
accessible to clients from a well-known access point”—Gang of Four

Singletons are probably the most controversial of the design patterns, bringing
the following concerns:

65

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

• Meaningful unit testing becomes far more difficult

If the system under test uses one or many singleton objects, it becomes hard to
test that system in an isolated manner. Generally, it is advised to use dependency
injection instead.

• Global state

While the issue of multi-threaded applications creating duplicate singletons can
be circumnavigated by using synchronized methods or “eager instantiation”, the
global state introduced by this pattern greatly “reduces the chance of parallelism
within a program”.

Despite this controversy, we’ve decided to write this short chapter on Singletons,
since you’ll likely encounter them in many projects and need to, at least, be
familiar with how they work. That said, definitely think thrice before adding
Singeltons to your project, and, perhaps read these posts first:

• Guide: Writing Testable Code

• Performant Singletons

Implementation

So you’ve read the “warning labels” and still want to see how this is implemented;
well, with much trepidation, we present the Singleton pattern:

public class Singleton {

// Here we’ve "eager-initialized" our Singleton instance.
// Using a synchronized getInstance or double locking are
// other options.
private final static Singleton instance = new Singleton();

private Singleton () {}

public static Singleton getInstance() {
return instance;

}
}

// ... code intentionally omitted

66

http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://en.wikipedia.org/wiki/Singleton_pattern#Drawbacks
http://en.wikipedia.org/wiki/Singleton_pattern#Drawbacks
http://misko.hevery.com/code-reviewers-guide/
http://scientificninja.com/blog/performant-singletons

@Test
public void testCreateSingleton() {

assertSame(Singleton.getInstance(), Singleton.getInstance());
}

Builder Pattern

Overview

The Builder design pattern provides a way to:

separate the construction of a complex object from its represen-
tation so that the same construction process can create different
representations.—Gang of Four

The Builder pattern is a creational pattern that allows for abstracting the
creation of related but complex objects; this is done by utilizing concrete builders
that independently construct and assemble products as appropriate.

Figure 5: Builder Pattern

Participants and Collaborations

The participants in Builder are:

67

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

• Builder: Provides an interface for building parts of the complex object

• ConcreteBuilder: Assembles the parts that make up the object

• Director: Builds complex objects by delegating to the Builder

• Product: Represents the complex object being constructed

Figure 6: Builder Sequence Diagram

The assembly of the product involves the following collaborations:

• Client creates Builder and Director objects (injecting Director with Builder)

• Client calls construct (or similar) on Director

• Director calls appropriate series of Builder build operations

• Director calls get on the Builder getting the fully assembled product.

Implementation

Imagine the following happy hour scenario:

68

• You order a drink from a waitress at a pub

• The Waitress (the Director), takes down your order

• She then asks the Bartender (the Builder) to prepare your drinks

• Once the drinks are ready, she puts them on her tray, walks over and serves
them to you

If you think about it, the above happy hour scenario is really quite similar to
how Builder pattern works. Let’s, in fact, put this example to code. . . first we’ll
start with the tests:

// Install node.js, npm, mocha.js, and sinon.js:
// $ npm install -g mocha
// $ npm install sinon
// $ mocha --ignore-leaks
var sinon, assert,

IBartender, Bartender, Waitress, DrinkMenu;

assert = require(’assert’);
sinon = require(’sinon’);
IBartender = require("../builder.js").IBartender;
Bartender = require("../builder.js").Bartender;
Waitress = require("../builder.js").Waitress;
DrinkMenu = require("../builder.js").DrinkMenu;

describe("Builder tests", function() {
var bartender, waitress;
beforeEach(function() {

bartender = new Bartender();
waitress = new Waitress(bartender, DrinkMenu);

});
afterEach (function() {

bartender = null;
waitress = null;

});

it("should take an order for mojito", function() {
var spy = sinon.spy(bartender, "prepareMojito");
waitress.takeOrder([DrinkMenu.mojito]);
assert(spy.called);
bartender.prepareMojito.restore();

});

69

it("should take order for all drinks on menu", function() {
var allDrinks=[],

key,
allSpies={};

// Spy on each of the Bartender’s prepareXXX methods
for(key in DrinkMenu) {

allSpies[key] = sinon.spy(bartender, DrinkMenu[key]);
allDrinks.push(DrinkMenu[key]);

}

waitress.takeOrder(allDrinks);

// Assert Bartender’s prepareXXX methods called; restore
for(key in allSpies) {

assert(allSpies[key].called);
}
for(key in DrinkMenu) {

bartender[DrinkMenu[key]].restore();
}

});

it("should only take Array of valid drink types", function() {
var result;
result = waitress.takeOrder("invalid type");
assert.equal(null, result);
result = waitress.takeOrder([’not_a_drink!’]);
assert.equal(null, result);
result = waitress.takeOrder([DrinkMenu.mai_tai,

’not_a_drink!’,
DrinkMenu.pina_colada]);

assert.equal(null, result);
result = waitress.takeOrder(undefined);
assert.equal(null, result);
result = waitress.takeOrder(null);
assert.equal(null, result);

});
it("should return correct number of drinks", function() {

var drinksServed =
waitress.takeOrder([DrinkMenu.mojito,

DrinkMenu.mai_tai]);
assert.equal(2, drinksServed.length);

});
it("should allow duplicate drinks to be ordered", function() {

var drinksServed =
waitress.takeOrder([DrinkMenu.mojito,

70

DrinkMenu.mai_tai,
DrinkMenu.mai_tai,
DrinkMenu.margarita,
DrinkMenu.mai_tai]);

assert.equal(5, drinksServed.length);
});

});

Implementation

And here’s our implementation:

var DrinkMenu = {
beer: "prepareBeer",
mojito: "prepareMojito",
kamikaze: "prepareKamikaze",
margarita: "prepareMargarita",
mai_tai: "prepareMaiTai",
pina_colada: "preparePinaColada"

};

var IBartender = function() {};
IBartender.prototype[DrinkMenu.mojito] = function() {

throw new Error("Method must be implemented.");
};
IBartender.prototype[DrinkMenu.kamikaze] = function() {

throw new Error("Method must be implemented.");
};
IBartender.prototype[DrinkMenu.mai_tai] = function() {

throw new Error("Method must be implemented.");
};
IBartender.prototype[DrinkMenu.margarita] = function() {

throw new Error("Method must be implemented.");
};
IBartender.prototype[DrinkMenu.beer] = function() {

throw new Error("Method must be implemented.");
};
IBartender.prototype[DrinkMenu.pina_colada] = function() {

throw new Error("Method must be implemented.");
};

var Bartender = function() {
this.drinks = [];

};

71

Bartender.prototype = new IBartender();
Bartender.prototype[DrinkMenu.beer] = function() {

this.drinks.push("Beer");
};
Bartender.prototype[DrinkMenu.mojito] = function() {

this.drinks.push("Mojito");
};
Bartender.prototype[DrinkMenu.kamikaze] = function() {

this.drinks.push("Kamikaze");
};
Bartender.prototype[DrinkMenu.mai_tai] = function() {

this.drinks.push("Mai Tai");
};
Bartender.prototype[DrinkMenu.margarita] = function() {

this.drinks.push("Margarita");
};
Bartender.prototype[DrinkMenu.pina_colada] = function() {

this.drinks.push("Pina Colada");
};
Bartender.prototype.ordersUp = function() {

return this.drinks;
};

var Waitress = function(bartender, menu) {
this.bartender = bartender;
this.menu = menu;

};

// Precondition: drinks elements must be valid DrinkMenu items
Waitress.prototype.takeOrder = function(drinks) {

var i, order = [], self = this;

function isBartenderFunction(key) {
return typeof self.bartender[key]==="function";

}

if(Array.isArray(drinks)) {
for (i = 0; i < drinks.length; i++) {

if (isBartenderFunction(drinks[i])) {
order.push(self.bartender[drinks[i]]());

} else {
return null;

}
}
return (order.length) ? self.bartender.ordersUp() : null;

72

}
return null;

};

module.exports.IBartender = IBartender;
module.exports.Bartender = Bartender;
module.exports.Waitress = Waitress;
module.exports.DrinkMenu = DrinkMenu;

Pitfalls

The BuilderPattern doesn’t seem to commit many flagrant violations of object-
oriented principles. However, as with most design patterns, it does add some
complexity. Also, there is a more modern version of Builder pattern that you’ll
see that uses Fluent Interfaces, but this is beyond the scope of this chapter.
Here’s an interesting article if you’d like to learn more about that approach.

Summary

The Builder pattern allows us to decouple our client code from the construction
of complex objects. It can be used to make our code more testable. For example,
if we have an object with a “busy constructor”(a constructor doing object
instantiation; a big testability no no!), one option we have is to refactor to have
the constructor take a builder object. It can then use the builder’s operations to
initialize its member variables. This is really an alternative form of constructor
dependency injection, a technique that allows test code to control how an object
under test’s dependents are constructed.

Command Pattern

Overview

The Command pattern is used to:

“Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support
undoable operations.”—Gang of Four

Command is a behavioural pattern that decouples objects that invoke behaviour
from objects that actually carry out those behaviours. Appropriately, we have
an Invoker object that requests some behaviour, and a Receiver object that
actually carries out that behaviour.

73

http://en.wikipedia.org/wiki/Fluent_interface
http://www.dzone.com/links/r/the_builder_pattern_in_practice.html
http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/
http://www.jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

Figure 7: Command Pattern

In the case of the Command pattern, however, the Invoker does not know nor
communicate with the receiver directly—instead, it calls a Command object’s
execute method, which takes care of invoking the receiver; the receiever then
carries out the desired behaviour.

The command object is what decouples the invoker and receiver objects and
provides the following benefits:

• The invoker needn’t know about the receiever’s interface

• The behavior may be carried out asynchronously

The defining characteristics of the command object are:

• an execute operation

• a reference to a Receiver that has code to fulfil the request

There are variations of command pattern that add functionality like undo and
batch commands. We will look at some of these later in this chapter.

Implementation

The above sequence diagram should be fairly self-evident:

74

Figure 8: Command Sequence Diagram

• a Client creates a Command Object, injecting it with a Receiever

• the Client stores this “command object” on the Invoker

• some period of time elapses

• the Invoker calls execute on the Command Object

• the Command Object, in turn, calls action on the Receiever

The “Very Simplest” Command Pattern Implementation

Before we do something useful with the Command pattern, let’s first create a
“vanilla” Command implementation. As we’ve described, the core collaborations
happen when the Invoker decides to trigger the Command’s execute or undo
method. Let’s Mock the Receiver object and simply ensure that its appropriate
operations get called:

import static org.junit.Assert.*;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

75

// http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html
import static org.mockito.Mockito.*;

public class CommandTests {

private Invoker invoker;
private Receiver mockReceiver;
private Command command;

@Before
public void setUp() throws Exception {

this.mockReceiver = mock(Receiver.class);
this.command = new ConcreteCommand(this.mockReceiver);
this.invoker = new Invoker();
this.invoker.setCommand(this.command);

}

@After
public void tearDown() throws Exception {

this.command = null;
this.invoker = null;
this.mockReceiver = null;

}

@Test
public void testCommandCallsReceiver() {

// Test acting as "client" for now
this.invoker.action();
verify(this.mockReceiver, times(1)).doSomething();

}

@Test
public void testUndo() {

this.invoker.undo();
verify(this.mockReceiver, times(1)).undoSomething();

}

}

The above tests are code smells since there’s no clear system under test (we’re
asserting the our Receiver mock gets called as the result of invoking the Invoker;
but Invoker, in turn, depends on ConcreteCommand. Generally, we should not
mock dependents more then one level deep). Since our tests are merely acting
as a confirmation that the pattern is working as we expect, we won’t bother
refactoring. The tests pass with the following implementation:

76

public interface Command {
public void execute();
public void undo();

}

public class ConcreteCommand implements Command {
private Receiver receiver;

public ConcreteCommand(Receiver receiver) {
this.receiver = receiver;

}
@Override
public void execute() {

this.receiver.doSomething();
}

@Override
public void undo() {

this.receiver.undoSomething();
}

}

public class Receiver {
public void doSomething() {

System.out.println("Doing something useful...");
}
public void undoSomething() {

System.out.println("Undoing ’something useful’...");
}

}

public class Invoker {
private Command command = null;

public void setCommand(Command command) {
this.command = command;

}
public void action() {

if (this.command != null) {
command.execute();

}
}
public void undo() {

if (this.command != null) {
command.undo();

77

}
}

}

Reading the above code, it should be clear the path that the code takes when
Invoker’s action is called; the Concrete Command’s execute is called, which in
turn, calls the Receiver’s doSomething method. The code path for undoing is
equally simple. This is a purposely pedentic example, but does show the general
collaborations between the Invoker, Command, and Receiver objects.

Naming Conventions

One of the difficulties we’re presented with when trying to use design patterns,
is how to map the names of a pattern’s collaborating objects to those in the
system we’re trying to build. Should we incorporate the pattern being used as a
suffix (e.g. MyFooInvoker, and MyBarReceiver, etc.)? Although this does have
the advantage of indicating the pattern objects being used, it may start to look
like a form of Hungarian Notation. The real question, however, is whether the
resulting name properly describes the thing it represents. In some cases, the suffix
approach might work; we could have Command objects named DogSitCommand
and DogSpeakCommand. These actually do represent the thing being modelled
(while still including the pattern object as a suffix).

As Code Complete 2 advocates, we should strive to describe only the thing being
represented itself:

Does the name fully and accurately describe what the variable rep-
resents? . . . Names should be specific as possible. Names that are
vague enough or general enough to be used for more than one purpose
are usually bad names.

The take away (in our opinion) is, to remain flexible, but use your judgement as
to whether the suffix approach will detract from a good variable name or not.

Example: A user interface toolkit

The quintessential problem that lends itself to the Command Pattern is a user
interface toolkit. For example, the toolkit might have widgets that a user interacts
with like menu items, toolbar items, keyboard shortcuts, etc., that trigger certain
actions. Let’s try to implement a subset of such a system.

78

http://www.cc2e.com/Default.aspx

Designing “on the go”

We need to take a couple of minutes to figure out how we’re going to map our
GUI’s objects to those defined in the Command Pattern. We can use a sort of
“watered down” pseudocode programming process approach to come up with
something like the following:

@Test
public void testGUIImplementationOfCommandPattern() {

// 1. Instantiate a document "Receiver"
// We’ll call ours: DocumentOperations
// open, close, cut, paste, etc.

// 2. Then add menu items (Commands):
// MenuItemOpen, MenuItemClosed, etc.
// ToolBarItemOpen, ToolBarItemClosed, etc.

// 3. UIEventsManager will act as our "Invoker". We’ll support:
// handleMenuPressEvent
// handleUndoMenuPressEvent
// handleToolBarPressEvent
// handleUndoToolBarPressEvent
// ... etc.

}

If we were using PPP formally, we’d put these sorts of comments in a production
method, and then replace each section with actual implementation code. But,
in this case, we were actually sitting inside our first test case, looking for a way
to quickly get our thoughts down; this type of bastardized PPP works fine for
that purpose (yes, pencil and paper would work as well).

As you can see, we’ve decided that our Receiver will be a DocumentOperations
class, and support open, close, cut, paste, etc.; our Concrete Commands will be
MenuItemOpen, MenuItemClose, ToolBarItemOpen, ToolBarItemClosed, etc.;
and our Invoker will be the UIEventsManager (in a real system we’d likely
separate this one into more classes as it’s taking on too many responsibilities;
but for this example, we’ll overlook this shortcoming); this will provide the
corresponding event registration and handling, etc.

Implementation

Ok, so we have a basic sketch of our design. Let’s implement this thing! For
brevity’s sake, we’ll just implement the open, close, cut, and paste operations.

First, here are the tests for the GUI application:

import static org.junit.Assert.*;

79

http://www.codinghorror.com/blog/2009/05/pseudocode-or-code.html

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

//http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html
import static org.mockito.Mockito.*;

public class GUITests {

private ICommand mockMenuOpenCommand;
private ICommand mockMenuCloseCommand;
private ICommand mockMenuCut;
private ICommand mockMenuPaste;

private ToolBarItemOpen mockToolbarOpenCommand;
private ToolBarItemClose mockToolbarCloseCommand;
private ToolBarItemCut mockToolbarCut;
private ToolBarItemPaste mockToolbarPaste;

private UIEventsManager eventManager;
private DocumentOperations mockDocumentOperations;

@Before
public void setUp() {

mockMenuOpenCommand = mock(MenuItemOpen.class);
mockMenuCloseCommand = mock(MenuItemClose.class);
mockMenuCut = mock(MenuItemCut.class);
mockMenuPaste = mock(MenuItemPaste.class);
mockToolbarOpenCommand = mock(ToolBarItemOpen.class);
mockToolbarCloseCommand = mock(ToolBarItemClose.class);
mockToolbarCut = mock(ToolBarItemCut.class);
mockToolbarPaste = mock(ToolBarItemPaste.class);
mockDocumentOperations = mock(DocumentOperations.class);
eventManager = new UIEventsManager();

}

@After
public void tearDown() {

mockMenuOpenCommand = null;
mockMenuCloseCommand = null;
mockMenuCut = null;
mockMenuPaste = null;
mockToolbarOpenCommand = null;
mockToolbarCloseCommand = null;
mockToolbarCut = null;
mockToolbarPaste = null;

80

mockDocumentOperations = null;
eventManager = null;

}

@Test
public void testDocumentOperationsReceiverCalledForMenuOpen() {

ICommand menuOpenCommand =
new MenuItemOpen(mockDocumentOperations, "foofile.txt");

menuOpenCommand.execute();
verify(mockDocumentOperations, times(1)).open("foofile.txt");

}

@Test
public void testDocumentOperationsReceiverCalledForToolbarOpen() {

ICommand toolbarOpenCommand =
new ToolBarItemOpen(mockDocumentOperations, "foo2file.txt");

toolbarOpenCommand.execute();
verify(mockDocumentOperations, times(1)).open("foo2file.txt");

}

@Test
public void testDocumentOperationsReceiverCalledForMenuClose() {

ICommand menuCloseCommand =
new MenuItemClose(mockDocumentOperations, "foofile.txt");

menuCloseCommand.execute();
verify(mockDocumentOperations, times(1)).close("foofile.txt");

}

@Test
public void testDocumentOperationsReceiverCalledForToolbarClose() {

ICommand toolbarCloseCommand =
new ToolBarItemClose(mockDocumentOperations, "foo2file.txt");

toolbarCloseCommand.execute();
verify(mockDocumentOperations, times(1)).close("foo2file.txt");

}

@Test
public void testDocumentOperationsReceiverCalledForMenuCut() {

ICommand menuCutCommand =
new MenuItemCut(mockDocumentOperations);

menuCutCommand.execute();
verify(mockDocumentOperations, times(1)).cut();

}

@Test
public void testDocumentOperationsReceiverCalledForToolbarCut() {

81

ICommand toolbarCutCommand =
new ToolBarItemCut(mockDocumentOperations);

toolbarCutCommand.execute();
verify(mockDocumentOperations, times(1)).cut();

}

@Test
public void testDocumentOperationsReceiverCalledForMenuPaste() {

ICommand menuPasteCommand =
new MenuItemPaste(mockDocumentOperations);

menuPasteCommand.execute();
verify(mockDocumentOperations, times(1)).paste();
menuPasteCommand.undo();
verify(mockDocumentOperations, times(1)).undoPaste();

}

@Test
public void testDocumentOperationsReceiverCalledForToolbarPaste() {

ICommand toolbarPasteCommand =
new ToolBarItemPaste(mockDocumentOperations);

toolbarPasteCommand.execute();
verify(mockDocumentOperations, times(1)).paste();
toolbarPasteCommand.undo();
verify(mockDocumentOperations, times(1)).undoPaste();

}

@Test
public void testInvokerInvokesMenuOpenConcreteCommand() {

eventManager.addMenuCommand("open", mockMenuOpenCommand);
eventManager.handleMenuPressEvent("open");
verify(mockMenuOpenCommand, times(1)).execute();

}

@Test
public void testInvokerInvokesToolbarOpenConcreteCommand() {

eventManager.addMenuCommand("open", mockToolbarOpenCommand);
eventManager.handleMenuPressEvent("open");
verify(mockToolbarOpenCommand, times(1)).execute();

}

@Test
public void testInvokerInvokesMenuClosedConcreteCommand() {

eventManager.addMenuCommand("close", mockMenuCloseCommand);
eventManager.handleMenuPressEvent("close");
verify(mockMenuCloseCommand, times(1)).execute();

}

82

@Test
public void testInvokerInvokesToolbarClosedConcreteCommand() {

eventManager.addMenuCommand("close", mockToolbarCloseCommand);
eventManager.handleMenuPressEvent("close");
verify(mockToolbarCloseCommand, times(1)).execute();

}

@Test
public void testInvokerInvokesMenuCut() {

eventManager.addMenuCommand("cut", mockMenuCut);
eventManager.handleMenuPressEvent("cut");
verify(mockMenuCut, times(1)).execute();

}

@Test
public void testInvokerInvokesToolbarCut() {

eventManager.addMenuCommand("cut", mockToolbarCut);
eventManager.handleMenuPressEvent("cut");
verify(mockToolbarCut, times(1)).execute();

}

@Test
public void testInvokerInvokesMenuPaste() {

eventManager.addMenuCommand("paste", mockMenuPaste);
eventManager.handleMenuPressEvent("paste");
verify(mockMenuPaste, times(1)).execute();

}

@Test
public void testInvokerInvokesToolbarPaste() {

eventManager.addMenuCommand("paste", mockToolbarPaste);
eventManager.handleMenuPressEvent("paste");
verify(mockToolbarPaste, times(1)).execute();

}
}

And here are the various implementation files for the GUI system:

// IDocumentOperations acts as a "Receiver" (Command Pattern)
public interface IDocumentOperations {

public void open(String fileName);
public void close(String fileName);
public void cut();

83

public void undoPaste();
public void paste();

}

public class DocumentOperations implements IDocumentOperations {

public void open(String fileName) {
System.out.println("Opening " + fileName + "...");

}

public void close(String fileName) {
System.out.println("Closing " + fileName + "...");

}

@Override
public void cut() {

System.out.println("Cutting some text...");
}

@Override
public void paste() {

System.out.println("Pasting some text...");
}

@Override
public void undoPaste() {

System.out.println("Undoing last paste operation...");
}

}

public interface ICommand {
public void execute();
public void undo();

}

// MenuItemOpen acts as a "ConcreteCommand" (Command Pattern)
public class MenuItemOpen implements ICommand {

private IDocumentOperations documentOperations;
private String fileName;

public MenuItemOpen(IDocumentOperations documentOperations, String fileName) {
this.documentOperations = documentOperations;
this.fileName = fileName;

}

84

@Override
public void execute() {

this.documentOperations.open(this.fileName);
}

@Override
public void undo() {} // NOP

}

//MenuItemClosed acts as a "ConcreteCommand" (Command Pattern)
public class MenuItemClose implements ICommand {

private IDocumentOperations documentOperations;
private String fileName;

public MenuItemClose(IDocumentOperations documentOperations, String fileName) {
this.documentOperations = documentOperations;
this.fileName = fileName;

}

@Override
public void execute() {

this.documentOperations.close(this.fileName);
}

@Override
public void undo() {} //NOP

}

public class MenuItemCut implements ICommand {
private IDocumentOperations documentOperations;

public MenuItemCut(IDocumentOperations documentOperations) {
this.documentOperations = documentOperations;

}

@Override
public void execute() {

this.documentOperations.cut();
}

@Override
public void undo() {} //NOP

}

85

public class MenuItemPaste implements ICommand {

private IDocumentOperations documentOperations;

public MenuItemPaste(IDocumentOperations documentOperations) {
this.documentOperations = documentOperations;

}

@Override
public void execute() {

this.documentOperations.paste();
}

@Override
public void undo() {

this.documentOperations.undoPaste();
}

}

public class ToolBarItemOpen implements ICommand {

private IDocumentOperations documentOperations;
private String fileName;

public ToolBarItemOpen(IDocumentOperations documentOperations, String fileName) {
this.documentOperations = documentOperations;
this.fileName = fileName;

}

@Override
public void execute() {

this.documentOperations.open(this.fileName);
}

@Override
public void undo() {} // NOP

}

public class ToolBarItemClose implements ICommand {
private IDocumentOperations documentOperations;
private String fileName;

public ToolBarItemClose(IDocumentOperations documentOperations, String fileName) {
this.documentOperations = documentOperations;

86

this.fileName = fileName;
}

@Override
public void execute() {

this.documentOperations.close(this.fileName);
}

@Override
public void undo() {} //NOP

}

public class ToolBarItemCut implements ICommand {
private IDocumentOperations documentOperations;

public ToolBarItemCut(IDocumentOperations documentOperations) {
this.documentOperations = documentOperations;

}

@Override
public void execute() {

this.documentOperations.cut();
}

@Override
public void undo() {} //NOP

}

public class ToolBarItemPaste implements ICommand {

private IDocumentOperations documentOperations;

public ToolBarItemPaste(IDocumentOperations documentOperations) {
this.documentOperations = documentOperations;

}

@Override
public void execute() {

this.documentOperations.paste();
}

@Override
public void undo() {

this.documentOperations.undoPaste();
}

87

}

import java.util.HashMap;
import java.util.Map;

public class UIEventsManager {
private Map<String, ICommand> menuCommandsMap = new HashMap<String, ICommand>();
private Map<String, ICommand> toolBarCommandsMap = new HashMap<String, ICommand>();

public void addMenuCommand(String key, ICommand menuCommand) {
this.menuCommandsMap.put(key, menuCommand);

}

public void addToolBarCommand(String key, ICommand toolbarCommand) {
this.toolBarCommandsMap.put(key, toolbarCommand);

}

public void handleMenuPressEvent(String key) {
ICommand menuCommand = this.menuCommandsMap.get(key);
if (menuCommand != null) {

menuCommand.execute();
}

}

public void handleUndoMenuPressEvent(String key) {
ICommand menuCommand = this.menuCommandsMap.get(key);
if (menuCommand != null) {

menuCommand.undo();
}

}

public void handleToolBarPressEvent(String key) {
ICommand toolbarCommand = this.toolBarCommandsMap.get(key);
if (toolbarCommand != null) {

toolbarCommand.execute();
}

}

public void handleUndoToolBarPressEvent(String key) {
ICommand toolbarCommand = this.toolBarCommandsMap.get(key);
if (toolbarCommand != null) {

toolbarCommand.undo();
}

}
}

88

Since we’ve taken the liberty to add print statements in our DocumentOperations
(the Receiver in this case), we’ve decided to include a manual test (in addition
to our unit tests):

public class GUIManualTest {

public static void main(String[] args) {
UIEventsManager eventManager =

new UIEventsManager();
DocumentOperations docOperations =

new DocumentOperations();
ICommand menuOpenCommand =

new MenuItemOpen(docOperations, "myfile.txt");
ICommand menuCloseCommand =

new MenuItemClose(docOperations, "myfile.txt");
ICommand menuCutCommand =

new MenuItemCut(docOperations);
ICommand menuPasteCommand =

new MenuItemPaste(docOperations);

ICommand toolbarOpenCommand =
new ToolBarItemOpen(docOperations, "myfile2.txt");

ICommand toolbarCloseCommand =
new ToolBarItemClose(docOperations, "myfile2.txt");

ICommand toolbarCutCommand =
new ToolBarItemCut(docOperations);

ICommand toolbarPasteCommand =
new ToolBarItemPaste(docOperations);

eventManager.addMenuCommand("open", menuOpenCommand);
eventManager.addMenuCommand("close", menuCloseCommand);
eventManager.addMenuCommand("cut", menuCutCommand);
eventManager.addMenuCommand("paste", menuPasteCommand);
eventManager.addToolBarCommand("open", toolbarOpenCommand);
eventManager.addToolBarCommand("close", toolbarCloseCommand);
eventManager.addToolBarCommand("cut", toolbarCutCommand);
eventManager.addToolBarCommand("paste", toolbarPasteCommand);

// Here we "trigger" some pertinent events
System.out.println("Manually testing the menu-based commands...");
eventManager.handleMenuPressEvent("open");
eventManager.handleMenuPressEvent("cut");
eventManager.handleMenuPressEvent("paste");
eventManager.handleUndoMenuPressEvent("paste");
eventManager.handleMenuPressEvent("close");

89

System.out.println("Manually testing the toolbar-based commands...");
eventManager.handleToolBarPressEvent("open");
eventManager.handleToolBarPressEvent("cut");
eventManager.handleToolBarPressEvent("paste");
eventManager.handleUndoToolBarPressEvent("paste");
eventManager.handleToolBarPressEvent("close");

}

}

Running this gives the following output:

Manually testing the menu-based commands...
Opening myfile.txt...
Cutting some text...
Pasting some text...
Undoing last paste operation...
Closing myfile.txt...
Manually testing the toolbar-based commands...
Opening myfile2.txt...
Cutting some text...
Pasting some text...
Undoing last paste operation...
Closing myfile2.txt...

Code walk-through

Although there is quite a bit of code in the above example, if you take a look at
the main method in GUIManualTest, you should be able to see that we have the
exact same “code flow” as we did in the simple pedentic exercise we started with
earlier in this chapter. Let’s take the recipe we defined earlier for Command
Pattern and apply it to the GUI system:

• a Client creates a Command Object, injecting it with a Receiever

In our case, the Receiver is the DocumentOperations class, and this step is
carried out as follows:

ICommand toolbarOpenCommand =
new ToolBarItemOpen(docOperations, "myfile2.txt");

90

• the Client stores this “command object” on the Invoker

In our case, the UIEventsManager is our Invoker, and we store the command
objects as follows:

eventManager.addToolBarCommand("open", toolbarOpenCommand);

We’re storing our commands within the UIEventsManager as Maps. So the first
argument (‘open’ in the above example), is the key that will be used to later
look up the appropriate command when we want to trigger execute.

• the Invoker calls execute on the Command Object

In our case, we’re triggering an event that will cause the Invoker to do this:

eventManager.handleToolBarPressEvent("open");

• the Command Object, in turn, calls action on the Receiever

As we know, our various Menu and ToolBar commands are delegating to the
DocumentOperations class (the Receiver) to actually carry out the corresponding
operations.

Template Pattern

Overview

The Template Method’s intent is as follows:

Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure—
Gang of Four

In the Template Method, we define an operation in a base class that has a
particular sequence of “sub-operations”. This sequencing of calls from the
Template Method to these sub-operations is an invariant—in fact, the template
method itself, is often marked final so that it cannot be changed.

91

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

Figure 9:

92

Hollywood Principle

The arrangement of having a Template Method in the base class that calls
operations defined by sub-classes is an example of using the Hollywood Principle:
“Don’t call us, we’ll call you.”—an analogy drawn from how a typical casting call
process works: A pool of talent shows up to audition for a part. Perhaps there’s
sign in table where the talent leaves a media package (e.g. head shots, credit list,
contact information, etc.). They are told to go to a waiting room (where they
possibly wait all day), but eventually, get a chance to perform their audition.
Casting directors watch, take notes, and likely make faces of disapproval. Later,
through a process of elimination, the casting directors come up with a casting
list.

Once the talent has finished their audition, the casting director might say: “don’t
call us, we’ll call you”. This is, essentially, a dismissive way of saying “don’t
bother to pursue the part any further. . . we’ll get a hold of you if we feel like
it!”. This analogy is similar to the arrangement we have in Template Method:
Sub-classes do not call operations on the parent (“don’t call us”)—they may
override operations and even implement hooks—but only the parent gets to
decides if and when these overriden operations get called (“we’ll call you!”).

Features

Template method provides the following benefits:

• The base class provides a single entry point for execution

• The base class has control of the sequence of performed operations for an
algorithm

• Sub classes provide implementation details

• The base class may define hook methods with empty implementations that
lower-level classes can choose to override

Hooks

Hook methods allow lower level components to “hook in to” a system. High-
level classes determine exactly at which point these hooks are called. They are
generally defined with empty implementations so that, if not overriden, nothing
happens when they’re called. In fact (in this case), the real difference between
the abstract and hook methods is that the former are required, the later optional.

93

Participants

• AbstractClass: Defines the Template Method which will, in turn, call
any of the following if defined:

– Concrete methods: Generalized methods that provide any shared
functionality

– Abstract methods: Operations that sub-classes must override (re-
quired)

– Hook methods: Operations that sub-classes may override (optional)

Implementation

The following is about the simplest implementation of Template Method you
could find, but will help us to get a firm grasp of how this pattern works:

“‘java abstract class AbstractClass { public abstract void operation1();
public abstract void operation2(); public void hook1() {} public void
hook2() {} public final void templateMethod() { hook1(); operation1();
operation2(); hook2(); } } class ConcreteClass extends AbstractClass {
private String className = this.getClass().getSimpleName(); public void
operation1() { System.out.println(className + “: operation1 called. . . ”); }
public void operation2() { System.out.println(className + “: operation2
called. . . ”); } public void hook1() { System.out.println(className + “: hook1
called. . . ”); } } class ConcreteClass2 extends AbstractClass { private String
className = this.getClass().getSimpleName(); public void operation1() {
System.out.println(className + “: operation1 called. . . ”); } public void
operation2() { System.out.println(className + “: operation2 called. . . ”); }
public void hook2() { System.out.println(className + “: hook2 called. . . ”); } }

public class Template { public static void main(String[] args) { ConcreteClass
cc1 = new ConcreteClass(); cc1.templateMethod(); ConcreteClass2 cc2 = new
ConcreteClass2(); cc2.templateMethod(); } } “‘ Unsurprisingly, running this
code prints out the following:

We define the abstract class with both abstract operations and concrete “hook”
operations (notice the empty code blocks); it also has the templateMethod which
calls each of the aformentioned operations. Notice that the hooks will “no op” if
not implemented by a particular sub-class. For example, the first ConcreteClass
only implements hook1 (and we see that in the output), whereas ConcreteClass2
only implements hook2 (also reflected in the output).

Example: Audio Decoder

Let’s take a look at a slightly more interesting (albeit, still not “real world
ready”) example of implementing an Audio Decoder abstraction. We want to be

94

able to handle both MP3’s and AAC lossy audio formats, and have access to
libraries that implement the low-level native details for each. We may want to
support Ogg at a later date, and possibly even lossless formats too. Therefore,
we need to comply with open/closed, and make sure that any classes we define
don’t have to later be “opened up”.

First our tests:

“‘java

import static org.junit.Assert.*;

import org.junit.After; import org.junit.Before; import org.junit.Test;

//http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html import
static org.mockito.Mockito.*;

public class AudioDecoderTests { private INativeDecoder mockNa-
tiveMP3Decoder; private INativeDecoder mockNativeAACDecoder;

@Before
public void setUp() throws Exception {

mockNativeMP3Decoder = mock(NativeMP3Decoder.class);
mockNativeAACDecoder = mock(NativeAACDecoder.class);

}

@After
public void tearDown() throws Exception {

mockNativeMP3Decoder = null;
mockNativeAACDecoder = null;

}

@Test
public void testPlaysMP3s() {

MP3Decoder mp3Decoder = new MP3Decoder(mockNativeMP3Decoder, "my_song.mp3");
mp3Decoder.play();
verify(mockNativeMP3Decoder, times(1)).decode(null);

}

@Test
public void testPlaysAACs() {

AACDecoder aacDecoder = new AACDecoder(mockNativeAACDecoder, "my_song.aac");
aacDecoder.play();
verify(mockNativeAACDecoder, times(1)).decode(null);

}

} “‘ And here’s our partial implementation (we’ve decided to err on the side
of brevity for this example as actually implementing an audio decoder might
distract from this chapter’s topic—the Template Method pattern):

95

class AudioInputStream {}

public abstract class AudioDecoder {
protected String filePath;
protected INativeDecoder decoder;

public AudioDecoder(INativeDecoder decoder, String pathToAudioFile) {
this.filePath = pathToAudioFile;
this.decoder = decoder;

}
public abstract AudioInputStream loadStream();
public abstract void decode(AudioInputStream ais);

// Hooks
public void beforeDecode(){}
public void afterDecode(){}

public void play() {
AudioInputStream ais = loadStream();
beforeDecode();
decode(ais);
afterDecode();

}
}

interface INativeDecoder {
public void decode(AudioInputStream ais);

}

class NativeAACDecoder implements INativeDecoder {
public void decode(AudioInputStream ais) {

// ... complex decode implementation omitted
System.out.println("NativeAACDecoder decoding audio stream...");

}
}

class NativeMP3Decoder implements INativeDecoder {
public void decode(AudioInputStream ais) {

// ... complex decode implementation omitted
System.out.println("NativeMP3Decoder decoding audio stream...");

}
}

class AACDecoder extends AudioDecoder {

96

public AACDecoder(INativeDecoder decoder, String pathToAudioFile) {
super(decoder, pathToAudioFile);

}

@Override
public AudioInputStream loadStream() {

// ... complex code to load an AAC audio stream
return null;

}

@Override
public void decode(AudioInputStream ais) {

this.decoder.decode(ais);
}

public void beforeDecode(){
System.out.println("AAC staring...");

}
public void afterDecode(){

System.out.println("AAC stopped...");
}

}

class MP3Decoder extends AudioDecoder {

public MP3Decoder(INativeDecoder decoder, String pathToAudioFile) {
super(decoder, pathToAudioFile);

}

@Override
public void decode(AudioInputStream ais) {

this.decoder.decode(ais);
}

@Override
public AudioInputStream loadStream() {

// ... complex code to load an MP3 audio stream
return null;

}

public void beforeDecode(){
System.out.println("MP3 staring...");

}
public void afterDecode(){

System.out.println("MP3 stopped...");
}

97

}

The INativeDecoder related classes are not a part of Template Method pattern.
However, they are convenient DOC’s that we mocked in our tests to confirm that
the correct corresponding native implementations get called. For example, when
we set up the MP3Decoder, we ensure that the mockNativeMP3Decoder.decode
method gets called.

The astute reader may notice that our INativeDecoder’s look as though they’re be-
ing used almost like algorithms in the Strategy pattern (don’t get confused. . . we’re
about to cover this pattern next!). That’s sort of true, but realistically, these
native audio API’s would be much more complex, and also, since we don’t control
them, they’re really not proper “strategy algorithms” per se.

Exercises

FeedReader: Implement a FeedReader that works with Atom, RSS1, RSS2, etc.,
and create an abstract FeedParser interface and with concrete implementations
for each. The readFeeds will be the Template Method. You may use the following
pseudocode to get started but feel free to “roll your own”:

abstract class FeedReader {
public final ArrayList<Feed> readFeeds(String url) {

// .. omitted
}
abstract String getFeedTitle();
abstract String getFeedAuthor();
abstract String getFeedContent();
public void beforeFeedParsed() {}
public void afterFeedParsed() {}
// .. omitted

}

class AtomReader extends FeedReader { ...
public void beforeFeedParsed() {

// override...
}
public void afterFeedParsed() {

// override...
}
abstract String getFeedTitle() {

// gets title
}
abstract String getFeedAuthor() {

98

http://xunitpatterns.com/DOC.html

// gets author
}
abstract String getFeedContent() {

// gets content
}

}
class RSS1Reader extends FeedReader {

//...
}
class RSS2Reader extends FeedReader {

// ...
}

Pitfalls

The following are some disadvantages to Template Method:

• Class explosion: As the needs of an application grows, you will be
required to create new classes for each new behavior desired. This can lead
to an explosion of template object

• Understandability: Since Template Method requires inheritance, it can
become hard to reason about the various sub-classes involved

• Superclass coupling: As the super-class defines all involved operations,
sub-classes are tightly couples to it

Summary

The Template Method pattern lets subclasses define certain steps of an algorithm
while preserving the sequence of these steps. It is somewhat similar to the Strategy
pattern, in that the implementation details of certain behaviors are encapsulated
and interchangeable. However, the Template Method uses inheritance to achieve
its goals, whereas the Strategy uses composition. Template method also provides
an opportunity to add hooks that clients can optionally implement. These
hooks get called at certain points in the Template Method’s run-time execution
(e.g. beforeXXX, afterXXX, onXXX, etc.).
Let’s look at a somewhat related pattern next. . . the Strategy Pattern.

Strategy Pattern

Overview

The Strategy pattern allows us to:

99

Figure 10:

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it—Gang of Four

Features

Strategy pattern provides the following benefits:

• provides a way to add variants of an algorithm by means of composition
(as opposed to using inheritance like we did in Template Method)

• provides an alternative to conditional branching moving the variant algo-
rithms in to their own Strategy classes

• allows you to add algorithms without having to reopen the base class; thus
it complies with open/closed principle

Participants

• Strategy: Provides the common interface that all strategy algorithms will
implement

• ConcreteStrategy: The classes that implement above Strategy interface

• Context: Gets injected with a particular ConcreteStrategy object at
run-time

100

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

Implementation

Sticking to the audio analogy, let’s imagine a simple web audio player that
provides a way to play and pause (we’ll keep it simple). We’d like to be able
to switch between using an HTML5 audio implementation and a custom SWF
implementation (Flash). Let’s assume there’s a mechanism in place such that
the system knows at run-time whether it should use HTML5 or Flash for playing
audio (this might be achieved via browser detection, URL naming conventions,
etc.).

In the future we can imagine needing to add additional support for other audio
formats (e.g. we may use a Java applet to play Ogg Vorbis audio, etc.). Thus
we need an implementation that provides flexibility.

In this example, we’ll be using JavaScript. Here are the mocha tests:

// Install node.js, npm, mocha.js, and sinon.js:
// $ npm install -g mocha
// $ npm install sinon
// $ mocha --ignore-leaks
var sinon, assert, IStrategy,

HTML5AudioPlayer, SWFAudioPlayer, AudioPlayer;

assert = require(’assert’);
sinon = require(’sinon’);
IStrategy = require("../strategy.js").IStrategy;
HTML5AudioPlayer = require("../strategy.js").HTML5AudioPlayer;
SWFAudioPlayer = require("../strategy.js").SWFAudioPlayer;
AudioPlayer = require("../strategy.js").AudioPlayer;

describe("strategy tests", function() {
var html5AudioPlayer, swfAudioPlayer;

beforeEach(function() {
html5AudioPlayer = new HTML5AudioPlayer();
swfAudioPlayer = new SWFAudioPlayer();

});
afterEach (function() {

html5AudioPlayer = null;
swfAudioPlayer = null;

});

it("should play html5 audio", function() {
var playSpy, player;

playSpy = sinon.spy(html5AudioPlayer, "play");

101

player = new AudioPlayer(html5AudioPlayer);

player.playAudio();
assert(playSpy.called);
html5AudioPlayer.play.restore();

});

it("should pause html5 audio", function() {
var pauseSpy, player;

pauseSpy = sinon.spy(html5AudioPlayer, "pause");
player = new AudioPlayer(html5AudioPlayer);

player.playAudio();
player.pauseAudio();
assert(pauseSpy.called);
html5AudioPlayer.pause.restore();

});

it("should play Flash audio", function() {
var playSpy, player;

playSpy = sinon.spy(swfAudioPlayer, "play");
player = new AudioPlayer(swfAudioPlayer);

player.playAudio();
assert(playSpy.called);
swfAudioPlayer.play.restore();

});

it("should pause Flash audio", function() {
var pauseSpy, player;

pauseSpy = sinon.spy(swfAudioPlayer, "pause");
player = new AudioPlayer(swfAudioPlayer);

player.playAudio();
player.pauseAudio();
assert(pauseSpy.called);
swfAudioPlayer.pause.restore();

});
});

Here is our implementation (note that our AudioPlayer is the Context and gets
the Strategy object injected in into its constructor. Another variation is to
pass the Strategy object to each operation directly; this provides later binding.

102

However, binding early in the constructor does ensure our object is consistently
initialized before any of its methods get called.).

var IStrategy = function() {};
IStrategy.prototype = {

play: function() {
throw new Error("Method must be implemented.");

},
pause: function() {

throw new Error("Method must be implemented.");
}

};

var HTML5AudioPlayer = function() {};
HTML5AudioPlayer.prototype = new IStrategy();
HTML5AudioPlayer.prototype = {

play: function() {
console.log("Playing HTML5 audio...");

},
pause: function() {

console.log("Pausing HTML5 audio...");
}

};

var SWFAudioPlayer = function() {};
SWFAudioPlayer.prototype = new IStrategy();
SWFAudioPlayer.prototype = {

play: function() {
console.log("Playing SWF audio...");

},
pause: function() {

console.log("Pausing SWF audio...");
}

};

var AudioPlayer = function(playerStrategy) {
this.player = playerStrategy;

};
AudioPlayer.prototype = {

playAudio: function() {
this.player.play();

},
pauseAudio: function() {

this.player.pause();
}

103

};

module.exports.IStrategy = IStrategy;
module.exports.HTML5AudioPlayer = HTML5AudioPlayer;
module.exports.SWFAudioPlayer = SWFAudioPlayer;
module.exports.AudioPlayer = AudioPlayer;

Pitfalls

The following are some disadvantages to Strategy patter:

• Interface coupling: As the context depends on the Strategy’s interface,
there’s some coupling between the two

• Complexity: Sometimes conditional branching is more immediately un-
derstandable than dynamic strategy algorithms (while the later is more
flexible, you may not need it)

• Clients must decide which strategy to use: Clients must be able
to select the correct Strategy algorithm to be injected in to the Context;
sometimes this knowledge is non-trivial and adds complexity

Summary

The Strategy pattern puts families of algorithms in to classes that can be “plugged
in” at runtime. As the strategy pattern uses composition instead of inheritance,
it provides a nice alternative to subclassing. Because these strategy algorithms
can be injected at run-time, it’s fairly trivial to add behaviors to the system.
This complies with the open/closed principle which states that objects should
be open for change but closed for modification.

State Pattern

Overview

The State pattern allows us to:

Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.—Gang of Four

The State pattern is a behavioral design pattern that, much like the Strategy
pattern, uses composition to encapsulate behaviors that must change at run-time.

104

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

However, unlike the Strategy pattern, these encapsulated behaviors (or actions)
are dependent on a Context object’s current state. When a certain action is
requested of the Context, it simply delegates to its state reference, which takes
care of determining how to best handle the request. That state will take in to
account any rules for how it should respond to such a request. For example, if
a door is in the “locked state”, and the action requested is “open door”, the
appropriate result might be “entry denied” (whereas if the door is in the “closed
state” (closed but unlocked), the same “open door” action might result in “door
opened”).

Figure 11: State Diagram

Participants and Collaborations

• Context: Delegates to current state when requests are made

• State: Defines the interface for concrete state classes to implement

• ConcreteState: Implements functionality for a particular state

Design Process

The first step to putting this all together is to enumerate the states and actions
for the system (transitions can be enumerated later in the process).

States Enumerating the various states for our door example we come up with:

• Opened

• Closed

105

Figure 12: Actions, States, and Transitions for a typical Door

106

• Locked

Actions The actions required for our door example might be:

• unlock door

• turn door knob

• push door open

• close door

• lock door . . . and so on.

Putting it all together Now that we’ve determined the states and actions,
we next need to determine the transitions (and get a picture of how these
interactions will work together). Using a pen and pad (or graphics program), we
can take the following steps:

• create a three column diagram ordered with actions, states, and transitions

• under actions, list all the actions you’ll need

• under the state column use circles to represent your states

• for each action for a given state, determine if successfully completing that
action results in a transition to another state; if so, add a rectangle with
the name of the action under your transitions column adjacent to the state
the action took place in

• draw an arrow from the transition to the state it transitions to

This process will give a good first glance at how the states will evolve. We used
this approach to create the figures in this chapter.

Case Study: Audio Application

If you read the previous chapter on Strategy pattern, you may have noticed that
we overlooked something when implementing the audio player—what happens if
I hit play, but I’m already playing audio? Correspondingly, what happens if I
hit pause, when not in the play mode? As we’ll see, the State pattern handles
these types of quandaries wonderfully.

107

Figure 13: Audio State Design

108

Implementation

For our tests, we need to test each action for each state to confirm that the
behavior is correct. So in the Playing state we test that:

• play: does nothing

• stop: stops audio

• pause: pauses audio

And of course we need similar tests for our Stopped and Paused states. We
won’t show all the tests we came up with (see the book’s repo for that), but
here are the ones for just the Paused state:

describe("Paused", function() {
it("should transition from paused to playing state",
function() {

var spyPausedPlay, spyLibPlay, player;

spyPausedPlay = sinon.spy(paused, "play");
spyLibPlay = sinon.spy(lib, "play");
player = new AudioPlayer({ ’playing’: playing,

’paused’: paused},
’paused’);

player.playAudio();
assert(spyPausedPlay.called);
assert(spyLibPlay.called);
assert(player.getState()[’name’] === ’Playing’);
spyPausedPlay.restore();

});
it("should transition from paused to stopped state",
function() {

var spyPausedStop, spyLibStop, player;

spyPausedStop = sinon.spy(paused, "stop");
spyLibStop = sinon.spy(lib, "stop");
player = new AudioPlayer({ ’playing’: playing,

’stopped’: stopped,
’paused’: paused},
’paused’);

player.stopAudio();
assert(spyPausedStop.called);
assert(spyLibStop.called);
assert(player.getState()[’name’] === ’Stopped’);
spyPausedStop.restore();

109

});
it("should not pause if already paused",
function() {

var spyPausePause, spyLibPause, player;

spyPausePause = sinon.spy(paused, "pause");
spyLibPause = sinon.spy(lib, "pause");
player = new AudioPlayer({ ’playing’: playing,

’stopped’: stopped,
’paused’: paused},
’paused’);

player.pauseAudio();
assert(!spyLibPause.called);
assert(player.getState()[’name’] === ’Paused’);
spyPausePause.restore();

});
});

As we’ve mentioned in an earlier disclaimer, our test and production code are
“overly optimistic” as we don’t test for bad inputs, etc. Again, we’ve purposely
sacrificed robustness for more understandable code. In practice, we’d aim for
much more thorough code!

The flow of the three tests are quite similar (with the last one simply negating
that audio will be paused if already in the paused state):

• We create two test spies: One that corresponds with the low-level underly-
ing audio library that is carrying out play, pause, and stop; and the other
that corresponds to our ConcreteState’s action (e.g. the Paused state’s
play method, etc.). With these two spies, we can simply assert whether or
not they got called as appropriate.

• We instantiate the AudioPlayer (our Context) injecting a map of our
instantiated states as our first argument, and the key to the initial state as
our second argument. Arranging the initialization of these objects outside
of the AudioPlayer’s constructor makes it easy to create test doubles with
state appropriate for that particular test case’s needs.

• Once we have the above set up, we call the production method on the
AudioPlayer (e.g. player.pauseAudio, etc.), and then assert that our spies
got called as expected.

• The last line of each test restores the spied on method to its original state.
Sinon.js, essentially, hijacks these spy methods by intercepting any calls
and then proxying to the original.

110

These restore calls weren’t actually necessary for the above tests (we’re nulling out
these objects in our teardown and re-creating them in subsequent setup methods),
but we’ve left them in to show how this is done. For example, we would need to
do restore if the spy pointed to the jQuery.ajax method (since jQuery is really a
one time globally loaded lib).

Here’s our Audio State implementation:

// 3rd Party Lib
var AudioLib = function() {};
AudioLib.prototype = {

play: function() {
console.log(’Playing audio...’);

},
pause: function() {

console.log(’Pausing audio...’);
},
stop: function() {

console.log(’Stopping audio...’);
}

};

// Context
var AudioPlayer = function(states, initialState) {

this.states = states;
this.currentState = states[initialState];

};
AudioPlayer.prototype = {

playAudio: function() {
this.currentState.play(this);

},
pauseAudio: function() {

this.currentState.pause(this);
},
stopAudio: function() {

this.currentState.stop(this);
},
getState: function() {

return this.currentState;
},
setState: function(newState) {

this.currentState = this.states[newState];
}

};

// State

111

var IState = function(name) {
this.name = name;

};
IState.prototype = {

play: function(context) {
throw new Error("Method must be implemented.");

},
pause: function(context) {

throw new Error("Method must be implemented.");
},
stop: function(context) {

throw new Error("Method must be implemented.");
}

};

// Concrete States
var Playing = function(name, audioLib) {

this.name = name;
this.audioLib = audioLib;

};
Playing.prototype = new IState();
Playing.prototype = {

play: function(context) {
console.log("Already playing ... nothing to do...");

},
pause: function(context) {

this.audioLib.pause();
context.setState(’paused’);

},
stop: function(context) {

this.audioLib.stop();
context.setState(’stopped’);

}
};

var Paused = function(name, audioLib) {
this.name = name;
this.audioLib = audioLib;

};
Paused.prototype = new IState();
Paused.prototype = {

play: function(context) {
this.audioLib.play();
context.setState(’playing’);

},
pause: function(context) {

112

console.log("Already paused ... nothing to do");
},
stop: function(context) {

this.audioLib.stop();
context.setState(’stopped’);

}
};

var Stopped = function(name, audioLib) {
this.name = name;
this.audioLib = audioLib;

};
Stopped.prototype = new IState();
Stopped.prototype = {

play: function(context) {
this.audioLib.play();
context.setState(’playing’);

},
pause: function(context) {

console.log("Can’t pause when stopped...");
},
stop: function(context) {

console.log("Already stopped... nothing to do");
}

};

module.exports.IState = IState;
module.exports.AudioPlayer = AudioPlayer;
module.exports.AudioLib = AudioLib;
module.exports.Playing = Playing;
module.exports.Paused = Paused;
module.exports.Stopped = Stopped;

AudioLib is an imaginary library for doing the low-level audio work. As can be
seen from the above code, our State’s implement all of the possible actions we’ve
accounted for.

Essentially, one of three things can happen for a given action method: 1) the
corresonding action is carried out 2) same as 1 but a transition to a new state is
initiated 3) the method “no ops” (does nothing). In our system only 2 and 3
ever happen, but a more complicated system will have all three.

Since these action handlers are just methods, the implementer is free to put in
whatever logic is required. This makes the State pattern particularly flexible
(but also prone to too much complexity if a disciplined approach is not used).

113

As there’s always some flexibility in how we use a design pattern, we could have
chosen to use an abstract intermediary class creating empty “no op” methods
there, so that ConcreteState implementations only had to implement methods
they care about. We’ll opt out of digressing in to how that might be implemented,
but bring it up in case you’re bothered by the “no ops” above.

If you compare the above implementation to our Strategy one, you may be
wondering if we’ve “lost out” since we now only have the one AudioLib (recall in
our Strategy example we had HTML5, Flash, etc., audio implementations); with
a bit of ingenuity we couldn certainly pass in various types of audio libraries
at run-time if we wanted. We could even mix in Strategy and State (as design
patterns are just guidelines to help us tackle problems. Using such compound
patterns is quite common in practice.).

Other Use Cases

• Sales Order: One classic example is a sales order that has discrete states
like “New order”, “Dispatched”, “Shipped”, “Cancelled”, “Billed”, and so
on.

• Transactions: Imagine a transaction that can be in the states:
“not_in_transaction”, “in_transaction”, “commited”, “rolled_back”, etc.

• Graphics Tool: A simple paint tool might be able take on states like:
“blur”, “erase”, “smudge”, “line”, “arrow”, etc., and draw accordingly.

• Intern to employee: Perhaps a company has states for their employees
straight out of school. To become a “full blown employee” from intern
that have to go through: “gopher”, “intern”, “skilled_helper”, “appre-
ciated_apprentice”, etc. Perhaps the salary the intern is paid changes
based on these levels. Further, perhaps, they must go through each level
in sequence (you can’t jump from “gopher” to “appreciated_apprentice”
for example).

• Vending machine: Another classic example with states like “waiting”,
“coin_in”, “beverage_sent”, “coin_returned”, etc.

Exercises

Implement one or more of the above example use cases.

Benefits

• Replaces long if or switch statements with encapsulated classes representing
each state (DRY)

114

http://www.artima.com/intv/dry.html

• Gets rid of duplicate branching (related to first bullet point)

• The encapsulated classes increase cohesion in the system

• uses composition so we’re programming to an interface

• Since the Context simply delegates to State classes more can be added as
needed as long as they conform to the State interface

Issues

• Increases complexity and might cause State class explosion

• Since States are generally in charge of initiating transitions, they become
coupled to the state(s) they transition to. However, it could be argued
that this structured program flow is really more of a benefit than a burden

Summary

The state pattern can be a helpful way to model problems that involve dis-
crete states and actions that would typically require duplicate conditional logic
throughout a code base. It’s a good example of using compositional delegation
and programming to an interface. A well implemented state design can increase
understandability since the states, actions, and transitions all relate very closely
to the domain being modelled.

Composite Pattern

Overview

The Composite pattern allows us to:

Compose objects into tree structures to represent part-whole hierar-
chies. Composite lets clients treat individual objects and compositions
of objects uniformly.—Gang of Four

Before we can understand how Composite pattern works, we need to understand
some terms:

• Leaf : A leaf is an individual component that has no children

• Composite A composite (also known as a node in tree terminology) is a
component which may, in turn, contain other components (either leaf or
composite).

115

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=pd_bxgy_b_text_y

The structure we’re describing is, essentially, an inverted tree.

Using the Composite pattern, our leaf and composite components share one
or more common operations—removing the need for client code to have to
distinguish between the two—thus reducing the complexity of our code.

For example, imagine an online store that sells individual computer components,
but also lets its customers assemble custom computers by arranging combinations
of these components (they can choose their motherboard, cpu, power supply,
etc.). When a customer proceeds to checkout, they might have any combination
of individual parts, assembled computers, or both! How does the system get the
price of each item given that the computers are really composites of individual
components?

Using the composite pattern, the shopping cart system would be able to call
getPrice on either an invidual component or an assembled computer. This is
because the pattern defines a shared Component interface that both the leaf and
composite implement (we’ll see later that this does come at a price).

Implementation

At the core of this pattern is the ability for clients to treat individual items
and aggregates the same. In our example, we want to be able to get the prices
for individual computer parts, or, fully assembled computers. In the diagram
below, you’ll notice that both the Leaf and the Composite components share
the operation method—in our shopping cart example, this would map to the
getPrice method:

The following is an implementation solving the issue of totalling the prices for
both computer parts and assembled computers as described earlier. This code is
in JavaScript and uses the mocha.js testing library. If you’d like to run this code,
you will need to install node.js, npm, and mocha.js. First let’s look at the tests:

// Install node.js, npm, and then mocha:
// $ npm install -g mocha
// $ mocha --ignore-leaks
var assert, Component, Computer, ComputerPart;

assert = require(’assert’);
Component = require("../composite.js").IComponent;
Computer = require("../composite.js").Computer;
ComputerPart = require("../composite.js").ComputerPart;

describe("Composite tests", function() {

describe("Shared methods", function() {

116

https://github.com/joyent/node
https://npmjs.org/
http://visionmedia.github.com/mocha/

Figure 14:

it("should get price of a computer part",
function() {
var computerPart,

expected = 99;
computerPart = new ComputerPart(expected);
assert.equal(expected, computerPart.getPrice());

});
it("should get price of a part", function() {

var part = new ComputerPart(10);
assert.equal(10, part.getPrice());

});
it("should be able to get price of a computer",

function() {
var computer, expected;
expected = 1234;
computer = new Computer(expected);
assert.equal(expected, computer.getPrice());

});
it("should add parts and get total price",

function() {
var computer, computerPart, computerPart2;
computerPart = new ComputerPart(10);
computerPart2 = new ComputerPart(10);
computer = new Computer(10);

117

computer.add(computerPart);
computer.add(computerPart2);
assert.equal(30, computer.getPrice());

});
it("should nest composite and leafs",

function() {
var c1, c2, c3, p1, p2, p3;
p1 = new ComputerPart(1);
p2 = new ComputerPart(1);
p3 = new ComputerPart(1);
c1 = new Computer(1);
c2 = new Computer(1);
c3 = new Computer(1);
c3.add(p3);
c2.add(p2);
c2.add(c3);
c1.add(p1);
c1.add(c2);
assert.equal(6, c1.getPrice());

});
it("should remove parts from computers",

function() {
var computer, computerPart, computerPart2;
computerPart = new ComputerPart(10);
computerPart2 = new ComputerPart(10);
computer = new Computer(10);
computer.add(computerPart);
computer.add(computerPart2);
computer.remove(computerPart);
assert.equal(20, computer.getPrice());

});
it("should not throw Error for no op methods",

function() {
var part = new ComputerPart(10);
assert.equal(part.add(null), undefined);
assert.equal(part.remove(null), undefined);

});
});

});

These tests show that we can, in fact, get the total price of recursively nested
components (both leafs and composites). The very last test shows that we’ve
opted to “no op” for the methods that aren’t appropriate for the Leaf component.
These are add and remove, operations really meant for dealing with the nested
composites (which doesn’t make sense for Leaf). This is an unfortunate aspect
of Composite pattern—the Leaf component dredges up inappropriate methods

118

from the Component interface it implements (we’ll discuss this more later in the
chapter).

Let’s look at the implementation. Note that since JavaScript doesn’t offer inter-
faces (at the language level), we define “mandatory methods” on the prototype
as a way to enfore they will be overriden.

var IComponent = function() {
};
IComponent.prototype.getPrice = function() {

throw new Error("Method must be implemented.");
};
IComponent.prototype.add = function(component) {

throw new Error("Method must be implemented.");
};
IComponent.prototype.remove = function(component) {

throw new Error("Method must be implemented.");
};

var Computer = function(price) {
this.price = price;
this.components = [];

};
Computer.prototype = new IComponent();
Computer.prototype.getPrice = function() {

var i,
len=this.components.length,
total = this.price;

if (len) {
for(i=0; i<len; i++) {

total += this.components[i].getPrice();
}

}
return total;

};
Computer.prototype.add = function(component) {

this.components.push(component);
};
Computer.prototype.remove = function(componentToRemove) {

var i,
len = this.components.length,
updatedArray = [];

for (i = 0; i < len; i++) {
// Pushes all but the one being removed

119

if(componentToRemove !== this.components[i]) {
updatedArray.push(this.components[i]);

}
}
this.components = updatedArray;

};

var ComputerPart = function(price) {
this.price = price;

};
ComputerPart.prototype = new IComponent();
ComputerPart.prototype.getPrice = function() {

return this.price;
};
// No ops
ComputerPart.prototype.add = function(component) {};
ComputerPart.prototype.remove = function(component) {};

module.exports.IComponent = IComponent;
module.exports.Computer = Computer;
module.exports.ComputerPart = ComputerPart;

Issues

Two S.O.L.I.D. principles are violated by this pattern:

• The interface has two responsibilities, those related to leafs, and those
related to composites. Thus we can say that it violates the Single Respon-
sibility Principle.

• Since Leaf components will need to implement add and remove, they will,
in doing so, break the Liskov Substitution Principle (LSP) (one is quite
surprised to see an add or remove method in a Leaf!).

As you recall, we simply chose to “no op” in the Leaf implementation for these
methods. The drawback to this approach is that there’s a chance we’re masking
buggy client code.

There are some other alternatives (all with their own tradeoffs):

• Only define the composite related methods in the Composite class

This has the drawback that client code now has to do run-time checks to
determine if it’s dealing with a Leaf or a Composite component. Thus we can
no longer treat all components uniformly (one of the main supposed benefits!)

120

• Throw exceptions in composite methods if called on the Leaf

This trades robustness (the ability of a system to cope with errors, or, not crash),
for type safety, ensuring that buggy client code isn’t masked.

You may also need to deal with some of the following challenges:

• Enforcing the restriction of certain components from composites

• Ordering nested components

• Performance issues due to deeply nested composites

Summary

As we have seen, there are some design tradeoffs to take in to account when decid-
ing whether or not to implement the Composite pattern. It favors transparency
(being able to treat all components uniformly) over safety; and so you will be
able to treat leaf and composite components operations the same. However, you
will be violating SRP and LSP to some degree. As tradeoffs are a reality, you
will have to use your judgement to decide if the benefits outweigh the costs.

121

	Preface
	Introduction
	TDD
	Design Patterns

	Observer Pattern
	Overview
	Observer Pattern Class Diagram
	Implementing Observer Pattern using TDD
	Refactoring
	A Slight Detour: What should I test?
	Testing both the ``happy'' and ``sad'' paths
	Implementing Observers

	Final Implementation
	Considerations
	SPL
	Push vs. Pull
	Pitfalls
	Example Uses

	Exercises
	Summary

	Object Oriented Principles
	Abstraction
	Class
	Interface
	Dynamic Binding
	Inheritance
	Encapsulation
	Polymorphism
	S.O.L.I.D. Principles
	SRP: The Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	Decorator Pattern
	Overview
	Decorator Pattern Class Diagram
	Decorator Pattern Implementation
	Java Implementation
	PHP Implementation

	Considerations
	Decorator vs. Inheritance
	Transparency

	Pitfalls
	Exercises

	Factory Pattern
	Overview
	Factory Method
	Factory Method Variations
	Pitfalls

	Abstract Factory
	Pitfalls

	Static Factory
	Pitfalls

	Final Thoughts

	Singleton Pattern
	Overview
	Implementation

	Builder Pattern
	Overview
	Participants and Collaborations
	Implementation
	Implementation

	Pitfalls
	Summary

	Command Pattern
	Overview
	Implementation
	The ``Very Simplest'' Command Pattern Implementation
	Naming Conventions

	Example: A user interface toolkit
	Designing ``on the go''
	Implementation
	Code walk-through

	Template Pattern
	Overview
	Hollywood Principle
	Features
	Hooks
	Participants
	Implementation
	Example: Audio Decoder
	Exercises
	Pitfalls
	Summary

	Strategy Pattern
	Overview
	Features
	Participants
	Implementation
	Pitfalls
	Summary

	State Pattern
	Overview
	Participants and Collaborations
	Design Process
	Case Study: Audio Application
	Implementation

	Other Use Cases
	Exercises
	Benefits
	Issues
	Summary

	Composite Pattern
	Overview
	Implementation
	Issues
	Summary

