
Implementing the
Syntax Definition Formalism
as an Embedded Language
Pablo Hoch

1 Introduction

SDF DSL is an implementation of the Syntax Definition Formalism (SDF) as an Embedded Domain Specific Lan-
guage (EDSL). It transforms a grammar specification written in SDF into a simple BNF grammar that is then used
by 9am, a Java implementation of an Earley parser. SDF grammars can be specified either by calling the methods
of the SdfDSL class or by using the TigersEye Eclipse plugin, which allows embedding of standard SDF syntax. The
implementation is based on the language described in The Syntax Definition Formalism Reference Manual1. This
document gives a quick overview over the implementation of SDF as well as an example of how to specify a simple
grammar using SDF and parse an input string with the generated 9am grammar.

2 Implementation

The implementation of the SDF DSL consists of two main parts. The first part is the SdfDSL class, which provides
the interface to users of the DSL to specify an SDF grammar and retrieve the generated 9am grammar, which can
then be used directly with the Earley parser. The SdfDSL class provides methods to specify every SDF construct such
as modules, symbols and productions. By calling these methods, a tree representing the SDF grammar is created
internally using classes from the sdf.model package. This model represents the complete input grammar, without any
transformations applied and is basically an AST of the SDF grammar specification. The names of these methods and
model classes correspond to the names used in the SDF documentation. Also, all classes in the sdf.model package
include JavaDoc documentation with links to the respective parts of the SDF documentation.

After all SDF modules have been specified, a 9am grammar is generated from the model representing the SDF
grammar. This is done in two steps. First, since SDF grammars can consist of multiple modules, all modules
have to be merged into one module by resolving all imports. This is done by the ModuleMerger class, which is
implemented as a visitor for the model classes and takes the name of the top-level module as a parameter. Note
that the ModuleMerger does not modify the original model, but creates a new model with all imports resolved.
ModuleMerger performs two important tasks:

• When encountering an import statement, the specified module is processed recursively by using a Module-
Merger, resulting in a module without unresolved imports. The imported statements are then added to the
current module in a new exports or hiddens section, depending on where the import statement occurs.

• Symbol renamings are also performed in the ModuleMerger. This includes parameters and renamings spec-
ified in import statements (which will only be applied to the imported module) as well as aliases. The
renamings are performed when visiting a symbol in the ModuleMerger.

Once the model has been processed by the ModuleMerger, it consists of exactly one module which does not con-
tain any import statements or unresolved aliases. This model is then passed to the SdfToParlexGrammarConverter
class, which buils an equivalent BNF grammar for the 9am Earley Parser. This is done by applying the trans-
formations described in the SDF documentation. The following list provides an overview of the most important
transformations.

• Basic sort symbols, e.g. Expr or Number (represented by sdf.model.SortSymbol), are turned into non-
terminal categories.

• Case-sensitive literal symbols, such as "true" (represented by sdf.model.LiteralSymbol), are turned into ter-
minal categories. Case-insensitive literal symbols, e.g. ’true’, are processed using regular expressions in
the 9am parser.

• Compound symbols, such as optional symbols and repetition symbols, create additional rules as described
in the SDF documentation. For example, the alternative symbol "true"|"false" (represented by
sdf.model.AlternativeSymbol) results in two rules, α ::= "true" and α ::= "false", where α is a
special non-terminal representing the alternative symbol.

• Character class symbols, e.g. [a-z] (represented by sdf.model.CharacterClassSymbol), are implemented us-
ing regular expressions. Complex character classes that are combined using the set operators, e.g. [a-z]

1 http://www.syntax-definition.org/Sdf/SdfDocumentation (version 2007-10-22 17:18:09 +0200)

1

http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html
http://www.syntax-definition.org/Sdf/SdfDocumentation

\/ [0-9], also result in a single regular expression, thanks to the extended regular expressions supported
by Java2.

• At the end, symbols are renamed to include the namespace they occur in (e.g. symbols occuring in a context-
free grammar specification are renamed to include the “CF”-namespace, so a sort symbol Expr would be-
come <Expr-CF>). Also, optional layout symbols are inserted on the left-hand side of productions in a
context-free grammar.

• For productions with attributes (e.g. left, right, prefer, avoid, reject), the generated
rules are annotated with 9am rule annotations (e.g. associativity annotations). The 9am Earley parser
uses these annotations to select the desired AST.

• Priorities result in priority rule annotations, which are also processed by the Earley parser.

At the end, a GrammarCleaner is invoked by default. GrammarCleaner checks the generated 9am grammar and
removes all rules and categories that are not required, i.e. cannot be reached from the start rule. This step is
optional and can be disabled.

The resulting 9am grammar can then be directly passed to the 9am Earley parser in order to parse input
strings.

Other parts of the SDF DSL implementation include:

• Test cases in the seperate project de.tud.stg.tigerseye.sdfdsl.tests. These also demonstrate how to use the
SdfDSL class directly.

• Example SDF DSL programs using the concrete syntax in the de.tud.stg.tigerseye.sdfdsl.languagetestbench
project. These examples require the Tigerseye plugin.

• A GrammarDebugPrinter class (in the sdf.util package) that can be used to create an HTML file that lists all
categories and productions of a 9am grammar. Categories are linked to productions having that category
on the left-hand side, which can be useful for debugging a grammar. An example output can be found in
the de.tud.stg.tigerseye.sdfdsl.languagetestbench project (debug/ArithExpr.html, created by the ArithExpr.sdf.dsl
file).

3 Using the SDF DSL

There are two ways to use the SDF DSL, either by calling the methods of the SdfDSL class directly to specify
the grammar (abstract syntax), or by using standard SDF syntax (concrete syntax) in a Tigerseye DSL file. The
grammar in listing 1 can be used to parse simple arithmetic expressions and uses some of the SDF specific features
such as character classes, repetitions and layout (i.e. whitespace is allowed in the input string). To demonstrate
how developers can implement the example grammar with both methods, listing 2 shows the version that directly
calls the SdfDSL class methods to create the grammar. Also included is a simple example that shows how to parse
an input string. The code shown in the listing is a shortened version of the file sdf/test/ArithExprSdfTest.java from
the de.tud.stg.tigerseye.sdfdsl.tests project.

Listing 3 shows the version using the concrete SDF syntax. This file must be run from inside the Tigerseye plugin.
This code is included in the de.tud.stg.tigerseye.sdfdsl.languagetestbench project in the sdf/test/dsl/ArithExpr.sdf.dsl
file. The specification of the SDF grammar has been directly copied from the SDF file and some additional code to
parse an example string has been added.

1 module ArithExpr
2 exports
3 context-free start-symbols Expr
4 sorts Expr Number Term Factor
5
6 lexical syntax
7 [0-9]+ -> Number
8 []+ -> LAYOUT

2 http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

2

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

9
10 context-free syntax
11 Expr "+" Term -> Expr
12 Expr "-" Term -> Expr
13 Term -> Expr
14
15 Term "*" Factor -> Term
16 Term "/" Factor -> Term
17 Factor -> Term
18
19 Number -> Factor
20 "(" Expr ")" -> Factor

Listing 1: ArithExpr.sdf

1 import sdf.SdfDSL;
2 import sdf.model.*;
3 import de.tud.stg.parlex.core.Grammar;
4 import de.tud.stg.parlex.parser.earley.Chart;
5 import de.tud.stg.parlex.parser.earley.EarleyParser;
6
7 public class ArithExprSdfTest {
8 SdfDSL sdf;
9 Grammar grammar;

10
11 public void setUp() {
12 sdf = new SdfDSL();
13
14 Sorts sorts = sdf.sortsDeclaration(new SortSymbol[] {
15 sdf.sortSymbol("Expr"), sdf.sortSymbol("Number"),
16 sdf.sortSymbol("Term"), sdf.sortSymbol("Factor") });
17
18 Syntax lexSyntax = sdf.lexicalSyntax(new Production[] {
19 sdf.production(new Symbol[] {
20 sdf.repetitionSymbolAtLeastOnce(
21 sdf.characterClassSymbol("0-9")) },
22 sdf.sortSymbol("Number")),
23 sdf.production(new Symbol[] {
24 sdf.repetitionSymbolAtLeastOnce(
25 sdf.characterClassSymbol(" ")) },
26 sdf.sortSymbol("LAYOUT")), });
27
28 Syntax cfSyntax = sdf.contextFreeSyntax(new Production[] {
29 sdf.production(
30 new Symbol[] { sdf.sortSymbol("Expr"),
31 sdf.caseSensitiveLiteralSymbol("+"),
32 sdf.sortSymbol("Term") },
33 sdf.sortSymbol("Expr")),
34 sdf.production(
35 new Symbol[] { sdf.sortSymbol("Expr"),
36 sdf.caseSensitiveLiteralSymbol("-"),
37 sdf.sortSymbol("Term") },
38 sdf.sortSymbol("Expr")),
39 sdf.production(new Symbol[] { sdf.sortSymbol("Term") },
40 sdf.sortSymbol("Expr")),
41

3

42 sdf.production(
43 new Symbol[] { sdf.sortSymbol("Term"),
44 sdf.caseSensitiveLiteralSymbol("*"),
45 sdf.sortSymbol("Factor") },
46 sdf.sortSymbol("Term")),
47 sdf.production(
48 new Symbol[] { sdf.sortSymbol("Term"),
49 sdf.caseSensitiveLiteralSymbol("/"),
50 sdf.sortSymbol("Factor") },
51 sdf.sortSymbol("Term")),
52 sdf.production(new Symbol[] { sdf.sortSymbol("Factor") },
53 sdf.sortSymbol("Term")),
54
55 sdf.production(new Symbol[] { sdf.sortSymbol("Number") },
56 sdf.sortSymbol("Factor")),
57 sdf.production(
58 new Symbol[] { sdf.caseSensitiveLiteralSymbol("("),
59 sdf.sortSymbol("Expr"),
60 sdf.caseSensitiveLiteralSymbol(")"), },
61 sdf.sortSymbol("Factor")), });
62
63 StartSymbols startSymbols = sdf
64 .contextFreeStartSymbols(new Symbol[] { sdf.sortSymbol("Expr") });
65
66 Exports exports = sdf.exports(new GrammarElement[] { startSymbols,
67 sorts, lexSyntax, cfSyntax });
68
69 Module module = sdf.moduleWithoutParameters(new ModuleId("ArithExpr"),
70 new Imports[] {}, new ExportOrHiddenSection[] { exports });
71
72 grammar = sdf.getGrammar("ArithExpr");
73 }
74
75 public void testEarleyParserWithExpr1() {
76 EarleyParser parser = new EarleyParser(grammar);
77 Chart chart = (Chart) parser.parse("2+3*5");
78 chart.rparse((de.tud.stg.parlex.core.Rule) grammar.getStartRule());
79
80 System.out.println("AST:");
81 System.out.println(chart.getAST().toString());
82 }
83 }

Listing 2: ArithExpr.java

1 import sdf.model.*
2
3 sdf(name:’ArithExpr’){
4
5 module ArithExpr
6 exports
7 context-free start-symbols Expr
8 sorts Expr Number Term Factor
9

10 lexical syntax
11 [0-9]+ -> Number

4

12 []+ -> LAYOUT
13
14 context-free syntax
15 Expr "+" Term -> Expr
16 Expr "-" Term -> Expr
17 Term -> Expr
18
19 Term "*" Factor -> Term
20 Term "/" Factor -> Term
21 Factor -> Term
22
23 Number -> Factor
24 "(" Expr ")" -> Factor
25
26
27 printGeneratedGrammarHTML "ArithExpr" "debug/ArithExpr.html"
28 parse "ArithExpr" "4 + 8 * (15 / (16+23)) - 42"
29
30 }

Listing 3: ArithExpr.sdf.dsl

4 Limitations of the SDF DSL

The following features of SDF are currently not implemented in the SDF DSL:

• For priorities, priorities in specific arguments3 are not supported. Also, relative associativity labels inside
groups are not supported.

• Variables4 are not supported since their purpose is not clear from the SDF documentation.

• Follow restrictions5 are not supported, because they are not needed for most languages. Support for follow
restrictions could be added using a custom disambiguation oracle for the 9am Earley parser.

3 http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html#section.priorities
4 http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html#section.variables
5 http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html#section.restrictions

5

http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html#section.priorities
http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html#section.variables
http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html#section.restrictions

	Introduction
	Implementation
	Using the SDF DSL
	Limitations of the SDF DSL

