

JAVA Implementation of the Batched iLab
Shared Architecture

L.J. Payne 1, M.F. Schulz 2

1 The University of Queensland, School of Information Technology and Electrical Engineering, Brisbane, Australia

2 The University of Queensland, Centre for Educational Innovation & Technology, Brisbane, Australia

Abstract—The MIT iLab Shared Architecture is limited
currently to running under Microsoft Windows. A JAV A
implementation of the Batched iLab Shared Architecture
has been developed that can be used on other operating
systems and still interoperate with the existing Microsoft
.NET web services of MIT’s iLab ServiceBroker. The JAVA
implementation provides a 3-tier code development model
that allows code to be reused and to develop only the code
that is specific to each experiment.

Index Terms—Web Services, MIT iLab, Remote
laboratories.

I. INTRODUCTION

The iLab Shared Architecture (ISA) developed by MIT
[1] uses the Microsoft .NET web services of the Microsoft
Windows platform[2]. It also uses the Microsoft SQL
database server for information storage by the
ServiceBroker and LabServers. The Microsoft Visual
Studio development tools are used to build the web
applications for the ServiceBroker, LabClients and
LabServers. By developing these web applications in
JAVA [4] and using the PostgreSQL[6] database, it is now
possible to extend the use of the iLab Shared Architecture
beyond the Microsoft Windows platform.

JAVA provides the jax-ws framework for developing
web service applications that interoperate with the
Microsoft .NET web services. This allows a JAVA
LabClient to communicate with a .NET ServiceBroker
that in turn communicates with a JAVA LabServer.

JAVA is used to code the web service because the
development tools and database software are free to
download from the Internet, are free to use, and are
available for a wide range of operating system platforms
such as LINUX and Mac-OS as well as Microsoft
Windows.

II. ILAB SHARED ARCHITECTURE MODEL

A. Existing Model

The existing model for an MIT Batched experiment
consists of two parts: a LabClient and a LabServer. The
LabClient provides the interface through which the user
creates and submits an experiment specification. The
LabServer handles the validation and submission of an
experiment specification from the LabClient (via the
ServiceBroker) and runs the experiment on the equipment
according to the experiment specification.

B. Revised Model

The model developed at the University of Queensland
consists of three parts: LabClient, LabServer and
LabEquipment [3]. The LabClient is the same as in the

MIT model but the LabServer has been separated into two
parts. Again, the LabServer handles the validation and
submission of an experiment specification from the
LabClient (via the ServiceBroker) but the LabEquipment
separates the running of the experiment on the hardware
from the LabServer.

Quite often the software used to drive the experiment
hardware is very dependent on the computer platform, and
in many cases is only available for the Microsoft
Windows platform. So by separating out the
LabEquipment from the LabServer, the LabServer can be
developed in JAVA while the LabEquipment remains
platform dependent.

As a result of the separation, the LabEquipment and
LabServer no longer need to reside on the same computer.
The LabEquipment can reside at a location suitable for
running the experiment while the LabServer can reside on
a system server, possibly along with the ServiceBroker
and the LabClient.

An example of this occurs at the University of
Queensland where the Radioactivity LabEquipment is
located in the Physics department while the Radioactivity
LabServer and LabClient reside on the School of
Information Technology and Electrical Engineering server
along with the UQ iLab ServiceBroker.

III. LABSERVER WEB SERVICE

The JAVA web service for the LabServer is generated
from the WSDL file obtained from the MIT’s .NET
LabServer web service. An example implementation of a
Batch LabServer was provided with the MIT’s 6.1 version
of the Batch ServiceBroker as the Time-Of-Day
experiment. This implementation was originally used to
obtain the WSDL file from the .NET web service. Since
then, an abstract class of the .NET web service has been
written for the LabServer to obtain the WSDL file.

A. SOAP Header

The ServiceBroker passes information in the SOAP
header of the web service call to the LabServer. This
includes the Identifier which is the ServiceBroker's GUID
and the outgoing PassKey and both are used to determine
the authenticity of the ServiceBroker making the request.

SOAP header processing is carried out in the message
handler that is attached to the web service for the
incoming requests. Since each request is independent of
any other request, the information in the SOAP header has
to be passed between the message handler and the web
service application by means of the message context. The
LabServer may receive two consecutive requests from two
different ServiceBrokers meaning the information in the
SOAP header will be different for each request.

The Identifier and PassKey are contained in an
AuthHeader object that is extracted from the SOAP
header and passed to the LabServer’s web service through
the message context for authentication. Should
authentication fail, an exception is thrown back to the
ServiceBroker denying access to the LabServer.

The LabServer uses an Enterprise Bean [5] to do the
work of the web service. The web service simply
processes the AuthHeader object information that it
received through the message context before passing the
request on to the bean to do the work.

B. Initialization

The first point of contact with the web service is its
message handler. When a ServiceBroker sends a request
to the LabServer, the message handler processes the
request before passing the message to the LabServer’s
web service. This means that the first phase of
initialization of the LabServer has to be carried out in the
message handler and not in the web service. This is fine
because a message context exists in the message handler
allowing configuration information to be read from the
web.xml file. This information includes the location of the
configuration properties XML file that is read and an
instance of a ConfigProperties object created.

But how does the LabServer’s web service Enterprise
Bean get to see the configuration information? The
message handler places the newly created
ConfigProperties object into a static variable in the
LabServer’s web service and sets an initialized Boolean
flag. When the web service bean’s constructor executes, it
gets the ConfigProperties object from the static variable in
the LabServer’s web service and carries out the remainder
of the initialization required by the LabServer.

Why can't the LabServer’s web service bean get the
configuration information from the web.xml file itself? A
web service context does not exist outside of a web
service call to enable that to occur.

IV. LABEQUIPMENT WEB SERVICE

The LabEquipment web service application is
responsible for running an experiment on the equipment
according to the specification provided to it by the
LabServer. In certain cases, it also provides a mechanism
for powering down the equipment after a period of
inactivity. Generally, there is a burst of activity when
experiments are submitted followed by long periods of
inactivity. It makes sense then to power down the
equipment during these periods of inactivity to reduce
component wear as well as reducing overall power usage.

As mentioned earlier, the LabEquipment software is
dependent on the computer platform used. If the
LabEquipment only used the network to communicate
with the equipment or carry out simulations then the
LabEquipment could be developed in JAVA.

The JAVA web service reference for the LabEquipment
is generated from the WSDL file obtained from the .NET
LabEquipment web service abstract class.

A. SOAP Header

 In a similar fashion to the LabServer web service, the
LabServer passes information in the SOAP header of the
web service call to the LabEquipment. This includes the
Identifier which is the LabServer’s GUID and the

outgoing PassKey and both are used to determine the
authenticity of the LabServer making the request.

SOAP header processing is carried out in the message
handler that is attached to the web service for incoming
requests. The AuthHeader object containing the Identifier
and PassKey is extracted from the SOAP header and
passed to the LabEquipment’s web service through the
message context for authentication.

The LabEquipment uses an Enterprise Bean to do the
work of the web service. The web service simply
processes the AuthHeader object information that it
received through the message context before passing the
request on to the bean to do the work.

B. Initialisation

Initialization of the LabEquipment web service occurs
in the same way as the LabServer web service. The first
phase of the initialization occurs in the message handler
attached to the web service. The web service bean’s
constructor then carries out the remainder of the
initialization required by the LabEquipment.

C. Web Methods

The LabEquipment service provides a number of web
methods that can be called by the LabServer to run
experiments on the LabEquipment. These include:

• GetLabEquipmentStatus – Determines the status of
the LabEquipment and if it is offline, provides a
status message.

• Validate – Takes an experiment specification and
determines the estimated execution time. This time
is dependent on the experiment specification and
the type of equipment used.

• StartLabExecution - Takes an experiment
specification and starts the experiment running on
the equipment.

• GetLabExecutionStatus – Determines the status of
the currently running experiment.

• GetLabExecutionResults – Retrieves the results of
the experiment after it has finished running.

• CancelLabExecution – Cancels a currently running
experiment.

These web methods do not depend on the type of
experiment that is being run or the equipment used.

V. LABCLIENT WEB APPLICATION

The LabClient uses the JAVA ServerFaces framework
to provide an interface for the user to submit experiments
and retrieve results. A Loader Script is used by the
ServiceBroker to launch the LabClient. The loader script
passes the LabServer’s GUID and the ServiceBroker’s
web service URL to the LabClient, by way of the URL
request parameters. This allows the one deployment of the
LabClient to be used by multiple ServiceBrokers and
LabServers.

The JAVA web service reference is generated from the
WSDL file obtained from the .NET ServiceBroker web
service abstract class that includes only the web service
methods for batch experiments.

The ServiceBroker generates a CouponId and
CouponPasskey when the LabClient is launched and
passes these to the LabClient also by the way of the URL
request parameters. The CouponId and CouponPasskey

are then passed back to the ServiceBroker in the SOAP
header with each web service call and used by the
ServiceBroker to authenticate the LabClient.

The LabClients developed at the University of
Queensland are considered to be an engineering approach.
They do not provide any fancy graphical interface but
only provide sufficient information to submit an
experiment to the LabServer. For example, the LabClient
for the Radioactivity experiment simply provides standard
web page controls to specify the experiment setup,
distance of the Geiger tube from the radioactive source
and the duration of exposure to the radioactive source.

Northwestern University has developed an Adobe Flash
LabClient [7] for use by high school students. It provides
a graphical simulation of the Radioactivity experiment and
then a step-by-step procedure for preparing, running and
completing the experiment. The students are asked
questions and are required to provide answers to those
questions before continuing to the next step.

VI. DUMMY SERVICEBROKER

A Dummy ServiceBroker has been developed to enable
the development of the LabServer and its LabClient
without the complexities of having to log into an iLab
ServiceBroker. The Dummy ServiceBroker simply
provides pass-through methods to allow the LabClient to
communicate directly with the LabServer. Only one web
method is not entirely pass-through and that is the Submit
web method where an experiment number needs to be
generated.

It is then possible, while debugging, to step through the
code from the LabClient into the Dummy ServiceBroker
then into the LabServer and LabEquipment and all the
way back again to the LabClient.

The Dummy ServiceBroker can also communicate with
more than one LabServer during development. This may
be useful when one LabServer is being developed with the
JAVA jax-ws framework and while another LabServer is
being developed with the Microsoft .NET framework.

VII. 3-TIER CODE DEVELOPMENT

Development of the LabServer and LabEquipment web
service applications occurs at three levels. The bottom
level is the Engine which is a library containing the code
common to all LabServer applications and similarly,
another library containing the code common to all
LabEquipment applications. For the LabServer, it contains
the routines to access the database, the web service
reference routines to call the LabEquipment and
ServiceBroker web services, the base classes for
processing experiment specifications and experiment
results as well as the experiment engine threads that run
the experiment drivers. For the LabEquipment, it contains
the code that powers up and powers down the equipment
and the equipment engine thread that runs the equipment
drivers.

The next level up is the library containing the code that
processes the experiment specification and experiment
results for a specific experiment, for example, the
Radioactivity experiment or the Time-Of-Day experiment.
For the LabServer, this level also contains the drivers that
execute the experiment setups for the specific

experiments. For the LabEquipment, this level also
contains the drivers that run the equipment.

The top level of the model is the web service
application and its message handler. The code at this level
cannot be placed in a library because it is the application
that is deployed to the web server. The web service
applications for each LabServer are almost identical.
Similarly, the web service applications for each
LabEquipment are almost identical.

Using this model for the LabServer and LabEquipment
allows speedy creation of new applications by focusing on
the development of experiment specific code at the second
level and reusing the code of the other two levels.

VIII. CONCLUSION

The development of a JAVA implementation of the
Batched iLab Shared Architecture has enabled platforms
other than Microsoft Windows to host iLab experiments.

The use of the JAVA jax-ws framework has allowed
the LabServer web service applications and LabClient
web applications to interoperate with existing Microsoft
.NET iLab ServiceBrokers.

By using the 3-tier code development approach, the
time and effort required to create new iLab experiments is
reduced.

FURTHER WORK

Development of the JAVA implementation of the iLab
ServiceBroker and Experiment Storage Server (ESS) is
currently underway to support Batched experiments. Work
will then continue with the development of the User
Scheduling Server (USS) and Lab Scheduling Server
(LSS) to support the development of interactive
experiments.

REFERENCES
[1] J. Harward, et. al., “The iLab Shared Architecture: A web Services

Infrastructure to Build Communities of Internet Accessible
Laboratories”, Proceedings of the IEEE, Vol96(6), pp. 931-950,
June 2008.

[2] iLab Downloads – iLabs Dev – MIT Wiki Service
https://wikis.mit.edu/confluence/display/ILAB2/iLab+Downloads

[3] UQ-iLab-BatchLabServer-Java Repository
https://github.com/uqlpayne/UQ-iLab-BatchLabServer-Java

[4] Java Platform (JDK) 7u7
http://www.oracle.com/technetwork/java/javase/downloads/

[5] NetBeans IDE 7.2 + Glassfish Development Server 3.1.2
http://netbeans.org/downloads

[6] PostgreSQL 9.1
http://www.postgresql.org/download/

[7] ilabCentral – The place to share remote online laboratories
http://ilabcentral.org

L. J. Payne, is with the School of Information
Technology and Electrical Engineering, The University of
Queensland, Brisbane, Australia
(Email: uqlpayne@uq.edu.au)

M. F. Schulz, is with the Centre for Educational
Innovation & Technology, The University of Queensland,
Brisbane, Australia
(Email: m.schulz@uq.edu.au).

