JAVA Implementation of the Batched iLab
Shared Architecture

L.J. Payné, M.F. SchulZ

! The University of Queensland, School of Informatitechnology and Electrical Engineering, Brisbakestralia
% The University of Queensland, Centre for Educatiénnovation & Technology, Brisbane, Australia

Abstract—The MIT iLab Shared Architecture is limited
currently to running under Microsoft Windows. A JAV A
implementation of the Batched iLab Shared Architectue
has been developed that can be used on other openat
systems and still interoperate with the existing Mirosoft
.NET web services of MIT’s iLab ServiceBroker. The JAVA
implementation provides a 3-tier code development odel
that allows code to be reused and to develop onlhe code
that is specific to each experiment.

MIT

Index Terms—Web Remote

laboratories.

Services, iLab,

l. INTRODUCTION

The iLab Shared Architecture (ISA) developed by MIT

[1] uses the Microsoft .NET web services of the fdgoft

Windows platform[2]. It also uses the Microsoft SQL

database server for information storage by

ServiceBroker and LabServers. The Microsoft Visua
Studio development tools are used to build the w
LabClients and

applications for the ServiceBroker,

LabServers. By developing these web applications i

JAVA [4] and using the PostgreSQL[6] databases itaw
possible to extend the use of the iLab Shared #ectire
beyond the Microsoft Windows platform.

JAVA provides thejax-ws framework for developing
web service applications that interoperate with the M.
Microsoft .NET web services. This allows a JAVA
LabClient to communicate with a .NET ServiceBroker

that in turn communicates with a JAVA LabServer.

JAVA is used to code the web service because th
development tools and database software are free
download from the Internet, are free to use, arel arg

available for a wide range of operating systemfqiats

MIT model but the LabServer has been separatedwto
parts. Again, the LabServer handles the validatod
submission of an experiment specification from the
LabClient (via the ServiceBroker) but the LabEqugmmn
separates the running of the experiment on thewsasd
from the LabServer.

Quite often the software used to drive the expeanime
hardware is very dependent on the computer platfand
in many cases is only available for the Microsoft
Windows platform. So by separating out the
LabEquipment from the LabServer, the LabServerhzn
developed in JAVA while the LabEquipment remains
platform dependent.

As a result of the separation, the LabEquipment and
abServer no longer need to reside on the same wemp
The LabEquipment can reside at a location suitéine
running the experiment while the LabServer cardeesin

system server, possibly along with the Servick&ro
nd the LabClient.

An example of this occurs at the University of
1(pueensland where the Radioactivity LabEquipment is
ocated in the Physics department while the Radigtc
LabServer and LabClient reside on the School of
Information Technology and Electrical Engineeriegver
along with the UQ iLab ServiceBroker.

LABSERVERWEB SERVICE

The JAVA web service for the LabServer is generated
from the WSDL file obtained from the MIT's .NET
LabServer web service. An example implementatioa of
Batch LabServer was provided with the MIT’s 6.1sien
§ the Batch ServiceBroker as th&ime-Of-Day
xperiment. This implementation was originally uged
obtain the WSDL file from the .NET web service. &n

such as LINUX and Mac-OS as well as Microsoftinen "an abstract class of the .NET web servicebbas

Windows.

Il. ILAB SHARED ARCHITECTUREMODEL
A. Existing Model

The existing model for an MIT Batched experiment.

consists of two parts: a LabClient and a LabSerVae
LabClient provides the interface through which treer

creates and submits an experiment specificatiore T
LabServer handles the validation and submissiomrof

written for the LabServer to obtain the WSDL file.

A. SOAP Header

The ServiceBroker passes information in the SOAP
header of the web service call to the LabServeis Th
includes thddentifier which is the ServiceBroker's GUID
and the outgoingPassKeyand both are used to determine

hthe authenticity of the ServiceBroker making thguesst.

SOAP header processing is carried out in the messag

experiment specification from the LabClient (viaeth handler that is attached to the web service for the

ServiceBroker) and runs the experiment on the eogiip
according to the experiment specification.

B. Revised Model

incoming requests. Since each request is indepéruden
any other request, the information in the SOAP behds

to be passed between the message handler and the we
service application by means of the message cortbet

The model developed at the University of QueenslanabServer may receive two consecutive requests fieom

consists of three parts: LabClient, LabServer

andlifferent ServiceBrokers meaning the informationttie

LabEquipment [3]. The LabClient is the same ashia t SOAP header will be different for each request.

The Identifier and PassKey are contained in an outgoing PassKeyand both are used to determine the
AuthHeader object that is extracted from the SOAP authenticity of the LabServer making the request.

header and passed to the LabServer's web servizegh SOAP header processing is carried out in the messag
the message context for authentication. Shoulthandler that is attached to the web service fooriting
authentication fail, an exception is thrown backthe requests. ThéuthHeaderobject containing thédentifier
ServiceBroker denying access to the LabServer. and PassKeyis extracted from the SOAP header and

The LabServer uses an Enterprise Bean [5] to do theassed to the LabEquipment’s web service through th
work of the web service. The web service simplymessage context for authentication.

processes theAuthHeader object information that it The LabEquipment uses an Enterprise Bean to do the
received through the message context before pa#isng \work of the web service. The web service simply
request on fo the bean to do the work. processes theAuthHeader object information that it

B. Initialization received through the message context before pa#ising

X .) o request on to the bean to do the work.
The first point of contact with the web serviceits

message handler. When a ServiceBroker sends astequB. Initialisation

to the LabServer, the message handler processes thanjtialization of the LabEquipment web service ocu
request before passing the message to the LabServef, the same way as the LabServer web service. iféte f
web service. This means that the first phase Ofhase of the initialization occurs in the messagedter

initialization of the LabServer has to be carried im the zitached to the web service. The web service bean’s
message handler and not in the web service. THigES constructor then carries out the remainder of the

because a message context exists in the messadierhaninitialization required by the LabEquipment.
allowing configuration information to be read frotine
web.xmlfile. This information includes the location okth C. Web Methods

configuration properties XML file that is read arauh The LabEquipment service provides a number of web
instance of &onfigPropertiesobject created. methods that can be called by the LabServer to run
But how does the LabServer's web service Enterprisexperiments on the LabEquipment. These include:

Bean get to see the configuration information? The . GetLabEquipmentStatus — Determines the status of

message handler places the newly created the LabEquipment and if it is offline, provides a
ConfigProperties object into a static variable in the status message.

LabServer's web service and setsiaitialized Boolean
flag. When the web service bean’s constructor ebescit
gets theConfigPropertieobject from the static variable in
the LabServer’'s web service and carries out theuireher
of the initialization required by the LabServer.

Why can't the LabServer's web service bean get the * SO ¢ k
configuration information from theveb.xmlfile itself? A specification and starts the experiment running on
web service context does not exist outside of a web the equipment.
service call to enable that to occur. * GetLabExecutionStatus — Determines the status of

the currently running experiment.

IV. LABEQUIPMENTWEB SERVICE * GetLabExecutionResults — Retrieves the results of
The LabEquipment web service application is the experiment after it has finished running.
responsible for running an experiment on the eqeigm CancelLabExecution — Cancels a currently running
according to the specification provided to it bye th experiment.

LabServer. In certain cases, it also provides ahamgem
for powering down the equipment after a period of These web methods do not depend on the type of

inactivity. Generally, there is a burst of activityhen experiment that is being run or the equipment used.

Validate — Takes an experiment specification and
determines the estimated execution time. This time
is dependent on the experiment specification and
the type of equipment used.

StartLabExecution - Takes an experiment

experiments are submitted followed by long periods V. LABCLIENT WEB APPLICATION
inactivity. It makes sense then to power down the .
equipment during these periods of inactivity to ueel The LabClient uses the JAVA ServerFaces framework

Component wear as well as reducing overall powagels to prOVide an interface for the user to submit emnts

: ; : .and retrieve results. A.oader Scriptis used by the
d eﬁanqeGr?ttlogr? d tﬁgrlI?;:)'n:gﬁtel_rabrﬁgtlfj(ﬁmenlisz(()jﬂwﬁretr: erviceBroker to launch the LabClient. The load®ips

; : the LabServer's GUID and the ServiceBroker’'s
LabEquipment only used the network to communicaté a5o¢S 1 .
with the equipment or carry out simulations thewe th web service URL to the LabClient, by way of the URL

LabEquipment could be developed in JAVA. request parameters. This allows the one deployofethie

: _ LabClient to be used by multiple ServiceBrokers and
The JAVA web service reference for the LabEquipment gpservers.

is generated from the WSDL file obtained from tNET

LabEquipment web service abstract class. The JAVA web service reference is generated froen th

WSDL file obtained from the .NET ServiceBroker web
A. SOAP Header service abstract class that includes only the vegbice

In a similar fashion to the LabServer web servtbe, Methods for batch experiments.
LabServer passes information in the SOAP headéneof The ServiceBroker generates &ouponid and
web service call to the LabEquipment. This inclutes CouponPasskeywhen the LabClient is launched and
Identifier which is the LabServer's GUID and the passes these to the LabClient also by the wayeoURL
request parameters. Theouponld and CouponPasskey

are then passed back to the ServiceBroker in thaPSO experiments. For the LabEquipment, this level also
header with each web service call and used by theontains the drivers that run the equipment.
ServiceBl’OkertO authenticate the LabC“ent The top level of the model is the web service

The LabClients developed at the University ofapplication and its message handler. The coddsatetel
Queensland are considered to be an engineeringagdpr cannot be placed in a library because it is thdigadmn
They do not provide any fancy graphical interface b that is deployed to the web server. The web service
only provide sufficient information to submit an applications for each LabServer are almost idehtica
experiment to the LabServer. For example, the Ligi€l Similarly, the web service applications for each
for the Radioactivity experiment simply providearglard LabEquipment are almost identical.

web page controls to specify the experiment setup, Using this model for the LabServer and LabEquipment

distance of the Geiger tube from the radioactivera® gjlows speedy creation of new applications by fouysn

and the duration of exposure to the radioactivecsu the development of experiment specific code astwnd
Northwestern University has developed an Adobehlaslevel and reusing the code of the other two levels.

LabClient [7] for use by high school students. ribyides

a graphical simulation of the Radioactivity expezithand VIII. CONCLUSION

then a step-by-step procedure for preparing, rgnaind The development of a JAVA implementation of the
completing the experiment. The students are askegatched iLab Shared Architecture has enabled phatfo
questions and are required to provide answers dseth other than Microsoft Windows to host iLab experitsen

questions before continuing to the next step. The use of the JAVA jax-ws framework has allowed
VI. DUMMY SERVICEBROKER the LabServer web service applications and LabClien
T web applications to interoperate with existing Mgwft
A Dummy ServiceBroker has been developed to enablgyeT iLab ServiceBrokers.

the development of the LabServer and its LabClient By using the 3-tier code development approach, the

without the complexities of having fo log into amab "2 0 effort required to create new iLab experits is
ServiceBroker. The Dummy ServiceBroker 5|mplyreduced

provides pass-through methods to allow the LabClien
communicate directly with the LabServer. Only onebw FURTHERWORK
method is not entirely pass-through and that isSihlemit

web method where ‘an experiment number needs to beP€velopment of the JAVA implementation of the iLab
generated. ServiceBroker and Experiment Storage Server (ESS) i
Itis th ibl hile debuading. to step tatoth currently underway to support Batched experimamstk
is then possible, while debugging, to step tafothe will then continue with the development of the User

code from the LabClient into the Dummy ServiceBroke ; :

. . Scheduling Server (USS) and Lab Scheduling Server
then into the LabServer and LabEquipment and al th(LSS) to support the development of interactive
way back again to the LabClient. e ;

) _ _experiments.
The Dummy ServiceBroker can also communicate with
more than one LabServer during development. Thig ma REFERENCES
be use_ful when one LabServer IS being developet tht . [1] J. Harward, et. al., “The iLab Shared Architectuxaveb Services
JAVA jax-ws framework and while another LabServer is Infrastructure to Build Communities of Internet Assible

being developed with the Microsoft .NET framework. Laboratories” Proceedings of the IEER/0l96(6), pp. 931-950,
June 2008.
VII. 3-TIER CODE DEVELOPMENT [2] iLab Downloads — iLabs Dev — MIT Wiki Service

https://wikis.mit.edu/confluence/display/ILAB2/iL&Bownloads

UQ-iLab-BatchLabServer-Java Repository
https://github.com/uglpayne/UQ-iLab-BatchLabSerJava

[4] Java Platform (JDK) 7u7

Development of the LabServer and LabEquipment web
service applications occurs at three levels. Thiobo
level is theEnginewhich is a library containing the code
common to all LabServer applications and similarly, http://www.oracle.com/technetwork/java/javase/davaals/

anmher. library co_ntal_nlng the code common _tO a”[5] NetBeans IDE 7.2 + Glassfish Development Serve23.1
LabEquipment applications. For the LabServer, ittams http://netbeans.org/downloads

the routines to access the database, the web &ervig; postgresqL 9.1

reference routines to call the LabEquipment an http://www.postgresgl.org/download/
ServiceBroker web services, the base classes f(Pf] ilabCentral — The place to share remote onlinerktoties
processing experiment specifications and experiment http:/ilabcentral.org

results as well as the experiment engine threaatsrtim

the experiment drivers. For the LabEquipment, ittams |
the code that powers up and powers down the equaipmer
and the equipment engine thread that runs the eguip
drivers.

The next level up is the library containing the edhbat
processes the experiment specification and expetime o)
results for a specific experiment, for example, theéM.F.Schulz is with the Centre for Educational
Radioactivity experiment or the Time-Of-Day expezith Innovation & Technology, The University of Queemsia
For the LabServer, this level also contains theeds that Brisbane, Australia
execute the experiment setups for the specifi¢Email: m.schulz@ug.edu.au).

. J. Payng is with the School of Information
echnology and Electrical Engineering, The Univgref
Queensland, Brisbane, Australia

(Email: uglpayne@ugq.edu.au)

