
CSMR, VOL. 1, NO. 1 (2010) ISSN: XXXX-XXXX

Agent-Based Implementation of a

P2P Publish/Subscribe System

Mihai Paraschiv, Alexandru V. Ștefănescu, Adela-Diana Almasi
University POLITEHNICA of Bucharest

Faculty of Automatic Control and Computers, Computer Science Department

Emails: {mihai.paraschiv, alexandru.stefanescu1708, adela.almasi}@cti.pub.ro

Abstract

The publish/subscribe paradigm offers many advantages for communication in unstructured

decentralized peer-to-peer networks. One of the models that fit into this paradigm is topic-

based event dissemination. This paper presents an agent-based system for publish/subscribe

inspired by TERA and implemented on top of JADE. We describe the system’s design and

implementation and show several performance results obtained in a real-life setting.

Keywords: topic-based publish-subscribe, p2p networks, agents, JADE

1. Introduction

Publish/subscribe is a messaging paradigm of growing popularity for information

dissemination in distributed systems. Due to the decoupled interaction model between

participants, this approach accomplishes many of the interoperability needs of today’s large-

scale, dynamic, peer-to-peer applications. Communication participants can act both as

producers (publishers) and consumers (subscribers) of information. Publishers inject

information into the system in the form of events, while subscribers declare their interest in

receiving some of the published events by issuing subscriptions. Subscriptions express

conditions on the content of events (content-based model) or just on the category they should

belong to (topic-based model).

Once an event is published, for each subscription whose conditions are satisfied by the

event, the corresponding subscriber must be notified. The basic building block of systems

implementing the publish/subscribe paradigm is a distributed event diffusion mechanism able

to bring any published event from the publisher to the set of matched subscribers, while

completely decoupling their interaction [1].

In unmanaged, inter-administrative systems (e.g., peer-to-peer), the event diffusion

mechanism is usually implemented on top of an overlay network connecting all user nodes

(either publishers or subscribers). Overlay networks are specifically designed to support

information diffusion characterized by a high-level of reliability in large scale and unreliable

environments.

One of the critical aspects in designing publish/subscribe systems is the implementation

of the event diffusion mechanism. This can be accomplished trivially by flooding the overlay

for each generated event. The downside is that nodes receive a large amount of events that do

not match their subscription requirements. Ideally, event diffusion should be confined to the

set of matching subscribers without affecting the whole network. This means that all

subscribers with the same interests should be grouped in the same cluster. In this way, once

the event reaches one member of the cluster, its dissemination can be limited to this group.

Moreover, the number of messages needed to bring the event from the publisher to a node

belonging to the target cluster should be as small as possible. In addition to this, event routing

should be done without compromising reliability.

The goal of this paper is to present an implementation of a topic-based publish/subscribe

architecture showing the above characteristics and implemented as an agent-based system.

M. PARASCHIV, A.V. ȘTEFĂNESCU, A.D. ALMASI AGENT-BASED IMPLEMENTATION OF A P2P PUB/SUB SYSTEM

The chosen approach is similar to TERA (Topic-based Event Routing for p2p Architectures)

[13], which is one of the best performing pub/sub systems for large-scale, unstructured,

completely decentralized peer-to-peer networks. The following section presents several

approaches for developing architectures for peer-to-peer publish/subscribe systems. The usage

of agents for implementing peer-to-peer networks is explored in Section 3, with

exemplifications on the JADE framework [15]. The next two sections describe the

implementation of the system using the agent-based approach, the experimental setup and

discuss the results.

2. Overview of Pub/Sub Systems for P2P Networks

While the publish/subscribe pattern for managed systems has been widely studied and various

solutions exist in the literature [2], [3], [4], publish/subscribe for unmanaged systems is today

an active field of research [5], [6], [7].

SCRIBE [5] and Bayeux [9] are two pub/sub systems built on top of two Distributed Hash

Table (DHT) overlays (namely Pastry [10] and Tapestry [11]), which enable them to achieve

scalability, efficiency and self-organization. Systems like SCRIBE use the decoupled

key/node mapping provided by the DHT to efficiently designate a rendezvous node for each

topic which collects each event published for that topic and diffuses it toward subscribed

nodes. However, the single node responsible for the management of each topic can quickly

become a hot spot for very popular topics. Additionally, the usage of standard DHT routing

protocols for event propagation involves many nodes that are not interested in the event.

An interesting variant of this technique was proposed in [12]: members of the system

subscribed to the same topic form a separate overlay where events belonging to the

corresponding topic are simply flooded. This mechanism for traffic confinement is similar to

TERA’s one. However, in [12] a single access point exists for each topic overlay.

The system proposed in [6] maintains, through the widespread use of probabilistic

algorithms, a hierarchy of groups that directly maps a topic hierarchy. Without a general

overlay network, one that would not be related to a specific topic, every publisher has to be

part of the group corresponding to the topic it wants to publish. This implies that it would also

have to receive events on topics that it might not have subscribed to. TERA solves the

problem by not requiring publishers to join any topic; it is the general overlay that is

responsible for diffusing events.

Content-based systems, such as Sub-2-Sub [7], assume that subscribers sharing the same

interests are clustered with a self-organizing algorithm that continuously analyzes overlapping

intervals of interest. In this system each peer is associated with one subscription. Sub-2-Sub

relies on an epidemic algorithm to cluster similar subscriptions. Peers periodically exchange

subscription information to get clustered to similar peers. Clustering involves the creation of a

logical ring connecting all peers having the same subscription into a group. To publish an

event, the system delivers it to any of the matching subscribers and from there the event

traverses the logical ring connecting the subscribers. Information about subscriptions is

periodically exchanged between nodes using a node sampling service employing Cyclon [8].

The main drawback of Sub-2-Sub is that the clustering mechanism leads to a high overhead

imposed on nodes. This happens because the number of rings a node belongs to is not directly

proportional to the number of subscriptions it manages, but it depends on the number of

interest intersections that could be much larger than the number of subscriptions.

Most of the actual available systems are research prototypes, which concentrate on

scalability and reliability rather than on durability in P2P environments. Durability refers to

the property of the system to correctly send the events to all subscribers even if nodes or links

in the underlying communication layer fail. Other problems that must be tackled are the load

balancing of subscriber group membership data among the peers in the network and the

separation of the communication layer from the subscription management layer.

The architecture for the peer-to-peer system presented in this paper is inspired by TERA

[13], [14], which implements the publish/subscribe paradigm over unstructured, completely

CSMR - COMPUTER SCIENCE MASTER RESEARCH, VOL. 1, NO. 1 (2010)

decentralized networks. It uses probabilistic mechanisms and overlay management protocols

in order to obtain event diffusion and high scalability.

The system embeds mechanisms that implement traffic confinement while supporting

event diffusion reliability. In particular clustering is achieved by using dedicated overlay

networks for each topic, where events can be diffused with high reliability. Routing of each

event from the source node to the target overlay is realized through a probabilistic mechanism

that shows a ratio of successes close to 1 involving a small and limited number of non-

interested nodes. Moreover, the system is also shown to have a cost of diffusion per-event that

scales with respect to the number of nodes constituting the system, the number of

subscriptions/topics issued, and the event publication rate. Finally, TERA is shown to fairly

distribute the system load according to the number of subscription currently issued by each

participant.

TERA uses Cyclon [8] as overlay management protocol, which provides every node with

a view representing a uniform random sample of the system through a simple epidemic

algorithm. Each peer knows a small (around 20-100), continuously changing set of other

peers, called its neighbors, and occasionally contacts a random one of them to exchange some

of their neighbors (see Figure 1). This exchange (called a shuffle) is synchronous – a node

chooses a number of neighbors, sends out to them information about its view of the network

and waits to receive their answer. If they fail to respond in a timely manner, they are removed

from the list of nodes. The view exchange technique lets the protocol build and maintain

overlay topologies that closely resemble random graphs. Consequently, built overlays exhibit

high connectivity and low diameter, thus being resilient to massive node failures, and are

adequate topologies for implementing efficient broadcast primitives [14].

The main components of TERA are Event Management, Subscription Management,

Access Point Lookup and Partition Merging and Broadcast.

3. Agent-Based Modeling with JADE

In recent years, agent systems have been a rapidly growing field of research in software.

Agent-based technologies are nowadays considered the most promising means of deployment

for enterprise level applications. An agent is a piece of software that acts on behalf of a user

or other program in relationship with other agents [19]. There are some characteristics of

agents which distinguish them from other pieces of software: reaction to the environment,

autonomy, goal-orientation and persistence. The question of how to obtain interoperability

across corporations and geographical distance in the context of heterogeneous systems is one

for which agents offer a comprehensive solution [20].

JADE (Java Agent Development Framework) [15] is a software framework, implemented

in the Java language, whose purpose is to aid the development of multi-agent systems [19]. It

represents a middleware system fully compliant with FIPA [21] specifications, which allows

users to deploy agents across different machines. Jade has the advantage of sharing the

platform independence of the Java language. The agent platform is responsible for handling

agent services such as messaging (transport, encoding and parsing), scheduling, agent

lifecycle management and other common resources.

Messages exchanged between JADE agents are assigned to specific protocols, allowing

for easy filtering at reception. JADE offers a reliable messaging system both point-to-point

between agents and topic-based.

We have chosen to use an agent-based implementation of a publish/subscribe system

because these high-level abstractions offer valuable help in managing the complexity of the

problem. Agents are best suited for use in applications that need distributed computations and

an increased communication between entities, which is why they fit well for the project

presented in this paper.

M. PARASCHIV, A.V. ȘTEFĂNESCU, A.D. ALMASI AGENT-BASED IMPLEMENTATION OF A P2P PUB/SUB SYSTEM

4. Agent-Based Pub/Sub Architecture

The architecture of the system that we present in this paper is illustrated by Figure 1. The

main components of the architectural design correspond to those of the pub/sub architecture.

Figure 1 – Agent architecture

4.1. Design

In our system, each publish/subscribe agent has a set of components which are implemented

as JADE behaviors. Each component contains multiple low level behaviors which are

responsible for action planning, message sending or message receiving. In order to decouple

components, some inter-behavior communication is performed through callbacks.

The following high level behaviors are found in the architecture: overlay management,

subscription management, access point management, event diffusion and simulation. The

latter is used to control the tests done on the system and is designed to interfere as little as

possible with the other components.

4.2. Overlay management

At the base of our architecture there is an Overlay Manager, which is responsible for

maintaining a set of agent networks. There are two types of overlays handled by the Overlay

Manager. One of them consists in the underlying (base) network overlay, which contains all

the agents. This is the level where processes like neighbor lookup and advertisement diffusion

take place. The other overlay type is the one responsible for event propagation. Each topic has

an associated overlay which is identified by the topic’s name.

Both types of overlays are maintained using a view exchange protocol inspired by

Cyclon. For all overlays of interest (base, subscribed topics), an agent holds a collection

(fixed size) of known neighbors. At regular intervals, the agent picks a random receiver node

from this set and initiates a view exchange. The first phase of this process consists in selecting

a random subset of neighbors. A message is sent to the recipient, which is then removed from

the agent’s set of neighbors. The receiving agent responds with its own random selection of

agents. Then, it randomly replaces nodes from its collection with those coming from the

exchange initiator. The same action is performed by the initiating agent when receiving the

reply message.

In order to account for disconnected nodes, a least recently used (LRU) cache is

associated to each overlay. Nodes are added to this set when an initial view exchange message

is sent to them. When a view is received from an agent present in this cache, the entry is

removed and the sender of the view is added to the current agent’s neighbor list. Additionally,

nodes in the cache are removed from all incoming views.

Because we use JADE, the implementation of the protocol has to be asynchronous. This

means that neighbors are not shuffled between nodes, as in Cyclon, because messages from

(1) Event

(2) Lookup initiation/forwarding
(3) Lookup reply

(4) View exchange initiation

(5) View exchange reply
(6) Access point lookup

(7) Access point reply

(8) Advertisement

CSMR - COMPUTER SCIENCE MASTER RESEARCH, VOL. 1, NO. 1 (2010)

other agents can come before the reply for the current round is received. As a result,

references to overlay peers could disappear. This may prove to be of concern when the

neighbor collection size is very small or the network suddenly becomes partitioned.

Figure 2 – Overlays: base and topics

Figure 2 shows how the base and overlay topics are represented. The base layer contains

all the agents involved in the communication process. For each topic, an overlay containing

all its subscribers is created (Topic Overlay 1 and 2 in the figure correspond to two topics). In

every topic, agents have a set of neighbors, which are shown as connections in the figure.

Agents can be included in multiple topic overlays depending on their subscriptions and in

each overlay they may be both producers and subscribers.

4.3. Subscription management

The subscription management component is responsible with subscribing and unsubscribing

the agent to/from a topic and facilitates the integration of an agent in a topic overlay.

The subscription operation consists of the following phases:

1. A topic overlay is created and registered with the Overlay Manager.

2. The Subscription Manager uses the Access Point Manager to look for nodes that are

subscribed to the desired topic, which is accomplished using two methods. Firstly, the

agent looks in its own access point cache. Secondly, the agent starts several random

walks.

3. After the lookup returns, the identified peers are added to the topic overlay.

4. A view exchange is forced. This way, the peers know about the current agent before a

new exchange round takes place.

Unsubscribing an agent from a topic is done by simply removing the topic registration

from the Overlay Manager.

The Subscription Manager maintains a cache table of subscriptions, which are identified

through advertisements made on the base overlay. The table contains one node per topic and

has the purpose to speed up the discovery of the agents which can act as access points for a

given topic.

4.4. Access point management

This component is responsible with the identification of nodes that can serve as access points

to a topic overlay. The component is built on top of a random walk mechanism and provides

two functions.

One of the functions is the node lookup initiation. Multiple random walks are started by a

JADE parallel behavior, which waits for one message / all messages or a specified amount of

time. After one of these conditions is fulfilled, the behavior makes a callback.

M. PARASCHIV, A.V. ȘTEFĂNESCU, A.D. ALMASI AGENT-BASED IMPLEMENTATION OF A P2P PUB/SUB SYSTEM

The other function of the Access Point Manager is to process incoming random walk

requests. If a suitable peer can be identified in the agent’s cache, a reply message is send to

the initiator. Otherwise, the message is propagated to one of its own neighbors.

The rationale behind this search mechanism is that, given the uniform randomness of

access point cache contents and of peer’s neighbor set, it is possible to fix the lifetime of the

walks and the cache size such that, given a topic, with a certain probability either (i) an access

point for it will be found, or (ii) it will safely be considered as inactive [14].

If |T| is the total number of topics in the system, |APC| is the size of the access point cache

table and K is the lifetime of the random walk, then the required cache size for which an

access point for any topic is found with the probability P by visiting the K nodes of a random

walk is [14]:

| | | |(√

).

4.5. Event diffusion

The first step in publishing an event is to find an access point to the topic overlay, which is

accomplished by using multiple random walks through the Access Point Manager. After a

subscribed agent is identified, the event message is sent to it. Next, the recipient processes the

event internally and then broadcasts it. This last step is a forwarding operation, where the

receivers are the topic overlay neighbors.

4.6. Differences from TERA

Our implementation diverges from TERA in several ways. One of these is the communication

type. In TERA, messages are sent synchronously, which makes protocol properties easier to

prove. JADE only supports asynchronous communication, thus resulting in a more complex

design and a more difficult testing process.

The second difference is the use of a size estimation mechanism. Determining the size of

an overlay is required in order to limit the amount of access points which are kept by each

node. In our system, we do not use an estimation mechanism for the size of the network. This

may prove to be a problem if there are many topics, but in scenarios like the ones we have

tested, this does not seem to be a significant issue.

Another difference is that we have not employed overlay partition merging. In TERA, a

topic can have more than one associated overlay. An agent that detects that its topic belongs

to two overlays has to initiate a merging operation. A different approach is in our

implementation, where we associate only one overlay to each topic. While this simplifies

overlay management, it makes it difficult to estimate the size of a network. This happens

because we have no easy way to determine which agent was the first in an overlay.

4.7. Implementation issues

Developing our system over JADE has been straightforward for most parts. However, we

have encountered several issues which are summarized below.

One problem was identified when a large number (larger then 100) of agents were let to

run in the same container. After a random interval of time, all agents would freeze. We

determined that the problem was caused by the large number of timer tasks we were using.

Each agent employs timers for mechanisms like topic advertisement sending or view

exchange initiation. JADE uses one task per agent, but timers are handled by a singleton

dispatcher and the mechanism through which this object is assigned is not directly available to

the developer. In order to alleviate the freezing problems, we have replaced the dispatcher

assigned by JADE with one coming from a pool designed by us. This is accomplished through

simple introspection (the dispatcher field is private) at the setup phase.

Another stability issue was identified in early testing. Because the number of threads

responsible with receiving the messages was very small compared to the number of threads

sending the messages, the system would become unresponsive. The message buffer of the

CSMR - COMPUTER SCIENCE MASTER RESEARCH, VOL. 1, NO. 1 (2010)

recipient container would quickly fill and the system would freeze. This issue was solved by

reconfiguring the JADE platform.

5. Tests

5.1. Test setup

For testing purposes, we have designed an additional agent – the facilitator (see Figure 3),

which has two roles. The first one is to serve as the unique logging point, as the facilitator

receives logging messages from all the other agents. The second role consists in initializing

the agent network. The facilitator continuously waits for agents to register with it. After a

predetermined number of agents have registered, the facilitator sends to them (and to agents

registering afterwards) a random set of initial neighbors. After being added to the network and

receiving the neighbor set, the initialization function of the facilitator is not used any longer.

Later on, the facilitator will only be used as logging mechanism.

For our test scenarios, six machines have been used: one for the platform’s main container

and five for publish/subscribe agents. The machine on which the main container runs is an

Intel Core2Duo at 1.73 GHz. The other five are Pentium 4 at 3 GHz. All machines are

connected using a 100 Mbps LAN.

Figure 3 – Test Setup

The main container keeps the agents necessary for maintaining a JADE platform and a

Facilitator agent. The secondary ones include only regular publish/subscribe agents and are

launched as separate processes on each machine.

5.2. Experimental results

We have designed two test suites through which we have assessed the performance of two

system components: overlay management and event diffusion.

5.2.1. Overlay management

The first test suite evaluates the overlay management component. We tested three scenarios,

in each case starting with a network with 500 agents (100 on each machine). We varied the

number of removed nodes and the view size for the exchange phase. It is worth noting that

nodes are started immediately one after another and that exchange rounds are scheduled every

six seconds.

The graphs in Figures 4 and 5 show the number of agents that have cleared all references

to nodes removed from the network. We can see that doubling the view size does not have a

significant effect on the time it takes to flush all nodes.

Log Message

Initialization Request

Initialization Response

(1) ... (5) Secondary containers

M. PARASCHIV, A.V. ȘTEFĂNESCU, A.D. ALMASI AGENT-BASED IMPLEMENTATION OF A P2P PUB/SUB SYSTEM

Figures 4 and 5 – Nodes which have no dead references remaining (in seconds)

Figures 6 and 7 show how the number of total remaining references changes. As we

expect, the number of nodes decreases steadily over time. In several minutes, almost all

references to dead nodes are removed. We observe that using a smaller view size can

minimize this time.

Figures 6 and 7 – Remaining dead references (in seconds)

Figures 8 and 9 show the number of dead nodes remaining in the neighbor tables of live

agents. Unlike references, nodes are removed from the network in an almost linear fashion.

Figures 8 and 9 – Remaining dead nodes (in seconds)

5.2.2. Event diffusion

The second test suite consists in having a single event published on a topic and varying

the number of subscribers. We measure the time it takes to propagate the event in the entire

overlay by log messages. A log message contains the recipient’s timestamp and is sent to the

facilitator immediately after the event is received.

0

50

100

150

200

250

300

0 100 200 300 400 500

Dead nodes 250/500

Neighbors=20, View=10 Neighbors=20, View=5

0

100

200

300

400

500

0 50 100 150 200 250 300

Dead nodes 50/500

Neighbors=20, View=10

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500

Dead nodes 250/500

Neighbors=20, view=10 Neighbors=20, View=5

0

200

400

600

800

1000

0 50 100 150 200 250 300

Dead nodes 50/500

Neighbors=20, View=10

0

50

100

150

200

250

300

0 100 200 300 400 500

Dead nodes 250/500

Neighbors=20, View=10 Neighbors=20, View=5

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Dead nodes 50/500

Neighbors=20, View=10

CSMR - COMPUTER SCIENCE MASTER RESEARCH, VOL. 1, NO. 1 (2010)

Figures 10-14 – Event diffusion rate per time slice (in milliseconds) when the number of

subscribers of the selected topic varies between 25% and 100%

All four plots show that at about 5 seconds into the test, the message starts to propagate

very fast. In 9 to 12 seconds, almost all subscribers receive the message. Further testing is

required in order to assess the real life behavior of our system.

6. Conclusions and Future Work

In this paper, we described the design and implementation of a publish/subscribe system over

a peer-to-peer network, for which the main source of inspiration has been the TERA

architecture. The characteristics and implementation of the system make it suitable for an

enterprise environment, where the changing structure and flexibility requirements are capital

to the applicability of message-based software. The system applies to topic based publishing

using an overlay for each topic. Nodes that subscribe to a topic are added to their

corresponding overlay and the system automatically manages traffic confinement, without

unnecessarily flooding the network. Testing has shown that our system is capable of good

event diffusion and can adapt to changes in network structure.

As future work, we consider the following tasks. First, we want the system to manage

composite events. The system currently supports only simple events, and in order to extend its

functionality, we would need to add event management capabilities to the existing overlays.

Secondly, we consider implementing the partition merging functionality of TERA. This is

needed in order to estimate the size of the network, and also to prevent problems such as the

unwanted partitioning of the network. Finally, we feel it would be useful to further test the

performance of the system in more varied circumstances than the ones already tested. The

network on which we have tested comprised of only 6 computers, on which we have run the

maximum number of agents that the platforms supported, which in our case was 500 agents.

In order to confirm the system’s scalability and fault-tolerance capabilities, it would be useful

to observe how it performs in a massively distributed setup.

0

20

40

60

80

100

120

140

25% subscribers

Notifications Total

0

50

100

150

200

250

300

50% subscribers

Notifications Total

0

100

200

300

400

75% subscribers

Notifications Total

0

100

200

300

400

500

600

100% subscribers

Notifications Total

M. PARASCHIV, A.V. ȘTEFĂNESCU, A.D. ALMASI AGENT-BASED IMPLEMENTATION OF A P2P PUB/SUB SYSTEM

References

[1] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec, The many faces of

publish/subscribe, ACM Computing Surveys 35, no. 2, 114–131, 2003.

[2] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen, The information bus - an architecture

for extensive distributed systems, Proceedings of the 14th ACM Symposium on

Operating Systems Principles (SOSP), 1993, pp. 58–68

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, Design and evaluation of a wide-

area notification service, ACM Transactions on Computer Systems 3, 2001, no. 19,

332–383.

[4] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C.

Sturman, An Efficient Multicast Protocol for Content-based Publish-Subscribe

Systems, Proceedings of International Conference on Distributed Computing

Systems (ICDCS ’99), 1999.

[5] M. Castro, P. Druschel, A. Kermarrec, and A. Rowston, Scribe: A large-scale and

decentralized application-level multicast infrastructure, IEEE Journal on Selected

Areas in Communications 20, October 2002, no. 8

[6] S. Baehni, P. Th. Eugster, and R. Guerraoui, Data-aware multicast., Proceedings of

the International Conference on Dependable Systems and Networks (DSN), 2004,

pp. 233–242.

[7] Spyros Voulgaris, Etienne Rivière, Anne-Marie Kermarrec, and Maarten van Steen,

Sub-2-sub: Self-organizing content-based publish and subscribe for dynamic and

large scale collaborative networks, Research Report RR5772, INRIA, Rennes,

France, December 2005

[8] S. Voulgaris, D. Gavidia, and M. van Steen, CYCLON: Inexpensive Membership

Management for Unstructured P2P Overlays, Journal of Network and Systems

Management 13, 2005, no. 2.

[9] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz, Bayeux: An

architecture for scalable and fault-tolerant wide-area data dissemination,

Proceedings of the 11th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, 25-26 June 2001, pp. 11–20.

[10] A. Rowstron and P. Druschel, Pastry: Scalable, decentralized object location and

routing for large-scale peer-to-peer systems, Proceedings of IFIP/ACM

International Conference on Distributed Systems Platforms (Middleware), 12-16

November 2001, pp. 329–350.

[11] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz,

Tapestry: A Resilient Global-scale Overlay for Service Deployment, IEEE Journal

on Selected Areas in Communications 22 (2003), no. 1, 41–53.

[12] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker, Application-

level multicast using content-addressable networks, Lecture Notes in Computer

Science 2233 (2001), 14–34.

[13] R. Baldoni, R. Beraldi, L. Querzoni, V. Quema, and S. T. Piergiovanni. A scalable

P2P architecture for topic-based event dissemination. MIDLAB Tech. Rep. 01-07,

Dipartimento di Informatica e Sistemistica, Sapienza, University of Rome, Rome,

Italy, Jan. 2007.

[14] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. T. Piergiovanni, TERA:

Topic-based Event Routing for Peer-to-Peer Architectures, 1
st
 International

Conference on Distributed Event-Based Systems (DEBS). ACM, 6 2007.

CSMR - COMPUTER SCIENCE MASTER RESEARCH, VOL. 1, NO. 1 (2010)

[15] Java Agent DEvelopment Framework (JADE). http://jade.tilab.com/. Available at

June 27, 2010.

[16] PeerSim Peer-to-Peer Simulator. http://peersim.sourceforge.net/. Available at June

27, 2010.

[17] Mark Jelasity and Alberto Montresor, Epidemic-style proactive aggregation in

large overlay networks, Proceedings of The 24th International Conference on

Distributed Computing Systems (ICDCS), 2004, pp. 102–109.

[18] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers, Decentralized

schemes for size estimation in large and dynamic groups, Proceedings of the 4th

IEEE International Symposium Network Computing and Applications (NCA),

2005.

[19] Hyacinth S. Nwana, Software Agents, an Introduction, Knowledge Engineering

Review, Vol. 11, No 3, pp.1-40, Sept 1996

[20] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa, Developing multi-agent

systems with Jade, Lecture Notes in Computer Science, vol 1986/2001 (2001), pp.

42-47

[21] Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org/. Available

at June 27, 2010.

