
Generated with YaHPConverter. Page 1 of 20

© 2006 Quentin Anciaux

[edit]

XPCOM:Strings

From MDC

Contents
[hide]

1 Preface

2 Introduction

3 String Guidelines

4 The Abstract Classes

4.1 Read-only strings

4.2 As function parameters

5 The Concrete Classes - which classes to use when

6 Iterators

7 Helper Classes and Functions

7.1 Searching strings - looking for substrings, characters, etc.

7.2 Memory Allocation - how to avoid it, which methods to use

7.3 Substrings (string fragments)

8 Unicode Conversion ns*CString vs. ns*String

8.1 UTF-8 / UTF-16 conversion

8.2 Lossy Conversion

8.2.1 UTF-16 to ASCII converters

8.2.2 ASCII to UTF-16 converters

9 Common Patterns

9.1 Callee-allocated Parameters

9.2 Literal Strings

9.3 String Concatenation

9.4 Local variables

9.5 Member variables

9.6 Raw Character Pointers

9.7 printf and a UTF-16 string

10 IDL

10.1 IDL String types

10.2 C++ Signatures

10.3 Choosing a string type

11 Appendix A - What class to use when

12 Appendix B - nsAString Reference

Preface

by Alec Flett

Generated with YaHPConverter. Page 2 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

Thanks to David Baron for actual docs ,

Peter Annema for lots of direction,

Myk Melez for some more docs, and

David Bradley for a diagram

Revised by Darin Fisher for Mozilla 1.7

Revised by Jungshik Shin to clarify character encoding issues

This guide will attempt to document the plethora of string classes, and hopefully provide an

answer to the age old question, "what string class should I use here?"

If you are a Mozilla embedder or if you are writing an XPCOM component that will be

distributed separately from the Mozilla code base, then this string guide is most likely not for

you! Provided you are developing against Mozilla 1.7 or later, you should instead be using

the new minimal Mozilla string API and in particular the nsEmbedString class.

In a hurry? Go check out the String Quick-Reference ([1]).

Introduction

The string classes are a library of C++ classes which are used to manage buffers of

unicode and single-byte character strings. They reside in the mozilla codebase in the

xpcom/string directory.

Abstract (interface) classes begin with "nsA" and concrete classes simply begin with "ns".

Classes with a "CString" in the name store 8-bit bytes (char's) which may refer to single byte

ASCII strings, or multibyte Unicode strings encoded in UTF-8 or a (multibyte or single byte)

legacy character encoding (e.g. ISO-8859-1, Shift_JIS, GB2312, KOI8-R). All other classes simply

have "String" in their name and refer to 16-bit strings made up of PRUnichar's, For example:

nsAString is an abstract class for storing Unicode characters in UTF-16 encoding, and

nsDependentCString is a concrete class which stores a 8-bit string. Every 16-bit string class has

an equivalent 8-bit string class. For example: nsCString is the 8-bit string class which

corresponds to nsString.

8-bit and 16-bit string classes have completely separate base classes, but share the same APIs.

As a result, you cannot assign a 8-bit string to a 16-bit string without some kind of conversion

helper class or routine. For the purpose of this document, we will refer to the 16-bit string

classes in class documentation. It is safe to assume that every 16-bit class has an equivalent

8-bit class.

String Guidelines

Follow these simple rules in your code to keep your fellow developers, reviewers, and

users happy.

Avoid *WithConversion functions at all costs: AssignWithConversion,

AppendWithConversion, EqualsWithConversion, etc

Use the most abstract string class that you can. Usually this is:

Generated with YaHPConverter. Page 3 of 20

© 2006 Quentin Anciaux

[edit]

nsAString for function parameters

nsString for member variables

nsAutoString or nsXPIDLString for local (stack-based) variables

Use NS_LITERAL_[C]STRING / NS_NAMED_LITERAL_[C]STRING to represent literal strings (i.e.

"foo") as nsAString-compatible objects.

Use string concatenation (i.e. the "+" operator) when combining strings.

Use nsDependentString when you have a raw character pointer that you need to convert

to an nsAString-compatible string.

Use Substring() to extract fragments of existing strings.

Use iterators to parse and extract string fragments.

The Abstract Classes

Every string class derives from nsAString (or nsACString). This class provides the

fundamental interface for access and manipulation of strings. While concrete classes derive

from nsAString, nsAString itself cannot be instantiated.

This is very similar to the idea of an "interface" that mozilla uses to describe abstract object

descriptions in the rest of the codebase. In the case of interfaces, class names begin with "nsI"

where "I" refers to "Interface". In the case of strings, abstract classes begin with "nsA" and the

"A" means "Abstract".

There are a number of abstract classes which derive from nsAString. These abstract subclasses

also cannot be instantiated, but they describe a string in slightly more detail than nsAString.

They guarantee that the underlying implementation behind the abstract class provides specific

capabilities above and beyond nsAString.

The list below describes the main base classes. Once you are familiar with them, see the

appendix describing What Class to Use When.

nsAString: the abstract base class for all strings. It provides an API for assignment,

individual character access, basic manipulation of characters in the string, and string

comparison. This class corresponds to the XPIDL AString parameter type.

nsSubstring: the common base class for all of the string classes. Provides optimized

access to data within the string. A nsSubstring is not necessarily null-terminated. (For

backwards compatibility, nsASingleFragmentString is a typedef for this string class.)

nsString: builds on nsSubstring by guaranteeing a null-terminated storage. This allows

for a method (.get()) to access the underlying character buffer. (For backwards

compatibility, nsAFlatString is a typedef for this string class.)

The remainder of the string classes inherit from either nsSubstring or nsString. Thus, every

string class is compatible with nsAString.

It's important to note that nsSubstring and nsAString both represent a contiguous array of

characters that are not necessarily null-terminated. One might ask then ask why two different

yet similar string classes need to exist. Well, nsSubstring exists primarily as an optimization

since nsAString must retain binary compatibility with the frozen nsAString class that shipped

with Mozilla 1.0. Up until the release of Mozilla 1.7, nsAString was capable of representing a

Generated with YaHPConverter. Page 4 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

string broken into multiple fragments. The cost associated with supporting multi-fragment

strings was high and offered limited benefits. It was decided to eliminate support for

multi-fragment strings in an effort to reduce the complexity of the string classes and improve

performance. See bug 231995 for more details.

Though nsSubstring provides a more efficient interface to its underlying buffer than nsAString,

nsAString is still the most commonly used class for parameter passing. This is because it is the

string class corresponding to AString in XPIDL. Therefore, this string guide will continue to

discuss the string classes with an emphasis on nsAString.

Since every string derives from nsAString (or nsACString), they all share a simple API. Common

read-only methods:

.Length() - the number of code units (bytes for 8-bit string classes and PRUnichar's for

16-bit string classes) in the string.

.IsEmpty() - the fastest way of determining if the string has any value. Use this instead of

testing string.Length == 0

.Equals(string) - TRUE if the given string has the same value as the current string.

Common methods that modify the string:

.Assign(string) - Assigns a new value to the string.

.Append(string) - Appends a value to the string.

.Insert(string, position) - Inserts the given string before the code unit at position.

.Truncate(length) - shortens the string to the given length.

Complete documentation can be found in the Appendix.

Read-only strings

The const attribute on a string determines if the string is writable. If a string is defined as

a const nsAString then the data in the string cannot be manipulated. If one tries to call a

non-const method on a const string the compiler will flag this as an error at build time.

For example:

This should not compile, because you're assigning to a const class:

As function parameters

void nsFoo::ReverseCharacters(nsAString& str) {
 ...
 str.Assign(reversedStr); // modifies the string
}

void nsFoo::ReverseCharacters(const nsAString& str) {
 ...
 str.Assign(reversedStr);
}

Generated with YaHPConverter. Page 5 of 20

© 2006 Quentin Anciaux

[edit]

It is recommended that you use the most abstract interface possible as a function parameter,

instead of using concrete classes. The convention is to use C++ references (the '&' character)

instead of pointers (the '*' character) when passing string references around. For example:

The abstract classes are also sometimes used to store temporary references to objects. You

can see both of these uses in Common Patterns, below.

The Concrete Classes - which classes to use when

The concrete classes are for use in code that actually needs to store string data. The

most common uses of the concrete classes are as local variables, and members in classes or

structs. Whereas the abstract classes differ in storage mechansim, for the most part the

concrete classes differ in storage policy.

The following is a list of the most common concrete classes. Once you are familiar with them,

see the appendix describing What Class to Use When.

nsString / nsCString- a null-terminated string whose buffer is allocated on the heap.

Destroys its buffer when the string object goes away.

nsAutoString / nsCAutoString- derived from nsString, a string which owns a 64 code unit

buffer in the same storage space as the string itself. If a string less than 64 code units is

assigned to an nsAutoString, then no extra storage will be allocated. For larger strings, a

new buffer is allocated on the heap.

nsXPIDLString / nsXPIDLCString- derived from nsString, this class supports the

getter_Copies() operator which allows easy access to XPIDL out wstring / string

parameters. This class also supports the notion of a null-valued buffer, whereas

nsString's buffer is never null.

nsDependentString- derived from nsString, this string does not own its buffer. It is useful

for converting a raw string (const PRUnichar* or const char*) into a class of type

nsAString.

nsPrintfCString- derived from nsCString, this string behaves like an nsCAutoString. The

constructor takes parameters which allows it to construct a 8-bit string from a

printf-style format string and parameter list.

NS_LITERAL_STRING/NS_NAMED_LITERAL_STRING- these convert a literal string (such as "abc")

to a nsString or a subclass of nsString. On platforms supporting double-byte string

literals (e.g., MSVC++ or GCC with the -fshort-wchar option), these are simply macros

around the nsDependentString class. They are slightly faster than just wrapping them with

an nsDependentString because they use the compiler to calculate their length, and they

also hide the messy cross-platform details of non-byte literal strings.

// abstract reference
nsFoo::PrintString(const nsAString& str) {..}

// using a concrete class!
nsFoo::PrintString(const nsString& str) {..}

// using a pointer!
nsFoo::PrintString(const nsAString* str) {..}

Generated with YaHPConverter. Page 6 of 20

© 2006 Quentin Anciaux

[edit]

There are also a number of concrete classes that are created as a side-effect of helper

routines, etc. You should avoid direct use of these classes. Let the string library create the

class for you.

nsSubstringTuple - created via string concatenation

nsDependentSubstring - created through Substring

nsPromiseFlatString - created through PromiseFlatString()

Of course, there are times when it is necessary to reference these string classes in your code,

but as a general rule they should be avoided.

Iterators

Iterators are objects that retain a reference to a position in a string. In some ways they

are like a number which refers to an index in an array, or a character-pointer that refers to a

position in a character string. They also provide a syntactic means to distinguish between

reading and writing to a string.

Iterators are most often used to extract substrings of a string. They provide the capability to

modify the contents of a string, but often helper routines, or the string's own methods are

quicker at complex string transformations.

Iterators are declared from the string class which they are iterating:

Iterators are initialized with one of 4 methods on the string you wish to reference:

You can access the code unit that an iterator points to with the dereference operator *.

Note in the above examples, that 'end' and 'substr_end' will actually point to the code unit past

the end of the string, so you should never dereference the direct result of .EndReading().

You can test if two iterators point to the same position with == or !=. You can advance

iterators with ++. Putting the ++ before your iterator is preferred, and will prevent creation of

a temporary iterator.

nsAString::const_iterator start, end; // reading-only iterators for nsAString
nsString::iterator substr_start, substr_end; // writing iterators for nsString

// let's read from 'str'
str.BeginReading(start); // initialize 'start' to the beginning of 'str'
str.EndReading(end); // 'end' will be at the end of the string

// say we also want to write to 'url'
url.BeginWriting(substr_start);
url.EndWriting(substr_end);

if (*start == '[')
 printf("Starts with a bracket\n");

Generated with YaHPConverter. Page 7 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

[edit]

You can effectively write to a string with writing iterators (as opposed to const-iterators):

With the patch for bug 231995 , this loop is now as efficient as iterating with raw character

pointers.

Helper Classes and Functions

Searching strings - looking for substrings, characters, etc.

FindInReadable() is the replacement for the old string.Find(..). The syntax is:

To use this, start and end should point to the beginning and end of a string that you would like

to search. If the search string is found, start and end will be adjusted to point to the beginning

and end of the found pattern. The return value is PR_TRUE or PR_FALSE, indicating whether or

not the string was found.

An example:

Memory Allocation - how to avoid it, which methods to use

The preferred method to allocate a new character buffer (PRUnichar*/char*) from an

existing string is with one of the following methods:

while (start != end) // iterate through the whole string
 ++start;

// change all * to !
while (substr_start != substr_end) {
 if (*substr_start == '*')
 *substr_start = '!';
 ++substr_start;
}

PRBool FindInReadable(const nsAString& pattern,
 nsAString::const_iterator start, nsAString::const_iterator end,
 nsStringComparator& aComparator = nsDefaultStringComparator());

const nsAString& str = GetSomeString();
nsAString::const_iterator start, end;

str.BeginReading(start);
str.EndReading(end);

NS_NAMED_LITERAL_STRING(valuePrefix, "value=");

if (FindInReadable(valuePrefix, start, end)) {
 // end now points to the character after the pattern
 valueStart = end;

}

Generated with YaHPConverter. Page 8 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

PRUnichar* ToNewUnicode(nsAString&) - Allocates a PRUnichar*buffer from an nsAString.

char *ToNewCString(nsACString&) - Allocates a char*buffer from an nsACString. Note that

this method will also work on nsAStrings, but it will do an implicit lossy conversion. This

function should only be used if the input is known to be strictly ASCII. Often a conversion

to UTF-8 is more appropriate. See ToNewUTF8String below.

char* ToNewUTF8String(nsAString&) - Allocates a new char* buffer containing the UTF-8

encoded version of the given nsAString. See Unicode Conversion for more details.

These methods return a buffer allocated using XPCOM's allocator (nsMemory::Alloc) instead of

the traditional allocator (malloc, etc.). You should use nsMemory::Free to deallocate the result

when you no longer need it.

Substrings (string fragments)

It is very simple to refer to a substring of an existing string without actually allocating

new space and copying the characters into that substring. Substring() is the preferred method

to create a reference to such a string.

Unicode Conversion ns*CString vs. ns*String

Strings can be stored in two basic formats: 8-bit code unit (byte/char) strings, or 16-bit

code unit (PRUnichar) strings. Any string class with a capital "C" in the classname contains 8-bit

bytes. These classes include nsCString, nsDependentCString, and so forth. Any string class

without the "C" contains 16-bit code units.

A 8-bit string can be in one of many character encodings while a 16-bit string is always in

UTF-16. The most common encodings are:

ASCII - 8-bit encoding for basic English-only strings. Each ASCII value is stored in exactly

one byte in the array.

UCS2 - 16-bit encoding for a subset of Unicode, BMP . The Unicode value of a

character stored in UCS2 is stored in exactly one 16-bit PRUnichar in a string class.

UTF-8 - 8-bit encoding for Unicode characters. Each Unicode characters is stored in up

to 4 bytes in a string class. UTF-8 is capable of representing the entire Unicode character

repertoire, and it efficiently maps to UTF-32 .

UTF-16 - 16-bit encoding for Unicode storage, backwards compatible with UCS2. The

Unicode value of a character stored in UTF-16 may require one or two 16-bit PRUnichars

in a string class. The contents of nsAString always has to be regarded as in this encoding

instead of UCS2. UTF-16 is capable of representing the entire Unicode character

repertoire, and it efficiently maps to UTF-32. (Win32 W APIs and Mac OS X natively use

UTF-16.)

void ProcessString(const nsAString& str) {
 const nsAString& firstFive = Substring(str, 0, 5);
 // firstFive is now a string representing the first 5 characters
}

Generated with YaHPConverter. Page 9 of 20

© 2006 Quentin Anciaux

In addition, there are literally hundreds of encodings that are provided by internationalization

libraries. Access to these libraries may be part of the application (such as

nsICharsetConversionManager in Mozilla) or built into the operating system (such as iconv() in

UNIX operating systems and MultiByteToWideChar/WideCharToMultiByte on Windows).

When working with existing code, it is important to examine the current usage of the strings

that you are manipulating, to determine the correct conversion mechanism.

When writing new code, it can be confusing to know which storage class and encoding is the

most appropriate. There is no single answer to this question, but there are a few important

guidelines:

Is the string always ASCII? First and foremost, you need to determine what kinds of

values will be stored in the string. If the strings are always internal, ASCII strings such as

"left", "true", "background" and so forth, then straight C-strings are probably the way to

go.

If the string is ASCII, will it be compared to, assigned to, or otherwise interact

with non-ASCII strings? When assigning or comparing an 8-bit ASCII value (in)to a

16-bit UCS2 string, an "inflation" needs to happen at runtime. If your strings are small

enough (say, less than 64 bytes) then it may make sense to store your string in a 16-bit

unicode class as well, to avoid the extra conversion. The tradeoff is that your ASCII string

takes up twice as much space as a 16-bit Unicode string than it would as an 8-bit string.

Is the string usually ASCII, but needs to support unicode? If your string is most

often ASCII but needs to be able to store Unicode characters, then UTF-8 may be the

right encoding. ASCII characters will still be stored in 8-bit storage but other Unicode

characters will take up 2 to 4 bytes. However if the string ever needs to be compared or

assigned to a 16-bit string, a runtime conversion will be necessary.

Are you storing large strings of non-ASCII data? Up until this point, UTF-8 might

seem like the ideal encoding. The drawback is that for most non-European characters

(such as Chinese, Indian and Japanese) in BMP, UTF-8 takes 50% more space than

UTF-16. For characters in plane 1 and above, both UTF-8 and UTF-16 take 4 bytes.

Do you need to manipulate the contents of a Unicode string? One problem with

encoding Unicode characters in UTF-8 or other 8-bit storage formats is that the actual

Unicode character can span multiple bytes in a string. In most encodings, the actual

number of bytes varies from character to character. When you need to iterate over each

character, you must take the encoding into account. This is vastly simplified when

iterating 16-bit strings because each 16-bit code unit (PRUnichar) corresponds to a

Unicode character as long as all characters are in BMP, which is often the case. However,

you have to keep in mind that a single Unicode character in plane 1 and beyond is

represented in two 16-bit code units in 16-bit strings so that the number of PRUnichar's is

not always equal to the number of Unicode characters. For the same reason, the position

and the index in terms of 16-bit code units are not always the same as the position and

the index in terms of Unicode characters.

To assist with ASCII, UTF-8, and UTF-16 conversions, there are some helper methods and

classes. Some of these classes look like functions, because they are most often used as

temporary objects on the stack.

Generated with YaHPConverter. Page 10 of 20

© 2006 Quentin Anciaux

[edit]
UTF-8 / UTF-16 conversion

NS_ConvertUTF8toUTF16(const nsACString&) - a nsAutoString subclass that converts a

UTF-8 encoded nsACString or const char* to a 16-bit UTF-16 string. If you need a const

PRUnichar* buffer, you can use the .get() method. For example:

NS_ConvertUTF16toUTF8(const nsAString&) - a nsCAutoString which converts a 16-bit UTF-16

string (nsAString) to a UTF-8 encoded string. As above, you can use .get() to access a const

char* buffer.

CopyUTF8toUTF16(const nsACString&, nsAString&) - converts and copies:

AppendUTF8toUTF16(const nsACString&, nsAString&) - converts and appends:

UTF8ToNewUnicode(const nsACString&, PRUint32* aUTF16Count = nsnull) - allocates and

converts (the optional parameter will contain the number of 16-byte units upon return, if

non-null):

CopyUTF16toUTF8(const nsAString&, nsACString&) - converts and copies:

/* signature: void HandleUnicodeString(const nsAString& str); */
object->HandleUnicodeString(NS_ConvertUTF8toUTF16(utf8String));

/* signature: void HandleUnicodeBuffer(const PRUnichar* str); */
object->HandleUnicodeBuffer(NS_ConvertUTF8toUTF16(utf8String).get());

/* signature: void HandleUTF8String(const nsACString& str); */
object->HandleUTF8String(NS_ConvertUTF16toUTF8(utf16String));

/* signature: void HandleUTF8Buffer(const char* str); */
object->HandleUTF8Buffer(NS_ConvertUTF16toUTF8(utf16String).get());

// return a UTF-16 value
void Foo::GetUnicodeValue(nsAString& result) {
 CopyUTF8toUTF16(mLocalUTF8Value, result);
 }

// return a UTF-16 value
void Foo::GetUnicodeValue(nsAString& result) {
 result.AssignLiteral("prefix:");
 AppendUTF8toUTF16(mLocalUTF8Value, result);
}

void Foo::GetUTF16Value(PRUnichar** result) {
 *result = UTF8ToNewUnicode(mLocalUTF8Value);
}

Generated with YaHPConverter. Page 11 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

[edit]

AppendUTF16toUTF8(const nsAString&, nsACString&) - converts and appends:

ToNewUTF8String(const nsAString&) - allocates and converts:

Lossy Conversion

The following should only be used when you can guarantee that the original string is

ASCII. These helpers are very similar to the UTF-8 / UTF-16 conversion helpers above.

UTF-16 to ASCII converters

These converters are very dangerous because they lose information during the

conversion process. You should avoid UTF-16 to ASCII conversions unless your strings are

guaranteed to be ASCII. Each 16-bit code unit in 16-bit string is simply cast to an 8-bit byte,

which means all Unicode character values above 0xFF are converted to an arbitrary 8-bit byte.

NS_LossyConvertUTF16toASCII(nsAString) - a nsCAutoString which holds a temporary

buffer containing the deflated value of the string.

LossyCopyUTF16toASCII(nsAString, nsACString) - does an in-place conversion from

UTF-16 into an ASCII string object.

LossyAppendUTF16toASCII(nsAString, nsACString) - appends an UTF-16 string to an ASCII

string, losing non-ASCII values.

ToNewCString(nsAString) - allocates a new char* string.

ASCII to UTF-16 converters

These converters are very dangerous because they will mangle any non-ASCII

string into a meaningless UTF-16 string. You should avoid ASCII to UTF-16 conversions

unless your strings are guaranteed to be ASCII. For instance, if you have an 8-bit string

encoded in a multibyte character encoding, each byte of the string will be "inflated" to a 16-bit

number by simple casting.

For example, imagine a UTF-8 string where the first Unicode character of the string is

// return a UTF-8 value
void Foo::GetUTF8Value(nsACString& result) {
 CopyUTF16toUTF8(mLocalUTF16Value, result);
}

// return a UTF-8 value
void Foo::GetUnicodeValue(nsACString& result) {
 result.AssignLiteral("prefix:");
 AppendUTF16toUTF8(mLocalUTF16Value, result);
}

void Foo::GetUTF8Value(char** result) {
 *result = ToNewUTF8String(mLocalUTF16Value);
}

Generated with YaHPConverter. Page 12 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

represented with a 3-byte UTF-8 sequence, the "inflated" UTF-16 string will contain the 3

PRUnichar's instead of the single PRUnichar that represents the first character. These

PRUnichar's have nothing to do with the first Unicode character in the UTF-8 string.

NS_ConvertASCIItoUTF16(nsACString) - a nsAutoString which holds a temporary buffer

containing the inflated value of the string.

CopyASCIItoUTF16(nsACString, nsAString) - does an in-place conversion from one string

into a Unicode string object.

AppendASCIItoUTF16(nsACString, nsAString) - appends an ASCII string to a Unicode

string.

ToNewUnicode(nsACString) - Creates a new PRUnichar* string which contains the inflated

value.

Common Patterns

Callee-allocated Parameters

Many APIs result in a method allocating a buffer in order to return strings to its caller.

This can be tricky because the caller has to remember to free the string when they have

finished using it. Fortunately, the nsXPIDLString class makes this very easy.

A method may look like this:

Without the string classes, the caller would need to free the string:

With nsXPIDLString you never have to worry about this. You can just use getter_Copies() to

wrap the string class, and the class will remember to free the buffer when it goes out of scope:

void GetValue(PRUnichar** aValue)
{
 *aValue = ToNewUnicode(foo);
}

{
 PRUnichar* val;
 GetValue(&val);

 if (someCondition) {
 // don't forget to free the value!
 nsMemory::Free(val);
 return NS_ERROR_FAILURE;
 }

 ...
 // and later, still don't forget to free!
 nsMemory::Free(val);
}

Generated with YaHPConverter. Page 13 of 20

© 2006 Quentin Anciaux

[edit]

The resulting code is much simpler, and easy to read.

Literal Strings

A literal string is a raw string value that is written in some C++ code. For example, in the

statement printf("Hello World\n"); the value "Hello World\n" is a literal string. It is often

necessary to insert literal string values when an nsAString or nsACString is required. These four

macros will provide you with the necessary conversion:

NS_LITERAL_CSTRING(literal string) - a temporary nsCString

NS_NAMED_LITERAL_CSTRING(variable,literal string) - declares a nsCString variable

named variable

NS_LITERAL_STRING(literal string) - a temporary nsString with the unicode version of

literal string

NS_NAMED_LITERAL_STRING(variable,literal string) - declares a nsString variable named

variable with the unicode version of literal string

The purpose of the CSTRING versions of these macros may seem unnecessary, given that

nsDependentCString will also wrap a string value in an nsCString. The advantage to these

macros is that the length of these strings is calculated at compile time, so the string does not

need to be scanned at runtime to determine its length.

The STRING versions of these macros provide a portable way of declaring UTF-16 versions of the

given literal string, avoiding runtime conversion on platforms which support literal UTF-16

strings (e.g., MSVC++ and GCC with the -fshort-wchar option).

Here are some examples of proper NS_LITERAL_[C]STRING usage.

{
 nsXPIDLString val;
 GetValue(getter_Copies(val));

 // val will free itself here
 if (someCondition)
 return NS_ERROR_FAILURE;
 ...
 // and later, still nothing to free
}

// call Init(const PRUnichar*)
Init(L"start value"); // bad - L"..." is not portable!
Init(NS_ConvertASCIItoUTF16("start value").get()); // bad - runtime ASCII->UTF-16 conversion!

// call Init(const nsAString&)
Init(nsDependentString(L"start value")); // bad - not portable!
Init(NS_ConvertASCIItoUTF16("start value")); // bad - runtime ASCII->UTF-16 conversion!

// call Init(const nsACString&)
Init(nsDependentCString("start value")); // bad - length determined at runtime

Generated with YaHPConverter. Page 14 of 20

© 2006 Quentin Anciaux

[edit]

There are a few details which can be useful in tracking down issues with these macros:

NS_LITERAL_STRING does compile-time conversion to UTF-16 on some platforms (e.g. Windows,

Linux, and Mac) but does runtime conversion on other platforms. By using NS_LITERAL_STRING

your code is guaranteed to use the best possible conversion for the platform in question.

Because some platforms do runtime conversion, the use of literal string concatenation inside a

NS_LITERAL_STRING/NS_NAMED_LITERAL_STRING macro will compile on these platforms, but not on

platforms which support compile-time conversion.

For example:

The reason for this is that on some platforms, the L"..." syntax is used, but it is only applied to

the first string in the concatenation ("start "). When the compiler attempts to concatenate this

with the non-Unicode string "value" it gets confused.

String Concatenation

Strings can be concatenated together using the + operator. The resulting string is a

const nsSubstringTuple object. The resulting object can be treated and referenced similarly to

a nsAString object. Concatenation does not copy the substrings. The strings are only copied

when the concatenation is assigned into another string object. The nsSubstringTuple object

holds pointers to the original strings. Therefore, the nsSubstringTuple object is dependent on

all of its substrings, meaning that their lifetime must be at least as long as the

nsSubstringTuple object.

For example, you can use the value of two strings and pass their concatenation on to another

function which takes an const nsAString&:

NOTE: The two strings are implicitly combined into a temporary nsString in this case, and the

temporary string is passed into HandleString. If HandleString assigns its input into another

nsString, then the string buffer will be shared in this case negating the cost of the intermediate

temporary. You can concatenate N strings and store the result in a temporary variable:

// call Init(const PRUnichar*)
Init(NS_LITERAL_STRING("start value").get());

// call Init(const nsAString&)
Init(NS_LITERAL_STRING("start value"));

// call Init(const nsACString&)
Init(NS_LITERAL_CSTRING("start value"));

// call Init(nsAString&)
Init(NS_LITERAL_STRING("start "
 "value")); // only compiles on some platforms

void HandleTwoStrings(const nsAString& one, const nsAString& two) {
 // call HandleString(const nsAString&)
 HandleString(one + two);
}

Generated with YaHPConverter. Page 15 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

If you are using NS_LITERAL_STRING to create a temporary that is only used once, then it is safe

to define it inside a concatenation because the string buffer will live as long as the temporary

concatenation object (of type nsSubstringTuple).

Local variables

Local variables within a function are usually stored on the stack. The

nsAutoString/nsCAutoString classes are derivatives of the nsString/nsCString classes. They

own a 64-character buffer allocated in the same storage space as the string itself. If the

nsAutoString is allocated on the stack, then it has at its disposal a 64-character stack buffer.

This allows the implementation to avoid allocating extra memory when dealing with small

strings.

Member variables

In general, you should use the concrete classes nsString and nsCString for member

variables.

Note that the strings are declared directly in the class, not as pointers to strings. Don't do this:

NS_NAMED_LITERAL_STRING(start, "start ");
NS_NAMED_LITERAL_STRING(middle, "middle ");
NS_NAMED_LITERAL_STRING(end, "end");
// create a string with 3 dependent fragments - no copying involved!
nsString combinedString = start + middle + end;

// call void HandleString(const nsAString&);
HandleString(combinedString);

// call HandlePage(const nsAString&);
// safe because the concatenated-string will live as long as its substrings
HandlePage(NS_LITERAL_STRING("start ") + NS_LITERAL_STRING("end"));

...
nsAutoString value;
GetValue(value); // if the result is less than 64 code units,
 // then this just saved us an allocation
...

class Foo {
 ...
 // these store UTF-8 and UTF-16 values respectively
 nsCString mLocalName;
 nsString mTitle;
};

Generated with YaHPConverter. Page 16 of 20

© 2006 Quentin Anciaux

[edit]

The above code may appear to save the cost of the string objects, but nsString/nsCString are

small objects - the overhead of the allocation outweighs the few bytes you'd save by keeping a

pointer.

Another common incorrect pattern is to use nsAutoString/nsCAutoString for member variables.

As described in Local Variables, these classes have a built in buffer that make them very large.

This means that if you include them in a class, they bloat the class by 64 bytes (nsCAutoString)

or 128 bytes (nsAutoString).

An example:

Raw Character Pointers

PromiseFlatString() can be used to create a temporary buffer which holds a

null-terminated buffer containing the same value as the source string. PromiseFlatString() will

create a temporary buffer if necessary. This is most often used in order to pass an nsAString to

an API which requires a null-terminated string.

In the following example, an nsAString is combined with a literal string, and the result is passed

to an API which requires a simple character buffer.

PromiseFlatString() is smart when handed a string that is already null-terminated. It avoids

creating the temporary buffer in such cases.

class Foo {
public:
 Foo() {
 mLocalName = new nsCString();
 mTitle = new nsString();
 }
 ~Foo() { delete mLocalName; delete mTitle; }

private:
 // these store UTF-8 and UTF-16 values respectively
 nsCString* mLocalName;
 nsString* mTitle;
};

class Foo {
 ...

 // bloats 'Foo' by 128 bytes!
 nsAutoString mLocalName;
};

// Modify the URL and pass to AddPage(const PRUnichar* url)
void AddModifiedPage(const nsAString& url) {
 NS_NAMED_LITERAL_STRING(httpPrefix, "http://");
 const nsAString& modifiedURL = httpPrefix + url;

 // creates a temporary buffer
 AddPage(PromiseFlatString(modifiedURL).get());
}

Generated with YaHPConverter. Page 17 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

[edit]

printf and a UTF-16 string

For debugging, it's useful to printf a UTF-16 string (nsString, nsAutoString,

nsXPIDLString, etc). To do this usually requires converting it to an 8-bit string, because that's

what printf expects. However, on Windows, the following should work:

(Note: I didn't test this. Also, I'm not sure what exactly this does to non-ASCII characters,

especially when they are outside the system codepage). The reason that this doesn't work on

Unix is because a wchar_t, which is what %S expects, is usually 4 bytes there (even when

Mozilla is compiled with -fshort-wchar, because this would require libc to be compiled with

-fshort-wchar).

If non-ASCII characters aren't important, use:

On platforms that use UTF-8 for console output (most Linux distributions), this works:

IDL

The string library is also available through IDL. By declaring attributes and methods using

the specially defined IDL types, string classes are used as parameters to the corresponding

methods.

IDL String types

The C++ signatures follow the abstract-type convention described above, such that all

method parameters are based on the abstract classes. The following table describes the

purpose of each string type in IDL.

IDL type C++ Type Purpose

// Modify the URL and pass to AddPage(const PRUnichar* url)
void AddModifiedPage(const nsAString& url, PRBool addPrefix) {
 if (addPrefix) {
 // MUST create a temporary buffer - string is multi-fragmented
 NS_NAMED_LITERAL_STRING(httpPrefix, "http://");
 AddPage(PromiseFlatString(httpPrefix + modifiedURL));
 } else {
 // MIGHT create a temporary buffer, does a runtime check
 AddPage(PromiseFlatString(url).get());
 }
}

printf("%S\n", yourString.get());

printf("%s\n", NS_LossyConvertUTF16toASCII(yourString.get()));

printf("%s\n", NS_ConvertUTF16toUTF8(yourString.get()));

Generated with YaHPConverter. Page 18 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

string char* Raw character pointer to ASCII (7-bit) string, no string classes used.

High bit is not guaranteed across XPConnect boundaries

wstring PRUnichar* Raw character pointer to UTF-16 string, no string classes used

AString nsAString UTF-16 string

ACString nsACString 8-bit string, all bits are preserved across XPConnect boundaries

AUTF8String nsACString UTF-8 string - converted to UTF-16 as necessary when value is used

across XPConnect boundaries

DOMString nsAString UTF-16 string used in the DOM. More or less the same as AString,

but in JavaScript it has no distinction between whether the string is

void or just empty. (not sure on this, looking for corrections.

C++ Signatures

In IDL, in parameters are read-only, and the C++ signatures for *String parameters

follows the above guidelines by using const nsAString& for these parameters. out and inout

parameters are defined simply as nsAString so that the callee can write to them.

IDL C++

In the above example, utf16String is treated as a UTF-16 string. The implementation of

GetUtf16String() will use aResult.Assign to "return" the value. In SetUtf16String() the value of

the string can be used through a variety of methods including Iterators, PromiseFlatString, and

assignment to other strings.

In GetValue(), the first parameter, aKey, is treated as a raw sequence of 8-bit values. Any

non-ASCII characters in aKey will be preserved when crossing XPConnect boundaries. The

implementation of GetValue() will assign a UTF-8 encoded 8-bit string into aResult. If the this

method is called across XPConnect boundaries, such as from a script, then the result will be

decoded from UTF-8 into UTF-16 and used as a Unicode value.

Choosing a string type

It can be difficult to determine the correct string type to use for IDL. The following points

should help determine the appropriate string type.

interface nsIFoo : nsISupports {

 attribute AString utf16String;

 AUTF8String getValue(in ACString key);

};

class nsIFoo : public nsISupports {

 NS_IMETHOD GetUtf16String(nsAString&
 aResult) = 0;
 NS_IMETHOD SetUtf16String(const nsAString&
 aValue) = 0;

 NS_IMETHOD GetValue(const nsACString& aKey,
 nsACString& aResult) = 0;
};

Generated with YaHPConverter. Page 19 of 20

© 2006 Quentin Anciaux

[edit]

[edit]

Using string classes may avoid new memory allocation for out parameters. For example,

if the caller is using an nsAutoString to receive the value for an out parameter, (defined

in C++ as simply nsAString& then assignment of short (less than 64-characters) values to

an out parameter will only copy the value into the nsAutoString's buffer. Moreover, using

the string classes allows for sharing of string buffers. In many cases, assigning from one

string object to another avoids copying in favor of simply incrementing a reference count.

in strings using string classes often have their length pre-calculated. This can be a

performance win.

In cases where a raw-character buffer is required, string and wstring provide faster

access than PromiseFlatString.

UTF-8 strings defined with AUTF8String may need to be decoded when crossing

XPConnect boundaries. This can be a performance hit. On the other hand, UTF-8 strings

take up less space for strings that are commonly ASCII.

UTF-16 strings defined with wstring or AString are fast when the unicode value is

required. However, if the value is more often ASCII, then half of the storage space of the

underlying string may be wasted.

Appendix A - What class to use when

This table provides a quick reference for what classes you should be using.

Context class Notes

Local Variables nsAutoString

nsCAutoString

Class Member

Variables

nsString

nsCString

Method Parameter

types

nsAString

nsACString

Use abstract classes for parameters. Use const

nsAString& for "in" parameters and nsAString& for

"out" parameters.

Retrieving "out"

string/wstrings

nsXPIDLString

nsXPIDLCString

Use getter_Copies(). Similar to nsString /

nsCString.

Wrapping character

buffers

nsDependentString

nsDependentCString

Wrap const char* / const PRUnichar* buffers.

Literal strings NS_LITERAL_STRING

NS_LITERAL_CSTRING

Similar to nsDependent[C]String, but pre-calculates

length at build time.

Appendix B - nsAString Reference

Read-only methods.

Length()

IsEmpty()

Generated with YaHPConverter. Page 20 of 20

© 2006 Quentin Anciaux

IsVoid() - XPConnect will convert void nsAStrings to JavaScript null.

BeginReading(iterator)

EndReading(iterator)

Equals(string[, comparator])

First()

Last()

CountChar()

Left(outstring, length)

Mid(outstring, position, length)

Right(outstring, length)

FindChar(character)

Methods that modify the string.

Assign(string)

Append(string)

Insert(string)

Cut(start, length)

Replace(start, length, string)

Truncate(length)

SetIsVoid(state) - XPConnect will convert void nsAStrings to JavaScript null.

BeginWriting(iterator)

EndWriting(iterator)

SetCapacity()

Retrieved from "http://developer.mozilla.org/en/docs/XPCOM:Strings "

