|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectorg.opentox.util.libSVM.svm_train
public class svm_train
Training of SVM classification and regression models.
Important: The original source code belongs to LibSVM
Reference: Chih-Chung Chang and Chih-Jen Lin,
LIBSVM: a library for support vector machines, 2001,
Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm
Copyright:
Copyright (c) 2000-2009 Chih-Chung Chang and Chih-Jen Lin All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither name of copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Field Summary | |
---|---|
private int |
cross_validation
|
private java.lang.String |
error_msg
|
private java.lang.String |
input_file_name
|
private libsvm.svm_model |
model
|
private java.lang.String |
model_file_name
|
private int |
nr_fold
|
private libsvm.svm_parameter |
param
|
private libsvm.svm_problem |
prob
|
private static long |
serialVersionUID
|
Constructor Summary | |
---|---|
svm_train()
|
Method Summary | |
---|---|
private static double |
atof(java.lang.String s)
|
private static int |
atoi(java.lang.String s)
|
private void |
do_cross_validation()
|
private static void |
exit_with_help()
|
static void |
main(java.lang.String[] argv)
Usage: svm_train [options] training_set_file [model_file]" options: -s svm_type : set type of SVM (default 0) 0 -- C-SVC 1 -- nu-SVC 2 -- one-class SVM 3 -- epsilon-SVR 4 -- nu-SVR -t kernel_type : set type of kernel function (default 2) 0 -- linear: u'*v 1 -- polynomial: (gamma*u'*v + coef0)^degree 2 -- radial basis function: exp(-gamma*|u-v|^2) 3 -- sigmoid: tanh(gamma*u'*v + coef0) 4 -- precomputed kernel (kernel values in training_set_file) -d degree : set degree in kernel function (default 3) -g gamma : set gamma in kernel function (default 1/k) -r coef0 : set coef0 in kernel function (default 0) -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" -m cachesize : set cache memory size in MB (default 100) -e epsilon : set tolerance of termination criterion (default 0.001) -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) -v n : n-fold cross validation mode -q : quiet mode (no outputs) |
private void |
parse_command_line(java.lang.String[] argv)
|
private void |
read_problem()
|
private void |
run(java.lang.String[] argv)
|
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
private static final long serialVersionUID
private libsvm.svm_parameter param
private libsvm.svm_problem prob
private libsvm.svm_model model
private java.lang.String input_file_name
private java.lang.String model_file_name
private java.lang.String error_msg
private int cross_validation
private int nr_fold
Constructor Detail |
---|
public svm_train()
Method Detail |
---|
private static void exit_with_help()
private void do_cross_validation()
private void run(java.lang.String[] argv) throws java.io.IOException
java.io.IOException
public static void main(java.lang.String[] argv) throws java.io.IOException
argv
-
java.io.IOException
private static double atof(java.lang.String s)
private static int atoi(java.lang.String s)
private void parse_command_line(java.lang.String[] argv)
private void read_problem() throws java.io.IOException
java.io.IOException
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |