
Page 1

Architecture of BVD

Purpose of this Document
Server-side

Models
src/pull/models.py

Views - Helper Functions and Data Processing
src/pull/views.py
src/jenkins/jenkins.py

Client-side
The Page
Widget Rendering

src/pull/static/js/widget.js - (Widget.*)
src/pull/static/js/render.js - (Widget.render.*)

src/pull/static/js/utils.js - (BVD.utils.*)
Window Logic

src/pull/static/js/modals.js
src/pull/static/js/jobs.js
src/pull/static/js/edit_readonly_display.js

Other Utilities
src/pull/static/js/bvd.js
src/pull/static/js/utils.js
src/pull/static/js/data.js

Javascript/jQuery Libraries
Communications
Useful Links

Rally
SSL
Freetile (used to arrange widgets and products)

Purpose of this Document
This document serves as documentation of the architecture of BVD so that future developers have a reference for the structure of the code aside
from the code itself. It contains three subjects: a description server-side code which executes entirely on the server, a description of client-side
code, and a chart of the client-server exchange of data over HTTP.

Server-side

Models

src/pull/models.py

CiServer - Represents a known Jenkins server
hostname - the hostname of the Jenkins server

UserCiJob - Represents an individual Jenkins job/widget
user - foreign key for the user which owns the widget
ci_server - foreign key for the CiServer the job is located on
jobname - the name of the job on the Jenkins server
status - the status of the job

Deprecated - this is now stored in memory cache
displayname - the name of the widget that's displayed on BVD
icon - the image that is displayed when the job's status is 'SUCCESS'
readonly - the readonly status of the widget

Deprecated - there's really no reason for this to be in the database
entity_active - the 'active' state of the widget.
appletv - whether the widget is displayed to readonly users
appletv_active - whether the widget is active when displayed to readonly users

used to hide the widget to readonly users but not remove it from the list of widgets in the Edit Public TV window
Product - Represents a group of widgets

productname - the name of the product
jobs - a many-to-many field to store the list of jobs associated with the product

Page 2

show_rally - whether to show a rally chart for this product
rally_release_name - a substring of the Rally Release which can be displayed for the product

Each model has a corresponding Form found in . Forms are used to load and save rows in the database/instances of the modelsrc/pull/forms.py
and to validate user input. Additional documentation on Forms can be found here.

Views - Helper Functions and Data Processing

Functions which return an HTTP Response are not listed here. They can be found in the Communications section.

src/pull/views.py

Function Name Arguments Purpose

append_http hostname Should really be named "prepend_http" or
"append_to_http" because it prepends the
http protocol to the hostname argument if it
does not exist and returns the result.

widget_to_dictionary widget Returns a Python dict() of a job/widget
instance. Should really be used anywhere
jobs are loaded to be sent to the client, but in
practice is only used in
pull_jobs_for_product() and save_widget().
Consider refactoring to simplify the structure
of BVD's data processing code.

get_jobs_for_readonly only_active=True Returns a data structure of products and jobs
viewable by readonly users/Apple TV/the
public BVD displays. Also used to load the
widget list for the 'Edit Public TV Display'
window, hence the argument which allows
non-active widgets to be loaded as well.

get_jobs_for_user user Returns a data structure of products and jobs
belonging to the user.

get_rally_release_oid release_name, workspace, username,
password

Returns the Rally ObjectID of the most
recent 'active' release with the substring
release_name with the workspace and
credentials given.

src/jenkins/jenkins.py

These functions are methods of the class. The hostname and jobname are given to the constructor of a object. ThereRetrieveJob RetrieveJob
isn't really a good reason for it to be structured like this as far as I can tell.

Function Name Arguments Purpose

_parse_jenkins_timestamp timestamp (and optional auth header values) Parses the timestamp returned from Jenkins'
JSON api and returns a python datetime
object

_get_time_diff time Returns a human-readable difference in time
between the given timestamp and the
present time

lookup_hostname optional auth header values Determines if the given hostname is
accessible by BVD

https://docs.djangoproject.com/en/dev/topics/forms/

Page 3

1.

2.

3.

lookup_job optional auth header values Determines if the given job can be found and
returns the status of the job

lookup_last_successful_build optional auth header values Looks up the last successful build of the
given job and returns data on the timestamp

Client-side
Though BVD is ostensibly a "Python-on-Django" web app, the majority of the project is implemented in Javascript because the client-side
interface is really the entire point of BVD and where most of the work to make the actual display is done. As a result, and perhaps partially
because of the fact that HTML, Javascript, and the DOM weren't really designed for the task of dynamic, responsive user applications, it's
somewhat hard to untangle the pure client-side code with the code that communicates with the server and to categorize the resulting code further.

I've done my best to use a number of architectural ideas in BVD's client-side code:

The whole point of the server is to manage data, so don't try to do anything the server's already done. Therefore, instead of updating the
client-side data, throw it out and load it from the server again.
Load data through AJAX and JSON and create DOM objects based on that instead of templating. This way you at least have a reference
to the object in javascript when you create it instead of trying to hunt for it through jQuery selectors.
Where possible, use an HTML <form> to send data to the server. make this really easy.Django's Forms

There are a couple places where these rules were broken, either in code I inherited and never was able to update or where it simplified the code
to break the rule. The latter case specifically applies to the Edit Public TV window where the user's widgets are loaded via template, half-breaking
rule 2 (because the template is loaded via AJAX).

The Page

When the page is loaded, BVD initializes itself by creating a timer-based callback to keep the page updated. This is done with inline javascript in
the template and the class in index.html Poll src/pull/static/js/bvd.js

Widget Rendering

This section describes the client-side code which handles the rendering of widgets on the screen.

src/pull/static/js/widget.js - (Widget.*)

Function Arguments Purpose

init hostname, jobname, displayname, status, id,
counter, readonly, background_img,
timeSinceLastSuccess, product

Constructor, creates the widget and menu
and sends it to Widget.render.add_widget()

make_icon Internal function called by constructor, builds
the menu for the widget.

set_status status Internal function, calls one of make_success,
make_error, make_unstable, or make_down
to set the widget status

New widget objects are created by BVD.utils.draw_widgets()

src/pull/static/js/render.js - (Widget.render.*)

These functions are used for rendering and manipulation of individual widgets on the screen.

Function Arguments Purpose

https://docs.djangoproject.com/en/dev/topics/forms/

Page 4

add_widget widget, product, readonly Displays the widget, called by the Widget
constructor. If product is undefined it renders
the widget directly to the page, otherwise
adds it to a product.

add_product productname, readonly Called by add_widget if the product <div>
doesn't exist yet. Readonly determines
whether the product's menu is displayed or
not.

refresh_grid animate Sets the size of the widgets with
BVD.utils.set_size_of_widgets() and calls the
freetile jQuery library to lay out the widgets.

remove_widget widget Removes the widget from the display

resize widget, width, height Resizes the widget. Called by
BVD.utils.set_size_of_widgets()

src/pull/static/js/utils.js - (BVD.utils.*)

These functions are used for rendering and manipulation of all the widgets on the screen.

Function Arguments Purpose

remove_old_widgets Removes all the widgets from the screen.
Used by Poll.ajax() to refresh the screen.

set_size_of_widgets count Determines the optimum size of widgets
based on the number of widgets.

draw_widgets data Loops over the data and creates the widgets.

Window Logic

This section describes the client-side code which handles the rendering and UI logic of the popup windows ("modals") used to interact with BVD.

src/pull/static/js/modals.js

Function Arguments Purpose

BVD.modal_factory url, id, opts Used to create the windows (modals) by
rendering the template with jQuery UI.

The rest of this file creates the buttons and button callbacks for index.html

src/pull/static/js/jobs.js

Function Arguments Purpose

BVD.jobs.add_job txt_map The function to create the Add Job modal.

There isn't really a reason for this to be in its own file. Consider refactoring.

src/pull/static/js/edit_readonly_display.js

This file contains some of the logic for the Edit Public TV window. The prefix naming conventions for these is: (erd -> edit readonly display), (erdd
-> edit readonly display, public display widgets), and (erdu -> edit readonly display, user widgets).

Page 5

Function Arguments Purpose

erd_display_line pk, displayname, appletv_active,
productname

Renders a list element to the list of public
display widgets.

erd_display_product productname, erd_line Creates a <div> for a new product to group
widgets in the public display together.

change_erdd_line_active pk, appletv_active Toggles the transparent style of list elements
in the list of public display widgets.

update_erdd Updates the list of public display widgets in
the Edit Public TV window.

Other Utilities

This section describes any other code which can't be categorized into the other two groups.

src/pull/static/js/bvd.js

Function Arguments Purpose

Poll.ajax url Pulls the list of widgets from the server and
uses it to refresh the display.

src/pull/static/js/utils.js

Function Arguments Purpose

BVD.utils.do_ajax type, url, data, success, error Provides a simplified interface for jQuery's
$.ajax() function.

src/pull/static/js/data.js

Function Arguments Purpose

BVD.data.get_url url, querystring Gets a url for an action. Probably can be
factored out.

Javascript/jQuery Libraries

Library Purpose

jquery.fastLiveFilter.js Used to filter jobs in the Add and Edit Product windows.

jquery.freetile.js Used to lay out products and widgets into a grid.

jquery.slides.js Used to slide between the job status page and the Rally
ReleaseCumulativeFlowDiagram page.

Communications
Server-side response functions, unless otherwise prefixed, exist within the namespace bvd.pull.views.*

Page 6

Client-Side
Request Source

Method Server-Side
Response Function

Data Sent Data Received Purpose

poll.ajax('/pull/pull_jo
bs/')

GET pull_jobs a data structure of
jobs

To pull the list of
jobs for a user

poll.ajax('/pull/pull_a
pple_tv_jobs/')

GET pull_apple_tv_jobs a data structure of
jobs

To pull the list of
jobs for readonly
users

BVD.modal_factory() GET get_modal template (the name
of a template)

html (the content of
the "modal")

To load the content
of a window/modal

update_erdd() GET pull_all_display_jobs a data structure of
jobs

Loads the list of
public display jobs
for the Edit Public
TV window.

view_product.html -
update()

GET pull_jobs_for_produc
t

 a data structure of
jobs

Loads the list of jobs
for a specific
product.

add_job.html,
edit_job.html

POST validate_hostname hostname,
username

HTTP status Validates that a
Jenkins hostname is
valid

login.html POST validate_username username HTTP status Validates that a BVD
username is valid.

add_job.html,
edit_job.html

POST validate_job hostname, jobname HTTP status Validates that a
Jenkins job and
hostname is valid.

add_job.html POST add_job <form> data HTTPResponseRedi
rect('/')

Creates a new job.

'Remove Widget'
menu option

POST remove_job job id (primary key) HTTP status Deletes a job.

 POST autocomplete_hostn
ame

partial hostname list of possible
hostnames

Deprecated no
longer used by Add
Product window

login.html POST login username, password HTTP status Logs in to BVD.

Logout button POST logout HTTP status Logs out of BVD.

edit_job.html, POST save_widget <form> data HTTPResponseRedi
rect('/')

Edits an existing job.

add_product.html POST add_product <form> data HTTPResponseRedi
rect('/')

Adds a new product.

edit_product.html POST save_product <form> data HTTPResponseRedi
rect('/')

Edits an existing
product.

'Remove Product'
menu option

POST remove_product productname HTTPResponseRedi
rect('/')

Deletes a product.

'Edit Image' menu
option

POST edit_widget_image widget_id, image file pull_jobs() Uploads an image
for the job.

Page 7

/appletv=1,
view_rally.html

GET pull_rally_for_applet
v

 a data structure of
Rally Release
ObjectIDs

Pulls the list of Rally
Release ObjectIDs
for
publicly-accessible
products.

view_rally.html GET pull_rally a data structure of
Rally Release
ObjectIDs

Pulls the list of Rally
Release ObjectIDs
for a user's products.

Useful Links
Future developers of BVD might find these links useful:

Rally

https://help.rallydev.com/loginkey
https://help.rallydev.com/apps-outside-rally
https://rally1.rallydev.com/slm/doc/webservice/objectModel.sp

SSL

http://stackoverflow.com/questions/8023126/how-can-i-test-https-connections-with-django-as-easily-as-i-can-non-https-connec
http://www.akadia.com/services/ssh_test_certificate.html

Freetile (used to arrange widgets and products)

http://yconst.com/web/freetile/

https://help.rallydev.com/loginkey
https://help.rallydev.com/apps-outside-rally
https://rally1.rallydev.com/slm/doc/webservice/objectModel.sp
http://stackoverflow.com/questions/8023126/how-can-i-test-https-connections-with-django-as-easily-as-i-can-non-https-connec
http://www.akadia.com/services/ssh_test_certificate.html
http://yconst.com/web/freetile/

	Architecture of BVD

