
Cocos2d-HTML5: Virtual Controls

Overlay

Sample usage showing two Joysticks and one Button.

Introduction

There are a lot of games that web developers design

games that would be suited for the mobile

is the difference in control mechanics on a desktop (mouse and keyboard) compared to that in the

mobile-space. In this case, we will be focussing on all

Provided in this document is the ControlsOverlay.js framework that is intended to simplify the process

for Cocos2d-HTML5 developers in bringing their desktop

PlayBook. This framework is distributed by Research

Occasionally, you may see references to Cocos2d

these will be designated with an appended

Class in the Cocos2d-HTML5 framework. More information on these Classes can be found in the

Cocos2d-HTML5 documentation.

HTML5: Virtual Controls

Sample usage showing two Joysticks and one Button.

There are a lot of games that web developers design with the desktop-space in mind; c

d be suited for the mobile-space as well. One of the largest hurdles that regularly

is the difference in control mechanics on a desktop (mouse and keyboard) compared to that in the

space. In this case, we will be focussing on all-touch mobile devices like the BlackBerry Pla

ControlsOverlay.js framework that is intended to simplify the process

HTML5 developers in bringing their desktop-focussed application to the BlackBerry

This framework is distributed by Research In Motion under the Apache License version 2.0.

Occasionally, you may see references to Cocos2d-HTML5 specific components such as Points or Rects,

these will be designated with an appended cc identifier. For example, cc.Rect refers to the rectangle

HTML5 framework. More information on these Classes can be found in the

HTML5: Virtual Controls

creative, enjoyable

. One of the largest hurdles that regularly arise

is the difference in control mechanics on a desktop (mouse and keyboard) compared to that in the

touch mobile devices like the BlackBerry PlayBook.

ControlsOverlay.js framework that is intended to simplify the process

focussed application to the BlackBerry

In Motion under the Apache License version 2.0.

HTML5 specific components such as Points or Rects,

refers to the rectangle

HTML5 framework. More information on these Classes can be found in the

What Does the Framework Provide
With ControlsOverlay.js, developers can

their application. The Joysticks provide information for a full 360 degree range of motion, but also

enable more classic 4 or 8-axis systems.

Joysticks can be either fixed (i.e. always appear in o

Touch areas can be assigned to each

but can also be used to increase the region a fixed control will be triggered in.

Default visual effects have been added to both Joysticks and Buttons and can be adjusted by configuring

the minimum and maximum opacities of each individual control.

Joystick Example

The following creates a fixed Joystick that is positioned on the bottom

control is always visible, but will only fad

this.controls.addJoystick({
 imageBase: './Resources/controls_overlay/dpad.png'

 imagePad: './Resources/controls_overlay/pad.png'
 fixed: true,
 pos: new cc.Point(ccCanvas.width
 opacLow: 80.0
});

A side-by-side comparison of this Joystick not being interacted with, and being interacted with, can be

seen below.

Required Arguments

• imageBase: A string path to the image file

the Joystick.

• imagePad: A string path to the image file

pad. The pad will follow the user’s finger as they move it around the Joystick.

• fixed: A boolean variable indicating whether the control should remain in place, or reposition

itself to the touch point, on a

Optional Arguments

What Does the Framework Provide
With ControlsOverlay.js, developers can implement any number of Joystick and Button controls into

their application. The Joysticks provide information for a full 360 degree range of motion, but also

axis systems.

Joysticks can be either fixed (i.e. always appear in one place) or non-fixed (will re-position on touch.)

Touch areas can be assigned to each control as well, as a means to set regions for non-

but can also be used to increase the region a fixed control will be triggered in.

fects have been added to both Joysticks and Buttons and can be adjusted by configuring

the minimum and maximum opacities of each individual control.

The following creates a fixed Joystick that is positioned on the bottom-right corner of th

control is always visible, but will only fade to full opacity when touched.

'./Resources/controls_overlay/dpad.png',

'./Resources/controls_overlay/pad.png',

width - 100.0, 100.0),

side comparison of this Joystick not being interacted with, and being interacted with, can be

path to the image file (PNG, IPG, BMP) that you want to use for the base of

path to the image file (PNG, JPG, BMP) that you want to use for the Joystick

pad. The pad will follow the user’s finger as they move it around the Joystick.

riable indicating whether the control should remain in place, or reposition

itself to the touch point, on a touchstart.

implement any number of Joystick and Button controls into

their application. The Joysticks provide information for a full 360 degree range of motion, but also

position on touch.)

-fixed Joysticks,

fects have been added to both Joysticks and Buttons and can be adjusted by configuring

right corner of the canvas. The

side comparison of this Joystick not being interacted with, and being interacted with, can be

that you want to use for the base of

that you want to use for the Joystick

riable indicating whether the control should remain in place, or reposition

• pos: A cc.Point that denotes the position of the control. Primarily for use with fixed controls, or

non-fixed controls that start visible (i.e. non

cc.Point(0, 0). The position is relative to the center of the Joystick.

• trigger: A cc.Rect that identifies the screen region where a

this control. By default, this value is set to the dimensions of the actual control via

cc.Sprite.getBoundingBox.

• opacLow: A number between 0 and 255 to denote the minimum (or fade out) opacity of this

control. By default, this is set to 255.

• opacHigh: A number between 0 and 255 to denote the maximum (or fade in) opacity of this

control. By default, this is set to 255.

Button Example

The following creates a Button that is positioned in the top

always visible but semi-transparent when not being interacted with.

this.controls.addButton({
 image: './Resources/controls_overlay/buttonred.png'
 pos: new cc.Point(ccCanvas.width
 opacLow: 80.0
});

A side-by-side comparison of this Button

seen below.

Required Arguments

• image: A string path to the image

• pos: A cc.Point that denotes the position of the control. This valu

0).

Optional Arguments

• trigger: A cc.Rect that identifies the screen region where a

this control. By default, this value is set to the dimensions of the actual control via

cc.Sprite.getBoundingBox.

• opacLow: A number between 0 and 255 to denote the minimum (or fade out) opacity of this

control. By default, this is set to 255.

that denotes the position of the control. Primarily for use with fixed controls, or

ls that start visible (i.e. non-zero opacLow.) This value defaults to

The position is relative to the center of the Joystick.

that identifies the screen region where a touchstart event will be triggered for

ol. By default, this value is set to the dimensions of the actual control via

between 0 and 255 to denote the minimum (or fade out) opacity of this

control. By default, this is set to 255.

een 0 and 255 to denote the maximum (or fade in) opacity of this

control. By default, this is set to 255.

The following creates a Button that is positioned in the top-right corner of the screen. The control is

rent when not being interacted with.

'./Resources/controls_overlay/buttonred.png',
width - 54.0, ccCanvas.height - 54.0),

side comparison of this Button not being interacted with, and being interacted with, can be

path to the image (PNG, JPG, BMP) file that you want to use for the Button.

that denotes the position of the control. This value defaults to new cc.

that identifies the screen region where a touchstart event will be triggered for

this control. By default, this value is set to the dimensions of the actual control via

between 0 and 255 to denote the minimum (or fade out) opacity of this

control. By default, this is set to 255.

that denotes the position of the control. Primarily for use with fixed controls, or

zero opacLow.) This value defaults to new

event will be triggered for

ol. By default, this value is set to the dimensions of the actual control via

between 0 and 255 to denote the minimum (or fade out) opacity of this

een 0 and 255 to denote the maximum (or fade in) opacity of this

right corner of the screen. The control is

not being interacted with, and being interacted with, can be

file that you want to use for the Button.

new cc.Point(0,

event will be triggered for

this control. By default, this value is set to the dimensions of the actual control via

between 0 and 255 to denote the minimum (or fade out) opacity of this

• opacHigh: A number between 0 and 255 to denote the maximum (or fade in) opacity of this

control. By default, this is set to 255.

ControlsOverlay.js
The full source for this framework and working sample can be found attached.

As mentioned, the intent is to provide Cocos2d-HTML5 developers with as simple of a solution as

possible to integrate with their already existing applications.

As such, let’s look at a sample Cocos2d-HTML5 Layer that would leverage this framework. Here, we will

create two Joystick controls and one Button control. The first will be triggered anywhere on the left-

hand side of the screen and will move the Button around the screen. The second Joystick will change the

color of the Button depending on the direction the Joystick is moved (north = green, east = blue, south =

yellow, and west = red.) Finally, when the Button is clicked, it will change the cc.LayerColor background

to the colour of the Button.

First, we’ll set a few global definitions and then extend cc.LayerColorr as our primary layer.

/*global window, document, console, cc, ccCanvas, ControlsOverlay */

var CocosApp = cc.LayerColor.extend({

Next, we’ll create a placeholder variable for the ControlsOverlay object we will instantiate.

 controls: null, /* Will be used to instantiate a ControlsOverlay Node. */

Following this, we’ll define our init function for our layer; we will subsequently instantiate and integrate

our ControlsOverlay object here.

 init: function () {
 'use strict';
 var layer, movement, button, colour;

Next, we’ll initialize our layer with a gray background and keep a reference via layer.

 /* Our Layer. */
 this._super();
 this.initWithColor(new cc.Color4B(50, 50, 50, 255));
 layer = this;

Now we get to the ControlsOverlay object. First thing we need to do is instantiate our controls object.

 /* Create a new ControlsOverlay object. */
 this.controls = new ControlsOverlay({
 canvas: ccCanvas

 });

You can see here that we are passing ccCanvas. The <canvas> element that we pass in will be the

element that gets the touch events assigned to it. In most cases, this will be your primary <canvas>

element that you define for Cocos2d-HTML5 in your index.html file.

Now that we have a controls object, let’s add the movement Joystick.

 /* Add a Joystick. We will use this to move the button around the screen. */
 movement = this.controls.addJoystick({
 imageBase: './Resources/controls_overlay/dpad.png',
 imagePad: './Resources/controls_overlay/pad.png',
 fixed: false,
 trigger: new cc.Rect(0, 0, ccCanvas.width / 2.0, ccCanvas.height),
 opacLow: 0.0
 });

You can see that all we’re really doing is making a call to ControlsOverlay.addJoystick and supplying

various arguments. This call returns an instance to the Joystick which we will use to implement the

movement functionality shortly.

In the sample code above, we are creating a Joystick that will position itself at the user’s touch point

(fixed: false), and will fade in/out between 0 (none) and 255 (full) opacity. Since the Joystick can freely

float, we’ve also increased the trigger rectangle to be anywhere on the left-side of the screen.

Next, we’ll add the colour Joystick.

 /* Add a Joystick. We will use this to change the colour of the button. */
 colour = this.controls.addJoystick({
 imageBase: './Resources/controls_overlay/dpad.png',
 imagePad: './Resources/controls_overlay/pad.png',
 fixed: true,
 pos: new cc.Point(ccCanvas.width - 100.0, 100.0),
 opacLow: 80.0
 });

Unlike the movement Joystick, the colour Joystick will not move (fixed: true) and will always be visible

with a minimum opacity of 80.0. Since we have not set a trigger rectangle, it will default to the

dimensions of the control itself.

Finally, we add a Button with the same approach.

 /* Add a Button. We add it last so that it is rendered on top of other controls. */
 button = this.controls.addButton({
 image: './Resources/controls_overlay/buttonred.png',
 pos: new cc.Point(ccCanvas.width - 54.0, ccCanvas.height - 54.0),
 opacLow: 80.0
 });

Similar to above, we are now calling ControlsOverlay.addButton and supplying our arguments. We’re

capturing the returned object in button which will be leveraged for additional functionality. First, we

implement our button movement.

 /* Update the Button's position based on the movement Joystick. We'll schedule an update every
frame. */
 button.update = function (dt) {
 var position;

 /* Calculate the time since last frame to normalize movement speed (at 60 fps we expect 0.017

seconds per frame), and multiply by an arbitrary scaling factor. */
 dt = dt / 0.017 * 0.15;

 /* Get the current position of the Button. */
 position = this.getPosition();

 /* Update our position based on the velocity of the movement Joystick. We'll keep a 54.0 pixel
border that the button can not cross. */
 position.x = Math.max(54.0, Math.min(position.x + movement.velocity.x * dt, ccCanvas.width -
54.0));
 position.y = Math.max(54.0, Math.min(position.y + movement.velocity.y * dt, ccCanvas.height -
54.0));

 /* Update our Button's position and trigger area. */
 button.setPosition(position);
 button.trigger = button.getBoundingBox();
 };

 /* Start updating our Button's position every frame. */
 button.scheduleUpdate();

Once we schedule the update function, it will be called every frame. Each frame we will calculate the

time that has passed and leverage movement.velocity to get how much the Joystick is being pushed in

the x and y directions. Based on these values, we update the position of the Button.

Next, we implement the functionality for when the Button is tapped.

 /* When the Button is tapped, we'll change the background colour. */
 button.color = new cc.Color4B(120, 0, 0, 255);
 button.onTouchEnd = function (touch, point) {

 if (cc.Rect.CCRectContainsPoint(this.trigger, point)) {
 layer.setColor(this.color);
 }
 };

We default a custom color property of the button to red to match the default Sprite image. When the

touch ends, we ensure that the touch point is inside the actual control (i.e. the user hasn’t moved their

finger outside of the control after initiating a touch.) If we have a valid tap, we update the colour of our

layer.

Next we’ll implement the colour Joystick that actually updates the button’s image and color property.

 /* Our colour Joystick will update the image used for the Button. To minimize work, we'll keep
track of the previous Joystick direction. */
 colour.prevDirection = -1;
 colour.onTouchMove = function () {
 /* If this Joystick's direction has changed since our previous direction... */
 if (this.prevDirection !== this.direction) {

 /* ...update to the new direction. */
 this.prevDirection = this.direction;

 /* We are ignoring diagonals, and only updating with a 4-axis system. We could easily add
the omitted directions though. */
 if (this.direction === 0) {
 /* When this Joystick is positioned West, we will have a red Button. */

button.setTexture(cc.TextureCache.getInstance().textureForKey('./Resources/controls_overlay/buttonred.png'
));
 button.color = new cc.Color4B(120, 0, 0, 255);
 } else if (this.direction === 2) {
 /* When this Joystick is positioned North, we will have a green Button. */

button.setTexture(cc.TextureCache.getInstance().textureForKey('./Resources/controls_overlay/buttongreen.pn
g'));
 button.color = new cc.Color4B(0, 120, 0, 255);

 } else if (this.direction === 4) {
 /* When this Joystick is positioned East, we will have a blue Button. */

button.setTexture(cc.TextureCache.getInstance().textureForKey('./Resources/controls_overlay/buttonblue.png
'));
 button.color = new cc.Color4B(0, 0, 120, 255);
 } else if (this.direction === 6) {
 /* When this Joystick is positioned South, we will have a yellow Button. */

button.setTexture(cc.TextureCache.getInstance().textureForKey('./Resources/controls_overlay/buttonyellow.p
ng'));
 button.color = new cc.Color4B(120, 120, 0, 255);
 }
 }
 };

First, we add a custom prevDirection property to our colour Joystick indicating that we have no previous

direction recorded. We then implement a function to be triggered anytime the touch point associated

with this Joystick moves.

To minimize any performance impacts, we first check to ensure that the direction of this Joystick is

different from the direction in the previous update. We don’t perform any actions if the direction hasn’t

changed.

From there, all we’re doing is checking the direction of the Joystick (0 = west, 2 = north, 4 = east, and 6 =

west.) Based on this direction we update the image of the button and also its color; this color is what

we referenced in our button.onTouchEnd implementation.

To finish off our LayerColor implementation we add our ControlsOverlay object, containing all of our

controls, to our layer.

 /* Add our ControlsOverlay Node to our LayerColor. */
 this.addChild(this.controls);

 return true;
 }
});

