
11/3/13 UTF-8 in JavaScript - monsur.hossa.in

monsur.hossa.in/2012/07/20/utf-8-in-javascript.html 1/5

monsur.hossa.in

projects archives about

UTF-8 in JavaScript
Working with string encodings in JavaScript can
sometimes be frustrating. My latest frustrations came
when working with the atob and btoa browser functions.
These functions convert between a binary string and a
Base64 encoded ASCII string. But they blow up when
faced with Unicode:

> btoa('\u0227');

Error: INVALID_CHARACTER_ERR: DOM Exception 5

The MDN docs on btoa point to the following functions
from Johan Sundström for working with Unicode:

function encode_utf8(s) {

 return unescape(encodeURIComponent(s));

}

function decode_utf8(s) {

 return decodeURIComponent(escape(s));

}

Armed with these functions, btoa gives the expected
result:

> btoa(encode_utf8('\u0227'));

"yKc="

Johan’s functions work, but they feel like a bit of black
magic. So I decided to delve into each part of the
encode_utf8 function to understand why it works.

encodeURIComponent

The encode_utf8 function starts with

http://monsur.hossa.in/
http://feeds.feedburner.com/MonsurHossain
https://github.com/monsur
http://www.rdio.com/#/people/monsur/
http://www.last.fm/user/harrycaul
https://plus.google.com/113897230587820705070/posts?rel=author
http://monsur.tumblr.com/
https://twitter.com/#!/monsur
http://monsur.hossa.in/projects.html
http://monsur.hossa.in/archives.html
http://monsur.hossa.in/about.html
http://monsur.hossa.in/2012/07/20/utf-8-in-javascript.html
https://developer.mozilla.org/en/DOM/window.btoa#Unicode_Strings
http://ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html

11/3/13 UTF-8 in JavaScript - monsur.hossa.in

monsur.hossa.in/2012/07/20/utf-8-in-javascript.html 2/5

encodeURIComponent. encodeURIComponent is
defined in the latest ECMAScript spec:

The encodeURIComponent function computes a new
version of a URI in which each instance of certain
characters is replaced by one, two, three, or four escape
sequences representing the UTF-8 encoding of the
character.

What struck me right off the bat is that
encodeURIComponent is tied to UTF-8. Its not like
similar functions other languages where the encoding can
be specified as a function argument. This is fine if you
want to work with UTF-8, but not if you want to work with
other encodings (although there are ways to manage
fixed-length encodings using ArrayBuffers).

Here’s an example of using encodeURIComponent on
the Unicode character U+0227 (ȧ, LATIN SMALL LETTER
A WITH DOT ABOVE):

> encodeURIComponent('\u0227');

"%C8%A7"

The result is a percent-encoded string of each byte of the
UTF-8 representation of the character. Looking at the
documentation for Unicode character U+0227, we can
verify that the UTF-8 representation in hex is indeed 0xC8
0xA7.

The ECMAScript definition is vague; it states that
encodeURIComponent replaces "certain characters",
without defining what those characters are. But a quick
hack shows that any character over 0x7E is encoded, so I
think it's safe to say that any non-ASCII character will be
encoded by encodeURIComponent. Since percent-
encoding only uses the numbers 0-9, letters A-F and the
‘%’ character, the resulting string is guaranteed to be
ASCII.

Now we could stop here. All btoa needs is an ASCII
string, which encodeURIComponent provides:

http://ecma-international.org/ecma-262/5.1/
http://updates.html5rocks.com/2012/06/How-to-convert-ArrayBuffer-to-and-from-String
http://en.wikipedia.org/wiki/Percent-encoding
http://www.fileformat.info/info/unicode/char/227/index.htm
http://monsur.hossa.in/temp/encodeURIComponent.html

11/3/13 UTF-8 in JavaScript - monsur.hossa.in

monsur.hossa.in/2012/07/20/utf-8-in-javascript.html 3/5

> btoa(encodeURIComponent('\u0227'));

"JUM4JUE3"

But there are a few drawbacks to this. The first is that the
resulting string is not the same bytes as the input string. It
is an encoded representation of the original bytes. This
could make things annoying or difficult when
interoperating with other systems.

The second drawback is that encodeURIComponent
produces a larger string. A single Unicode character could
take up to 4 bytes in UTF-8, which would produce a URI-
encoded string of 12 characters. After Base64 encoding
(which makes strings larger), the output string would be
much larger than the input. In order to tame the string
size, Johan turns to the unescape function.

unescape

Unlike encodeURIComponent, the escape/unescape
functions are NOT defined by the latest version of
ECMAScript. According to JavaScript: The Definitive
Guide (6th Edition, page 855):

Although unescape was standardized in the first verison
of ECMAScript, it has been deprecated and removed from
the standard by ECMAScript v3. Implementations of
ECMAScript are likely to implement this function, but they
are not required to.

But seeing as how these functions have been a part of
browsers from almost the beginning, I doubt they will
disappear anytime soon.

The unescape function unescapes a percent-encoded
string. It works with the standard percent-encoding (%XX)
as well as the non-standard Unicode (%uXXXX) percent
encoding. Here’s the result of unescaping the string from
the original example:

> var e = encodeURIComponent('\u0227');

console.log(e);

http://shop.oreilly.com/product/9780596805531.do

11/3/13 UTF-8 in JavaScript - monsur.hossa.in

monsur.hossa.in/2012/07/20/utf-8-in-javascript.html 4/5

"%C8%A7"

> var u = unescape(e); console.log(u);

"È§"

"È§" are the ASCII characters for C8 and A7, respectively:

> u.charCodeAt(0).toString(16);

"c8"

> u.charCodeAt(1).toString(16);

"a7"

Calling unescape is very different from calling
decodeURIComponent. decodeURIComponent
interprets the string with UTF-8, which means it would
combine the two encoded characters back into their
original UTF-8 representation. unescape merely returns
the characters without any interpretation.

The benefits of using unescape is that we now have a
representation of the actual UTF-8 bytes, and it is a
smaller string:

> e.length

6

> u.length

2

The bytes in the new string are the ASCII-representation
of the bytes in the UTF-8 representation of the original
string.

Conclusion

Putting it all together, here are the transformations the
string goes through in encode_utf8:

Original Unicode
string encodeURIComponent unescape

ȧ %C8%A7 È§

Johan’s bit of black magic works because it turns a

11/3/13 UTF-8 in JavaScript - monsur.hossa.in

monsur.hossa.in/2012/07/20/utf-8-in-javascript.html 5/5

Unicode string into an encoded UTF-8 string, and then
returns the ASCII representation of the encoded bytes.
What I love about this method is that it uses the fact that
browser's have multiple encoding functions to its
advantage. Using only the pair of
encodeURIComponent/decodeURIComponent or
escape/unescape would be a no-op; the functions
would cancel each other out and return the original string.
The genius of Johan's method is that it uses the two
different encoding functions in tandem to get what we
need.

Posted on 20 Jul 2012 by Monsur Hossain

http://monsur.hossa.in/2012/07/20/utf-8-in-javascript.html

