
11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 1/10

Webby thoughts, most about around interesting applications of ecmascript in relation to other open web
standards. I live in Mountain View, California, and spend some of my spare time co­maintaining
Greasemonkey together with Anthony Lieuallen.

ecmanaut

2006­07­10

Posted by Johan Sundström at 15:47

Encoding / decoding UTF8 in javascript
From time to time it has somewhat annoyed me that UTF8 (today's most common
Unicode transport encoding, recommended by the IETF) conversion is not readily
available in browser javascript. It really is, though, I realized today:

function encode_utf8(s) {
 return unescape(encodeURIComponent(s));
}

function decode_utf8(s) {
 return decodeURIComponent(escape(s));
}

2012 Update: Monsur Hossain took a moment to explain how and why this works. It's a
good, in­depth post citing all standards in play so you need not bring a wizard's beard to
know why it works. Executive summary: escape and unescape operate solely on
octets, encoding/decoding %XXs only, while encodeURIComponent and
decodeURIComponent encode/decode to/from UTF­8, and in addition encode/decode
%XXs. The hack above combines both tools to cancel out all but the UTF­8
encoding/decoding parts, which happen inside the heavily optimized browser native code,
instead of you pulling the weight in javascript.

Tested and working like a charm in these browsers:

Win32

Firefox 1.5.0.6
Firefox 1.5.0.4
Internet Explorer 6.0.2900.2180

Opera 9.0.8502

MacOS

Camino 2006061318 (1.0.2)
Firefox 1.5.0.4

Safari 2.0.4 (419.3)

Any modern standards compliant browser should handle this code, though, so don't worry
that it's a rather sparse test matrix. But feel free to use my test case: encoding and
decoding the word "räksmörgås". That's incidentally Swedish for a shrimp sandwich, by
the way ­­ very good subject matter indeed.

And if you hand me your platform/browser combination and the its success/failure status
for the tests, I'll try to update the post accordingly.
Categories:

javascript

unicode
utf8
tips

ELSEWHERE

► 2013 (3)

► 2012 (5)

► 2011 (14)

► 2010 (17)

► 2009 (11)

► 2008 (15)

► 2007 (24)

▼ 2006 (72)

► December (3)

► November (3)

► October (3)

► September (2)

► August (4)

▼ July (6)

A peek at Yahoo! UI

Google × Dilbert mashup

Spam fighting phpBB boards

Custom keymaps in windows

Encoding / decoding UTF8 in
javascript

Expressive user scripts with
XPath and E4X

► June (3)

► May (7)

► April (3)

► March (8)

► February (8)

► January (22)

► 2005 (87)

► 2004 (2)

BLOG ARCHIVE

Share 5 More Next Blog» Create Blog Sign In

http://ecmanaut.blogspot.com/
http://ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html
http://ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html
http://www.ietf.org/
http://monsur.hossa.in/
http://monsur.hossa.in/2012/07/20/utf-8-in-javascript.html
javascript:var was='r%C3%A4ksm%C3%B6rg%C3%A5s',want='r%C3%83%C2%A4ksm%C3%83%C2%B6rg%C3%83%C2%A5s',out=unescape(encodeURIComponent(was));void prompt((want==out?'Success':'Failure')+'! UTF8 encoded '+was+' as:',out)
javascript:var was='r%C3%83%C2%A4ksm%C3%83%C2%B6rg%C3%83%C2%A5s',want='r%C3%A4ksm%C3%B6rg%C3%A5s',out=decodeURIComponent(escape(was));void prompt((want==out?'Success':'Failure')+'! UTF8 decoded '+was+' as:',out)
javascript:void prompt('Your platform/browser name and version:',navigator.platform+', '+navigator.userAgent)
http://del.icio.us/ohayou/ecmanaut+javascript
http://del.icio.us/ohayou/ecmanaut+unicode
http://del.icio.us/ohayou/ecmanaut+utf8
http://del.icio.us/ohayou/ecmanaut+tips
https://github.com/johan
https://twitter.com/ecmanaut
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2013-01-01T00:00:00-08:00&updated-max=2014-01-01T00:00:00-08:00&max-results=3
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2012-01-01T00:00:00-08:00&updated-max=2013-01-01T00:00:00-08:00&max-results=5
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2011-01-01T00:00:00-08:00&updated-max=2012-01-01T00:00:00-08:00&max-results=14
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2010-01-01T00:00:00-08:00&updated-max=2011-01-01T00:00:00-08:00&max-results=17
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2009-01-01T00:00:00-08:00&updated-max=2010-01-01T00:00:00-08:00&max-results=11
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2008-01-01T00:00:00-08:00&updated-max=2009-01-01T00:00:00-08:00&max-results=15
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2007-01-01T00:00:00-08:00&updated-max=2008-01-01T00:00:00-08:00&max-results=24
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2006-01-01T00:00:00-08:00&updated-max=2007-01-01T00:00:00-08:00&max-results=50
javascript:void(0)
http://ecmanaut.blogspot.com/2006_12_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_11_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_10_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_09_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_08_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_07_01_archive.html
http://ecmanaut.blogspot.com/2006/07/peek-at-yahoo-ui.html
http://ecmanaut.blogspot.com/2006/07/google-dilbert-mashup.html
http://ecmanaut.blogspot.com/2006/07/spam-fighting-phpbb-boards.html
http://ecmanaut.blogspot.com/2006/07/custom-keymaps-in-windows.html
http://ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html
http://ecmanaut.blogspot.com/2006/07/expressive-user-scripts-with-xpath-and.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_06_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_05_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_04_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_03_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_02_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/2006_01_01_archive.html
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2005-01-01T00:00:00-08:00&updated-max=2006-01-01T00:00:00-08:00&max-results=50
javascript:void(0)
http://ecmanaut.blogspot.com/search?updated-min=2004-01-01T00:00:00-08:00&updated-max=2005-01-01T00:00:00-08:00&max-results=2
http://www.blogger.com/next-blog?navBar=true&blogID=15626356
http://www.blogger.com/home#create
http://www.blogger.com/
http://www.blogger.com/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 2/10

+5 Recommend this on Google

43 comments

Leave a message...

Best Community My Disqus 4 Share

• Reply •

Johan Sundström • 5 years ago
In that case you are doing it wrong;
unescape(encodeURIComponent("€")) === "⧵xE2⧵x82⧵xAC" and
decodeURIComponent(escape("⧵xE2⧵x82⧵xAC")) === "€" both
return true, as they they are supposed to.

 7

• Reply •

Simon • 4 years ago
Still now in 2010, this is the only usable search result on solving this
specific problem. Have nobody else noticed and written about this?

Also an UPDATE: Works in Chrome --
Win32, Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US)
AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.1.249.1045
Safari/532.5

 4

• Reply •

Mathias Bynens • 5 months ago
Just a heads up: this approach doesn’t work for unmatched
surrogate halves, since the `URI` functions throw errors on those. It
works fine for all Unicode symbols except high surrogates (code
points 0xD800 to 0xDBFF) and low surrogates (code points 0xDC00
to 0xDFFF).

 3

• Reply •

Johan Sundström • 5 months agoMod Mathias Bynens
While true, for most purposes that is more of a feature than
an issue. Surrogate pairs being how ecmascript (well, UTF-
16) maps Unicode chars beyond the basic multilingual plane
(code points > 0xFFFF) to double-codepoint pairs (making,
say, "ĉĊċČčĎďĐđĒ".length be 20, not 10), it could even be
argued that not throwing an error while encoding or decoding
half of such a character would be more problematic.

Still, it's a good thing to be aware of. I seem to recall Chrome
or some other modern browser was working on a native real
charset codec functionality as a language or browser object
model feature, but haven't been able to backtrack to read up
on it. I'd be interested in their take, if I didn't just dream it up.
(And link to it from here as a topically relevant alternative.)

• Reply •

Alan Hogan • 2 years ago
If anyone wants to see a bit of proof that this actually is doing
exactly the right thing, and producing a string of bytes equivalent to
a UTF-8 binary string… here’s this
jsFiddle: http://jsfiddle.net/alanhogan/...

 3

14

Share ›

Share ›

Share ›

Share ›

Share ›

http://ecmanaut.blogspot.com/2006/07/&target=email
http://ecmanaut.blogspot.com/2006/07/&target=blog
http://ecmanaut.blogspot.com/2006/07/&target=twitter
http://ecmanaut.blogspot.com/2006/07/&target=facebook
http://jsfiddle.net/alanhogan/h4axf/1/
http://disqus.com/jprichardson/
http://disqus.com/mathiasbynens/
http://disqus.com/ecmanaut/
http://disqus.com/twitter-13801912/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 3/10

• Reply •

Technics • 5 years ago
Hi ,I believe that this method doesn't work for characters like the
EURO symbol €. In Firefox I get Malformed URI sequence error

 3

• Reply •

Johan Sundström • 5 years ago
Same principles as in all programming apply: don't decode UTF-8
that isn't; don't divide by zero, and so on. Just adding a try/catch
will hide errors in input and is inadvisable.

 2

• Reply •

Pekka Klärck • 23 days ago
We recommended this approach for JSXCompressor project [1]
when we noticed their UTF-8 decode method did not work correctly
with characters outside the Unicode BMP [2]. Unfortunately this
solution turned out to be rather slow with bigger strings and
especially IE8 became totally unusable.

Luckily we found a nice UTF-8 decode algorithm implemented with C
[3] and were able to translate it to Javascript. This algorithm is now
used in the latest versions of JXG.Util.UTF8. You may want to
consider using it if performance is important and using an external
library is not an issue.

[1] http://jsxgraph.uni-bayreuth.d...
[2] https://github.com/jsxgraph/js...
[3] http://bjoern.hoehrmann.de/utf...

 1

• Reply •

Paul • 3 years ago
Thanks!

We had been sending UTF-8 data through jQuery which was dealing
with it fine in all browsers, until we switched to running our app in a
Webkit component embedded in a PyQt application. Still sending
UTF-8 from Python but it goes through an implicit "eval()" call, and I
was ending up with Â£ (capital A, circumflex accent, pound sterling
symbol) instead of £ (pound sterling symbol).

Popping the UTF-8 strings through the above has fixed this.

This is the QtWebkit 4.6.2.0

Win32, Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB)
AppleWebKit/532.4 (KHTML, like Gecko) Qt/4.6.2 Safari/532.4

Thanks again
 1

• Reply •

Thomas Frank • 7 years ago
Nifty!

 1

David Zentgraf • 2 years ago
This really needs some clarification on what it actually does. One
cannot simply "encode" or "decode" UTF-8. One can only *convert*
from one encoding to another encoding. "Decode UTF-8" to what?
"Encode UTF-8" from what?

It's a shame that this nonsense page has such a high ranking on
Google for the keywords "Javascript UTF-8". BTW, all strings in

Share ›

Share ›

Share ›

Share ›

Share ›

http://jsxgraph.uni-bayreuth.de/wp/jsxcompressor/
https://github.com/jsxgraph/jsxgraph/issues/50
http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
http://disqus.com/pekkaklrck/
http://disqus.com/openid-31089/
http://disqus.com/davidzentgraf/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 4/10

• Reply •

Google for the keywords "Javascript UTF-8". BTW, all strings in
Javascript are UTF-8 by design, period.

 1 1

Johan Sundström • 2 years agoMod David Zentgraf
Deconfusion time.

These functions decode to and from the javascript's native
character set, which is UCS-2, which can represent the basic
multilingual plane of Unicode (i e the subset of Unicode code
points that fit in 16 bits of storage without special coding).

You can think of a javascript string as "an array of 16-bit
integers with a length property", representing anything you
want (examples: text, html, xml, images, encoded in any of a
zillion encodings, including the UTF family of text encodings,
gzip compression, whatever) but if you pass one to alert or
document.write, their contents are treated as text from the
Unicode basic multilingual plane, or Unicode code points, all
in the range ⧵u0000 to ⧵uFFFF inclusive. If you run
encode_utf8 on that, the output is a range of such characters,
transport encoded as UTF-8 (in other words, each output
octet is in the range ⧵u0001 to ⧵u00FF, and conform to the
UTF-8 encoding). My decode_utf8 function above has its
domain and range reversed, decoding UTF-8 strings to non-
transport-encoded javascript native strings.

All the UTF-* family of encodings are transport encodings of
(all of) Unicode. UTF-* are particularly unsuited as internal
string representations if you ever care for random access of
string contents, or telling string length in number of
characters or code points, as you can't index the n:th
character of an UTF-8 encoded text in O(1) time, since each
code point is represented as one or more bytes (dependent
on its Unicode code point) or words in memory, which would
make an operation such as "öh".length == 2 an O(n)
operation, as "ö" internally would be represented (in UTF-8)
as a two-byte sequence and "h" a single byte. Fortunately,
no javascript engine I am aware of uses it, and as far as I
know, they all use UCS-2, which encodes each character as
its 16-bit Unicode code point (and can't represent any of the
code points outside of the basic multilingual plane; the full
Unicode character set currently uses 21-bit code points).
With UCS-2, measuring string length in number of characters
is simply dividing the in-memory representation's length in
octets by two, without needing to scan its contents with a
counter incremented at the completion of each code point.
(This does not apply for any of the UTF-* encodings.)

What internal method of string storage a javascript
implementation uses is irrelevant as long as it fulfills the
language specification, as long as you can't access and
expose that internal representation in any fashion, so making
claims like "all strings in javascript are UTF-8 by design" just
adds confusion. Even if they were, you wouldn't be able to
benefit from it by passing them to entities expecting UTF-8
input, unless we had a string.rawUTF8 property or similar that
exposed its (internally) encoded representation.

The point of these two functions thus is to produce the
encoded and decoded versions of the UTF-8 transport

Share ›

http://en.wikipedia.org/wiki/UCS-2
http://en.wikipedia.org/wiki/Mapping_of_Unicode_characters#Planes
http://en.wikipedia.org/wiki/UCS-2
http://disqus.com/ecmanaut/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 5/10

• Reply •

encoding, given input that is raw Unicode and UTF-8
encoded Unicode respectively.

 7

• Reply •

Oliver Mannion • 9 months ago
escape and unescape are now deprecated functions - what would
you recommend using instead to do ut8 encoding/decoding?
custom javascript?

• Reply •

Johan Sundström • 9 months agoMod Oliver Mannion
I think you misunderstand what "deprecated" means (and
implies) in the context of the web. Ever since the introduction
of encodeURIComponent and decodeURIComponent,
escape and unescape have effectively been deprecated for
the purposes they were initially intended for: escaping strings
for use in URLs, which they were never very good for, as they
only worked for a subset of the characters javascript strings
can employ.

Browser vendors can't cut backwards compatibility with
them without breaking code out there that uses them, and
probably won't, since the implementation is trivial and small
anyway.

A few years to a decade from now, when presently emerging
standards for javascript charset conversion have matured
and are available in all major browsers you can switch to that,
but for the forseeable future, I recommend sticking with
these.

And if you really worry about browsers cutting back compat,
you can provide your own fallbacks like this before you start
using the utf8 encoder/decoder:

if (typeof escape !== 'function') window.escape = function(s) {
 function q(c) {
 c = c.charCodeAt();
 return '%' + (c<16 ? '0' : '') + c.toString(16).toUpperCase();
 }
 return s.replace(/[\x00-),:-?[-̂ {̀-\xFF]/g, q);
};
if (typeof unescape !== 'function') window.unescape = function(s) {
 function d(x, n) {
 return String.fromCharCode(parseInt(n, 16));
 }
 return s.replace(/%([0-9A-F]{2})/i, d);
};

 1

• Reply •

Marius Dumitru Bughiu • 2 years ago
This removes new lines ⧵r⧵n
Any fix for this?

Johan Sundström
• 2 years ago

Mod Marius Dumitru Bughiu

It doesn't; the context in which you're using it is. Maybe
you're copy/pasting from a form field that doesn't preserve

Share ›

Share ›

Share ›

Share ›

http://disqus.com/google-0b766560fd971e15316c06b429df4af8/
http://disqus.com/ecmanaut/
http://disqus.com/facebook-723601863/
http://disqus.com/ecmanaut/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 6/10

• Reply •

newlines.

To convince yourself, look at http://jsfiddle.net/V6yGL/1/
which doesn't touch the ⧵r⧵n:s.

• Reply •

Daan • 2 years ago
How would I send an URL like http://someurl.com/send?variab... ?
The unescape function would always change the %26 to an
emphasis which cause the ' stuff' part to be cut off, not?

• Reply •

Johan Sundström • 2 years agoMod Daan
No. Your imagined problem would happen if the code read
"return unescape(s)". The beauty of the hack is
that encodeURIComponent(s) converts the % character to
%25, which unescape then converts back to %, leaving it
unchanged, while for all code points in the input string that is
represented differently in UTF-8, encodeURIComponent spits
out two or more %XX sequences, which unescape proceeds
to decode to the same number of raw octets. decode_utf8
does the same, but backwards.

• Reply •

mikr00 • 3 years ago
Thanks very much for this very cool solution. I have one Problem
though: I use your code on a website with an input-text-field whose
value is read via javascript and than handed over to a php site via
post. Your solution works perferct with german umlauts (äöü) but it
does not work with the "ß". Do you have any idea, why this could be
the case.

Thanks a lot!

Michael

Johan Sundström • 3 years agoMod mikr00
It's probably a cut and paste issue, as encode_utf8('ß') ===
'⧵xC3⧵x9F', which looks like 'Ã​', because unicode (and iso-
8859-1, which is the subset of code points 00...FF) code
point 9F is non-printable (not defined, actually), so some
input sanitization somewhere might strip it for you in the
process.

If you try to paste
javascript:prompt(1,unescape(encodeURIComponent('ß')))
into your address field and immediately use ctrl-c (or cmd-c)
to copy it without making any selection changes, you may
get the non-printable too (works for me here when testing; if I
paste it into Firebug and execute 'Ã​'.length, it reports the
proper 2 as expected, not 1, as it would if you failed to copy
the non-printable).

The same problem comes up a lot if you are using asian
characters like Chinese, Japanese or Korean glyphs; my
räksmörgås example was kind of benevolent in the sense
that it's copy-paste friendly. People often miss that UTF-8 is
a binary encoding; it just often happens to look like it's
always going to output "readable" text. These functions are
supposed to be talking with code, not with humans. :-)

Share ›

Share ›

Share ›

Share ›

http://jsfiddle.net/V6yGL/1/
http://someurl.com/send?variable=123&string=emphasis%20%26%20stuff
http://disqus.com/twitter-75239362/
http://disqus.com/ecmanaut/
http://disqus.com/mikr00/
http://disqus.com/ecmanaut/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 7/10

• Reply •

supposed to be talking with code, not with humans. :-)
 1

• Reply •

Simon S • 3 years ago
I can't get it working. I have login form on a UTF-8 page and need to
convert the password to ISO-8859-1 before posting to a ISO-8859-1
server. The conversion gets done, but it doesn't seem to be real
ISO-8859-1, as the login fails because of wrong converted special
characters (I tried it with the german umlaut "ä").

• Reply •

Johan Sundström • 3 years agoMod Simon S
I think you are looking for the wrong kind of solution. You'd
probably rather want to furnish your form with an accept-
charset attribute, most likely with a value of "ISO-8859-1".

• Reply •

Your Name • 3 years ago
Thanks for the handy hack. It may look tricky but is actually ensured
by standards. I'm throwing away my hand rolled UTF-8 encoder
now.

• Reply •

shdanfo • 3 years ago
Thanks for your note on decodeURIComponent. I'm dealing with an
XSLT template that includes something like following text

• Reply •

donjohn • 4 years ago
Very good! Thank you very much. I've been having problems with a
facebook connect site where the facebook stream.publish api
method was not recognizing the accented characters being sent
through a javascript function. I couldn't find any suggestions
anywhere until I came across this blog. I applied your suggestion
and voilà! problem resolved!

• Reply •

bucabay • 4 years ago
Best solution I've seen so far. The others usually are bitwise
operations to get the UTF-8 byte sequences, but don't fully
implement the encoding.

• Reply •

Johan Sundström • 4 years ago
Well, somewhere between your UTF-8 encoders and this blog,
something is going wrong at least, because „ and – and … (code
points 8222, 8211 and 8230 respectively, all way beyond 255) are not
8-bit characters, which every octet in a valid UTF-8 string must be,
by definition.

Maybe you are sitting on some Windows system doing fancy
quotes under your feet, or similar muck. Best of luck with your
debugging.

Conny • 4 years ago
Hmm, well... If RÄKSMÖRGÅS is encoded to utf8 with Javascript, it
gets RÃ„KSMÃ–RGÃ…S. But if the same word is encoded to utf8

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

http://www.w3.org/TR/html401/interact/forms.html#h-17.3
http://disqus.com/twitter-155964913/
http://disqus.com/ecmanaut/
http://disqus.com/openid-42069/
http://disqus.com/shdanfo/

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 8/10

• Reply •

gets RÃ„KSMÃ–RGÃ…S. But if the same word is encoded to utf8
with Java or UltraEdit Text Editor (ASCII to UTF-8), it gets
RÃ„KSMÃ–RGÃ…S.

I am parsing an XML-document encoded as utf8 (the Java-version...)
in Javascript.

So, is there two versions of utf8?

• Reply •

Johan Sundström • 4 years ago
That is because the UTF-8 encoding of RÄKSMÖRGÅS is
RÃ​KSMÃ​RGÃ​S, not RÃ„KSMÃ–RGÃ…S. (Any incorrect encoded
input sequence will probably give you that error or a similar one.)

• Reply •

Conny • 4 years ago
How about uppercase letters?

For me your example rÃ¤ksmÃ¶rgÃ¥s is correctly decoded into
räksmörgås but RÃ„KSMÃ–RGÃ…S gives a "malformed URI
sequence" error.

• Reply •

Anonymous • 5 years ago
Result of your platform/browser:
Win32, Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9.0.8)
Gecko/2009032609 Firefox/3.0.8 (.NET CLR 3.5.30729)

My $_SERVER['HTTP_USER_AGENT']:
Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0;
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) ; .NET CLR
2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET
CLR 3.0.4506.2152; .NET CLR 3.5.30729)

Remarks:
I am running internet explorer version 8.0, which is operating in some
sort of compatability mode, and suddenly the executed javascript
calls ajax-requests as xmlHttp=new XMLHttpRequest() when before
it (iex 6 and 7)) would execute xmlHttp=new
ActiveXObject("Msxml2.XMLHTTP") or xmlHttp=new
ActiveXObject("Microsoft.XMLHTTP")

take care!

• Reply •

Anonymous • 5 years ago
internet explorer 8:
Win32, Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
Trident/4.0; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR
3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)

scott • 5 years ago
Excellent stuff. I wanted to note that:
decode_utf8()
can throw an error. It is probably a good idea to wrap the call in a
try...catch

Share ›

Share ›

Share ›

Share ›

Share ›

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 9/10

• Reply •

I think I was getting this error when trying to decode UTF-8 when it
was really ISO 8859.

• Reply •

Johan Sundström • 6 years ago
Put it between a <script> and </script> tag and you'll be fine.

• Reply •

Anonymous • 6 years ago
Just one question... does it matter where you put that code? I'm
completely new to javascript, so i don't have any idea.

• Reply •

Anonymous • 6 years ago
Hi Johan

Thanks for the great little UTF-8 hack :) I've used on my open source
tool Hackvertor:-
http://www.businessinfo.co.uk/...

btw this isn't comment spam, Johan gave me permission to plug my
tool :)

• Reply •

Riši • 6 years ago
Got it, thanks.

• Reply •

Johan Sundström • 6 years ago
What did you expect? That is how the UTF8 encoded text is
represented when the undecoded UTF8 message is seen as a
normal eight-bit string, when your character set is ISO-8859-1,
commonly referred to as Latin-1.

• Reply •

Riši • 6 years ago
Thanks Johan.
However, on my machine, this does not quite work: the word got
encoded as
rÃ¤ksmÃ¶rgÃ¥s

Win32, Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.8)
Gecko/20071008 Firefox/2.0.0.8

Any idea why?

• Reply •

Thomas Langvann • 7 years ago
Worked like a charm with:
Linux Firefox/2.0.0.2 (Ubuntu-edgy)

• Reply •

Andrej • 7 years ago
Best solution, thanks.

Johan Sundström • 7 years ago
Your are in luck! Transforming text in ISO 8859-1 to Unicode is the

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

http://www.businessinfo.co.uk/labs/hackvertor/hackvertor.php

11/3/13 ecmanaut: Encoding / decoding UTF8 in javascript

ecmanaut.blogspot.com/2006/07/encoding-decoding-utf8-in-javascript.html 10/10

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

• Reply •

identity transform (as in no change at all), as the code points they
share have the same meaning in both encodings. For all other
encodings (save US ASCII, in part a subset ISO 8859-1), you need
to resort to laborious replace() hacks.

• Reply •

Alex Iskold • 7 years ago
How about the case when the original text is encoded using ISO-
8859-1?

Thanks!

Alex

Subscribe Add Disqus to your site

Share ›

Share ›

Powered by Blogger.

http://ecmanaut.blogspot.com/2006/07/custom-keymaps-in-windows.html
http://ecmanaut.blogspot.com/2006/07/expressive-user-scripts-with-xpath-and.html
http://ecmanaut.blogspot.com/
http://ecmanaut.blogspot.com/feeds/115257374480002798/comments/default
http://disqus.com/
https://disqus.com/admin/signup/?utm_source=ecmanaut&utm_medium=Disqus-Footer
http://www.blogger.com/

