
GETTING STARTED
WITH

(REAL) JAVASCRIPT

Week 2 - Part 1

BACKGROUND

It has nothing to do with JAVA.

Originally developed by Brandan Eich for Netscape,
first released in 1995.

(Brandan Eich is now CTO of Mozilla)

Today it has an international standard:

ECMAScript

Now at version 5, aka ES5.
ES5 is implemented in most modern browsers.
ES6 (Harmony) is work in progress.

It runs in Browsers, of course

But it can also run elsewhere, given there is a
JavaScript engine that can interpret the code.

Browser

Native
Stuff

JavaScript
APIs

e.g. DOM,
Canvas

JavaScript
Engine

Your
JavaScript

Code

TOOLS

Pick a good editor
Don't use clunky IDEs for JavaScript.

Browser Inspector
It is your best friend.

Command Line Tools
We'll talk about these later.

FUNDAMENTALS

VARIABLE

Create a variable with the var keyword

var something = 1

Variable names are case-sensitive, and cannot be
language keywords.

var something = 1

var someThing = 2 // this is different.

var return = 1 // this will cause a syntax error because

 'return' is a language keyword.

VARIABLE

You can assign something else to an existing
variable:

something = "I'm a string now!"

Since variables can basically hold anything, we can
do basic type-checking with typeof

typeof something // "string"

typeof 12345 // "number"

NUMBERS

No distinction between integers and float numbers,
They are all Numbers.

var a = 1

a/3 // a is now 0.3333333333333333

The global Math object contains useful methods to
work with numbers.

BOOLEANS

It's either true or false

var a = true

var b = false

Booleans are results of comparisons:

2 > 1 // true

3 >= 3 // true

3 != 3 // false

3 == '3' // true

3 === '3' // false. we will talk about these two later

You can use comparisons in if statements:

if (1 == 2) {

 // things here will never happen

}

You can also combine multiple of them:

1 == 1 && 2 == 2 // true (&& means AND)

1 == 1 && 1 == 2 // false

1 == 1 || 1 == 2 // true (|| means OR)

1 == 2 || 2 == 3 // false

BOOLEANS

STRINGS

Single-quote, double-quote, doesn't really matter

"aaa" == 'aaa' // true

"'aaa'" // you can use one inside the other

"\"123\"" // you need to backslash escape to use it in itself

Strings come with useful things

'abc'.length // 3

'abc'.slice(1,2) // 'b'

'abc'.indexOf('b') // 1

STRINGS

Be careful when using string methods, because
strings are immutable.

var str = 'testing'

str.slice(0,4)

str // str is still 'testing'. Whyyyyyyy???

Once a string is created, they can't change. String
operations always result in a new string being
created.

var str2 = str.slice(0,4)

// str2 is 'test'

OBJECTS

Creating an object is dead simple in JavaScript:

var obj = {}

typeof obj // "object"

Objects hold properties that can be accessed with
the dot syntax.

var obj = {

 luckyNumber: 7

}

obj.luckyNumber // 7

OBJECTS

You can nest objects inside one another:

var group = {

 team1: {

 name: 'Beavers'

 },

 team2: {

 name: 'Squirrels'

 }

}

group.team1.name // 'Beavers'

OBJECTS

You can dynamically add or change properties of an
existing object:

var obj = {}

obj.luckyNumber = 7

obj.luckyNumber += 6 // obj.luckyNumber is now 13

You can delete properties, too, but it's rarely
needed.

delete obj.luckyNumber // obj.luckyNumber is now undefined

OBJECTS

Object property names (a.k.a keys) can be Strings.
And there is a useful alternative syntax to access
the values.

var obj = {

 'this is a string': 123

}

obj['this is a string'] // 123

var key = 'this is a string'

obj[key] // 123

FUNCTIONS

A Function can contain a block of code that can be executed later
and for multiple times. There are two slightly different ways to
declare a function:

function doSomething (argument) {

 // do something here

}

var doSomethingElse = function (argument) {

 // do something else here

}

They are slightly different, but we'll leave that detail for later.

FUNCTIONS

You "invoke/call/execute" a function by adding a pair of parentheses
after its name:

doSomething() // something is done

You can pass arguments inside the parentheses into functions, and
get a 'return value' back:

function sum (a, b) {

 return a + b

}

var result = sum(5, 6) // result is 11

FUNCTIONS

You can, of course, call other functions inside a function. In addition,
you can even call a function inside itself. Use with caution though, as
this could result in an infinite loop.

function beStupid () {

 beStupid()

}

beStupid() // "RangeError: Maximum call stack size exceeded"

FUNCTIONS

You can pass a function as an argument into another function. The
function being passed in is usually referred to as the 'callback
function.'

function sayYes () { console.log('yes') }

function sayNo () { console.log('no') }

function doIt (callback) {

 // you can do some work here...

 callback() // then call the function passed in

}

doIt(sayYes) // 'yes'

doIt(sayNo) // 'no'

FUNCTIONS

You can also pass in a function declared on the fly (a.k.a anonymous
function). This happens A LOT when using jQuery so you've probably
seen this before.

function doIt (callback) {

 var result = 5

 callback(result)

}

doIt (function (result) {

 console.log('result is: ' + result)

})

SCOPE

When you use var not within any functions, you are
defining a global variable:

var a = 'test' // this is in the global scope

All JavaScript files on the same web page share the
same global scope. In fact, inside Browsers the
global scope equals the window object.

window.a // 'test'

SCOPE

JavaScript is 'function scoped.' That means when a
function is called, it creates a scope of its own.

var global = 1

function test () {

 var local = 2 // this is only accessible inside this

 // function, a.k.a local scope

 console.log(global) // You can still access global variables

 var global = 3 // You can override them locally.

 // This will NOT affect the global scope.

}

SCOPE

If a function is declared on the fly inside another
function, then it will have access to the scope in
which it is declared in.

function parent () {

 var parentVar = 'Hi!'

 function child () {

 var childVar = 'Yo!'

 console.log(parentVar) // 'Hi!'

 }

 console.log(childVar) // undefined, because parent can't

 // access child's scope

}

CLOSURE

By returning a function or object that has access to
the local variables, you've created a closure. (see
closure.js in code folder for more details)

function parent () {

 var parentVar = 'Hi!'

 return function () {

 console.log(parentVar)

 }

}

var logParent = parent()

logParent() // 'Hi!'

It's mostly personal preference, but making your code easy to read is

a virtue. Treat it like your design craft :)

● Indent your code!

● Naming conventions

○ Use camel case

○ Use descriptive names

● Write comments, not only for others but also for yourself

● Semi-colons are optional

CODE STYLE

