
CSS3 ANIMATIONS
& More API

Week 6

CSS3 FOR ANIMATION

VENDOR PREFIXES

I know they are annoying, but sometimes you have
to use them.

Use Can I Use to check for feature/prefix
compatibility.

http://caniuse.com/

TRANSITION
(https://developer.mozilla.org/en-US/docs/CSS/transition)

Syntax:

 transition: property delay duration timing-function;

Default Values (you can also use these individually):

transition-delay: 0s

transition-duration: 0s

transition-property: all

transition-timing-function: ease

Example:

transition: opacity .3s ease; /* Omitting delay */

https://developer.mozilla.org/en-US/docs/CSS/transition

TRANSFORM
(https://developer.mozilla.org/en-US/docs/CSS/transform)

Syntax:

 transform: transform-function ...

Commonly used transform functions:

translate(), rotate(), scale(), skew()

translate3d(), rotate3d(), ... /* more in the link */

Example:

transform: rotate(20deg) scale(1.5);

https://developer.mozilla.org/en-US/docs/CSS/transform

ANIMATION
(https://developer.mozilla.org/en-US/docs/CSS/animation)

Syntax:

 animation: name duration timing-function delay ...

Default Values:

animation-name: none

animation-delay: 0s

animation-timing-function: ease

animation-duration: 0s

animation-iteration-count: 1

animation-direction: normal

animation-fill-mode: none

https://developer.mozilla.org/en-US/docs/CSS/animation

ANIMATION
(https://developer.mozilla.org/en-US/docs/CSS/animation)

Example:
@keyframes example {

 from {

 margin-left:-20%;

 }

 to {

 margin-left:100%;

 }

}

.animated {

 animation: example 4s linear 0s infinite alternate;

}

https://developer.mozilla.org/en-US/docs/CSS/animation

TIMING FUNCTIONS
(https://developer.mozilla.org/en-US/docs/CSS/transition-timing-function)

Built-in Functions:

ease

ease-in

ease-out

ease-in-out

linear

step-start

step-end

steps()

https://developer.mozilla.org/en-US/docs/CSS/transition-timing-function

TIMING FUNCTIONS

This might be more useful:

cubic-bezier(p1x, p1y, p2x, p2y)

Remember the bezier curves? It
could be a headache to figure it
out, so here's a nice tool:

http://www.roblaplaca.
com/examples/bezierBuilder/

http://www.roblaplaca.com/examples/bezierBuilder/
http://www.roblaplaca.com/examples/bezierBuilder/
http://www.roblaplaca.com/examples/bezierBuilder/

PUTTING IT TOGETHER

Let's combine transition and transform:

.object {

 transition: transform .3s cubic-bezier(.85, .09, .25, .90);

}

.object.rotated {

 transform: rotate(90deg);

}

.object.moved {

 transform: translate(50px, 50px);

}

.object.scaled {

 transform: scale(1.5);

}

THINGS TO KNOW

● CSS3 transforms do not affect the page layout flow.

● They support sub-pixel positioning, an advantage over properties
like top, left

● When using 3D transforms, it will be powered by the GPU when
possible, resulting in smoother animation.

MORE ABOUT APIs

CROSS DOMAIN AJAX ISSUE

XMLHttpRequest has something called "same origin policy", which
basically boils down to a restriction of ajax requests to URLs with a
different port, domain or protocol. This restriction is in place to
prevent cross-site scripting (XSS) attacks.

There are two ways to get around it:

● make the request on the server side

● use JSONP

JSONP

JSONP = JSON with padding

Instead of returning this:

{ "data": 99 } // this is JSON

The API now returns this:

callback({ "data": 99 }); // this is actually javascript

JSONP

Instead of directly making a request for a JSON file, we now create a
script tag, and set its src attribute to the API's URL.

The result is the returned JavaScript will be executed!

callback({ "data": 99 });

Now if we have a function actually named callback:

function callback (response) {

 // you got the data!

 console.log(response.data) // 99

}

JSONP with jQuery

var url = 'http://api.example.com/posts?callback=?'

$.getJSON(url, function (data) {

 // you got the data!

})

The callback=? lets both the API and jQuery know
that we're trying to get data using JSONP. And
jQuery handles the hassle for you. Nice.

JSONP with jQuery

var url = 'http://api.example.com/posts?callback=?'

$.getJSON(url, function (data) {

 // you got the data!

})

The callback=? lets both the API and jQuery know that we're
trying to get data using JSONP. And jQuery handles the hassle
for you. Nice.

NOTE:

This is only a convention. Always follow the documentation of
API you are working with.

