
Domain Driven Design 
Demonstrated
Alan Christensen @christensena

Christchurch DotNetUG        July 26 2012

1



What is a Domain?

• “A sphere of knowledge, influence or 
activity”--Eric Evans

2



What is DDD?

• In order of importance:

• Design methodology

• Architectural style

• Set of software patterns

• “Tackling Complexity in the Heart of 
Software”--DDD book tagline

3



Domain Modeling

• Understand your domain

• Model it in the code to suit the purpose 
and context for which it was intended

• Leave out details and concepts that don’t 
add value

• Keep refining: “refactor to greater insight”

4



5



Ubiquitous Language

• Naming is important!

• As is a shared understanding and consistent 
use of terms

• The code should use the same terms used 
in documents and discussion

• Both domain experts and developers 
contribute to the shared language 

6



7



the Welsh reads "I am not in the office at the 
moment. Send any work to be translated."

8



9

Onion Architecture



Entities

• Have an identity

• Identity may be determined by a natural or 
assigned key (e.g. Id)

• Equals implementation to distinguish 
identity normally uses key

• Mutable - can be changed

10



Value objects

• No identity. Can be mixed and matched

• Equals implemented as “all fields/properties 
match”

• Immutable - replace instead of change

11



Worked example

• What domain should we use?

• Inventory?

• Payroll?

• Stock broking?

12



13



Code demo #1

• Model Driven Design

• Domain Methodology

• Entities and Value Objects

• Invariants

14



Invariants

• Invariants ensure consistency in the domain 
model

• They allow us to code with confidence that 
invalid/unnatural states are not possible

• They enforce domain rules and prevent 
logical fallacies

15



• Examples

• Private setters

• Required constructor/factory method 
parameters

• Exceptions for invalid operations or 
invalid arguments to methods

Invariants

16



Validation?

• Validation is not really a domain concept. 
Invariants are the richer idea.

• Validation should be done outside the 
domain to prevent invariants from ever 
occurring (exceptions are for exceptions)

17



Persistence Ignorance

• Persistence is a technical concern. Not part 
of the domain.

• Fortunately good ORM’s support 
Persistence Ignorance out of the box

• Transactions can be packaged in a “Unit of 
Work” concept

18



Repositories

• Semantically just “collections” with 
enhanced “find” functionality

• In reality they will be the “gateway” to the 
persistence store

• Repositories are the main mechanism for 
Persistence Ignorance

19



Aggregates

• Some entities only make sense in the 
context of a parent entity or hierarchy

• Nominate entities as Aggregate Roots

• Value objects and non-aggregate entities 
are only accessible by traversing from their 
aggregate roots

• Inter-aggregate relationships via queries/
lookups on repositories

20



21



Code demo #2

• Repositories

• Unit of Work

• Fluent NHibernate AutoMapping

• Session per Request

22



23



Domain Services

• Not general-purpose 
“services” (overloaded term)

• Repository/UoW aware (entities are not)

• Able to coordinate business processes

• Most logic should still be inside entity and 
value objects (Domain Model)

24



UI and Data Binding

• Don’t try to data bind to anything in your domain 
model!

• Bind to “view models”, tailored to your view 
(MVC/MVP/MVVM)

• Read operations: Use tools like AutoMapper to 
map to view models.

• Write operations:  Intention/behaviour oriented. 
Command processor pattern works well

25



Transports/Hydration

• ORMs such as NHibernate create proxies, 
bypass invariants for re-hydration

• Invariants mean .NET serialisation needs to 
be via DTO’s.

• DTO’s are best not as domain model 
clones! As with UI viewmodels, tailor for 
purpose.

26



NoSQL?

• DDD style aggregates can be a natural fit 
for document oriented databases

• No need for mapping to relations!

• Use of event sourcing can feed same 
information into reporting database(s)

• If using relational as dual use e.g. reporting, 
consider the change resistance

27



Fashions & 
Developments

• CQRS

• Micro-ORMs

• Repository pattern?

• ORM hate

28



• Modeling Driven

• This means designing and writing code that

• expresses the domain logic

• follows/enforces the domain rules

• uses the domain language

• databases, UI, infrastructure, etc are 
outside the domain

Summary

29



Should I use DDD?

• DDD over engineered for simple CRUD or 
mostly data oriented applications

• Best suited to complex, behaviourally 
oriented applications

• However, many of the ideas and patterns 
are useful in all sorts of projects

30



Other DDD concepts

• Factories

• Bounded Contexts

• Anti-corruption Layers

• Domain Events

31



Umpire Scorecard

Over
Player

Delivery
No-Ball
Wide
Out

Crease
Boundary

LBW
Bat-Pad

Stumping
Light

Weather

Over
Player
Run
Team

Innings
Dismissal

Bowling Spell
Country

Scorecard
Match

Fall-of-Wickets

32



References

• DDD Quickly book on InfoQ bit.ly/dddquickly

• Think DDD (Jak Charlton) bit.ly/thinkdddbook

• Onion Architecture bit.ly/onionarch

• Martin Fowler on Aggregates and NoSQL
bit.ly/aggregates-nosql

• My example code (and these slides): 
github.com/christensena/DDDIntro

• New book “Implementing Domain Driven Design” 
by Vaughn Vernon out soon bit.ly/idddbook

33

http://bit.ly/dddquickly
http://bit.ly/dddquickly
http://bit.ly/onionarch
http://bit.ly/onionarch
http://bit.ly/aggregates-nosql
http://bit.ly/aggregates-nosql
https://github.com/christensena/DDDIntro
https://github.com/christensena/DDDIntro


Alan Christensen
@christensena

34


