Microsoft

Domain Driven Design
Demonstrated

- Alan Christensen @christensena




What is a Domain?




What is DDD?

® |n order of importance:

® Design methodology

'.Ab - -
% Rl 7 =l

- ® Architectural style




Domain Modeling

® Understand your domain

® Model it in the code to suit the purpose
and context for which it was intended

2 o - -,
R = W g Y y
= - . R ol - b A [

- 0 o & 4+
St o 3 K 4 i 2 2 L XN s . A e e gL ba dap Ledicy . AR B b Rt 41 R
i o 4 " i b P 1 - B ’
Ehel s padinlt b 6 i foor sl CLRE e o L S g 1 EER R B2 ML TR v Bt G sit o uEaiich At S bt
L= P N 4 1% gt 8 v " h 3 . . e . et :




& Watford Jusction 5)

Chalk Farm

Ycamden Town

¥ Mormingten
Crescemt

Street

Great .
Portlang tusten AH.,*

7

King's Cross
\ St Pancras

r

O- TR O- TR O-

e e e




Ubiquitous Language

Naming is important!

As is a shared understanding and consistent
use of terms

The code should use the same terms used
in documents and discussion

Both domain experts and developers
contribute to the shared language



> :M -
I CwRVED ¥




v

NO entry for neavy
goods vehicles.
Residential site only

P A—

Nid wyf yn y swyddfa
ar hyn o bryd. Anfonwch
unrhyw waith i'w gyfieithu

-

the Welsh reads "I am not in the office at the
moment. Send any work to be translated.”
8




Onion Architecture

Domain
Model

Domain Services

Application/Infrastructure




Entities

Have an identity

|ldentity may be determined by a natural or
assigned key (e.g. Id)

Equals implementation to distinguish
identity normally uses key

Mutable - can be changed



Value objects

® No identity. Can be mixed and matched

® Equals implemented as “all fields/properties
match”

® |mmutable - replace instead of change



Worked example

® VWhat domain should we use!?
® |nventory!
® Payroll?

® Stock broking?



T0TAL 90
WKTS &
3
)
-
LJ

|oVERS !
' | stINNS
i | R

- 9
-

LL YOUR SIGN NE!I

1737 2469




Code demo #l|

® Model Driven Design
® Domain Methodology
® Entities and Value Obijects

® |nvariants



Invariants

® |nvariants ensure consistency in the domain
mode]

® They allow us to code with confidence that
invalid/unnatural states are not possible

® They enforce domain rules and prevent
logical fallacies



Invariants

® Examples
® Private setters

® Required constructor/factory method
parameters

® Exceptions for invalid operations or
invalid arguments to methods



Validation?

® Validation is not really a domain concept.
Invariants are the richer idea.

® Validation should be done outside the
domain to prevent invariants from ever
occurring (exceptions are for exceptions)



Persistence lgnorance

® Persistence is a technical concern. Not part
of the domain.

® Fortunately good ORM’s support
Persistence Ignorance out of the box

® Transactions can be packaged in a “Unit of
Work™ concept



Repositories

Semantically just “collections” with
enhanced “find” functionality

In reality they will be the “gateway” to the
persistence store

Repositories are the main mechanism for
Persistence Ignorance



Aggregates

Some entities only make sense in the
context of a parent entity or hierarchy

Nominate entities as Aggregate Roots

Value objects and non-aggregate entities

are only accessible by traversing from their
aggregate roots

Inter-aggregate relationships via queries/
lookups on repositories

20



Bat \'er\vmivwﬁ




Code demo #2

Repositories
Unit of Work
Fluent NHibernate AutoMapping

Session per Request

22



Domain
Model

Domain Services

Application/Infrastructure




Domain Services

Not general-purpose
“services” (overloaded term)

Repository/UoVV aware (entities are not)
Able to coordinate business processes

Most logic should still be inside entity and
value objects (Domain Model)

24



Ul and Data Binding

Don’t try to data bind to anything in your domain
model!

Bind to “view models”, tailored to your view
(MVC/MVP/MVVM)

Read operations: Use tools like AutoMapper to
map to view models.

Write operations: Intention/behaviour oriented.
Command processor pattern works well

25



Transports/Hydration

® ORMs such as NHibernate create proxies,
bypass invariants for re-hydration

® |nvariants mean .NET serialisation needs to
be via DTO’s.

® DTQO’s are best not as domain model
clones! As with Ul viewmodels, tailor for
purpose.

26



NoSQL?

DDD style aggregates can be a natural fit
for document oriented databases

No need for mapping to relations!

Use of event sourcing can feed same
information into reporting database(s)

If using relational as dual use e.g. reporting,
consider the change resistance

27



Fashions &
Developments

CQRS
Micro-ORMs

Repository pattern!?
ORM hate

28



Summary

® Modeling Driven

® This means designing and writing code that
® expresses the domain logic
® follows/enforces the domain rules
® uses the domain language

® databases, Ul, infrastructure, etc are
outside the domain

29



Should | use DDD?

DDD over engineered for simple CRUD or
mostly data oriented applications

Best suited to complex, behaviourally
oriented applications

However, many of the ideas and patterns
are useful in all sorts of projects

30



Other DDD concepts

® Factories
® Bounded Contexts
® Anti-corruption Layers

® Domain Events

31



Umpire Scorecard
Over Over
Player Player

Delivery Run

No-Ball » Team
Wide Innings

Out BINITNY

Crease Bowling Spell

Boundary Country
LBW Scorecard
Bat-Pad Match
Stumping Fall-of-Wickets
Light

Weather

32




References

DDD Quickly book on InfoQ bit.ly/dddquickly
Think DDD (Jak Charlton) bit.ly/thinkdddbook

Onion Architecture bit.ly/onionarch

Martin Fowler on Aggregates and NoSQL
bit.ly/aggregates-nosq|

My example code (and these slides):
github.com/christensena/DDDlIntro

New book “Implementing Domain Driven Design”
by Vaughn Vernon out soon bit.ly/idddbook

33


http://bit.ly/dddquickly
http://bit.ly/dddquickly
http://bit.ly/onionarch
http://bit.ly/onionarch
http://bit.ly/aggregates-nosql
http://bit.ly/aggregates-nosql
https://github.com/christensena/DDDIntro
https://github.com/christensena/DDDIntro

Alan Christensen
@christensena

34



