
.

XL3 and Penn DAQ Programmer’s Manual

Richie Bonventre

Don’t have any questions. It will just work, ok?

2

Contents

1 Introduction to the XL3 5

2 Setting up Xilinx tools 6
2.1 Installation . 6
2.2 Configuring the ML403 Project . 7

3 XL3 Hardware 9

4 VHDL State Machine 11

5 PowerPC code 12
5.1 main . 12
5.2 run xl3 . 12
5.3 platform . 14
5.4 xl3 types.h . 14
5.5 queues . 15
5.6 bus . 16
5.7 xl3 utils . 17
5.8 xl3 status . 18
5.9 lwip functions . 19
5.10 process packet . 21
5.11 fec utils . 22
5.12 hv utils . 23
5.13 crate init . 23
5.14 load dacs . 24
5.15 vmon dacs . 24
5.16 cald test . 24
5.17 fec test . 24
5.18 mem test . 24
5.19 vmon . 24
5.20 zdisc . 24

6 Penn DAQ 24
6.1 Core . 25

6.1.1 main . 25
6.2 Crate . 25

6.2.1 Crate init . 25
6.2.2 Run Pedestals . 25

6.3 db . 25

7 Register Map 25

3

8 Packet types 27
8.1 DAQ to XL3 . 27

8.1.1 DAQ QUIT ID . 27
8.1.2 PONG ID . 27
8.1.3 CHANGE MODE ID . 27
8.1.4 STATE MACHINE RESET ID . 28
8.1.5 DEBUGGING MODE ID . 28
8.1.6 FAST CMD ID . 28
8.1.7 MULTI FAST CMD ID . 28
8.1.8 QUEUE CMDS ID . 29
8.1.9 FEC LOAD CRATE ADD ID . 29
8.1.10 SET CRATE PEDESTALS ID . 29
8.1.11 BUILD CRATE CONFIG ID . 29
8.1.12 LOADSDAC ID . 30
8.1.13 MULTI LOADSDAC ID . 30
8.1.14 DESELECT FECS ID . 30
8.1.15 READ PEDESTALS ID . 30
8.1.16 LOADTACBITS ID . 31
8.1.17 RESET FIFOS ID . 31
8.1.18 READ LOCAL VOLTAGE ID . 31
8.1.19 CHECK TOTAL COUNT ID . 31
8.1.20 SET HV RELAYS ID . 31
8.1.21 GET HV STATUS ID . 32
8.1.22 HV READBACK ID . 32
8.1.23 READ PMT CURRENT ID . 32
8.1.24 SETUP CHARGE INJ ID . 32
8.1.25 FEC TEST ID . 32
8.1.26 MEM TEST ID . 33
8.1.27 VMON ID . 33
8.1.28 BOARD ID READ ID . 33
8.1.29 ZDISC ID . 33
8.1.30 CALD TEST ID . 34
8.1.31 SLOT NOISE RATE ID . 34

8.2 XL3 to DAQ . 34
8.2.1 CALD RESPONSE ID . 34
8.2.2 PING ID . 35
8.2.3 MEGA BUNDLE ID . 35
8.2.4 CMD ACK ID . 35
8.2.5 MESSAGE ID . 35
8.2.6 ERROR ID . 35
8.2.7 SCREWED ID . 36

4

1 Introduction to the XL3

The SNO electronics is a custom designed system, much of which was produced by Penn.
The system has 9728 channels, distributed over 304 Front End Cards (FECs) residing in 19
front end electronics crates. The communication protocol within each front end electronics
crate is a custom “SNOBUS” interface, designed to be VME-like but with differential signals
to reduce electronic pickup. Each channel records three charge measurements and one time
measurement. These four analog signals are digitized and stored along with various ids and
error information in 96 bits (12 bytes) on local digital memory on each FEC.

Although the vast majority of the SNO electronics system can remain intact for SNO+,
there will have to be changes to accommodate the increased data rates expected for running
with scintillator compared to the original water Cherenkov mode. In SNO, a typical solar
neutrino event candidate illuminated about forty photomultiplier tubes. In SNO+, a neu-
trinoless double beta decay candidate will illuminate around 1500 pmts, with backgrounds
at similar energies occurring at a rate of several hertz.

During SNO data runs, a central data acquisition (DAQ) computer in a standalone VME
crate polled each of the 19 front end electronics crates serially to check for available data.
The memory of each FEC was read over the SNOBUS backplane. The translation from VME
to the SNOBUS protocol was done with pairs of custom-built translator boards, called XL1
and XL2. The XL1s sit in the central VME crate and the XL2s sit in the front end crate.
These boards had no local intelligence; all readout was done from the central DAQ computer
and so crates could only be read out one at a time, limiting the maximum data rate of the
experiment. This bandwidth limitation was not a problem with heavy water as typical SNO
data rates were a mere 16 kb/s (2kB/s), which rose to roughly 2Mb/s (250kB/s) during
data runs with the highest rate calibration sources. At this rate, the system was pushed
to it’s limit, and often the appearance of a few noisy channels were enough to cause the
buffers to fill and data to be lost, occasionally terminating the calibration run. For SNO+,
the expected nominal data rate will be roughly 2.5Mb/s, too fast for us to reliably run the
system. The readout electronics thus needed to be upgraded to handle this increased rate.

The XL1/XL2 translator pair has been replaced with a new custom crate readout board,
the XL3. This board resides within each front end crate where the XL2 use to be and is
capable of reading data from the FECs independent of any central DAQ computer. Data is
now pushed, rather than pulled, to the DAQ over ethernet using standard TCP/IP protocols.
All crates can push data independently and are connected via a standard switch. This
parallelization increases the bandwidth of the experiment by a factor of 19, even before
accounting for the increase in the local readout speed.

To provide the ethernet interface for the new board, a commercially built evaluation
board - the ML403 from Xilinx - acts as a daughterboard on the XL3. The ML403 has a
Virtex-4 FPGA and an embedded PowerPC processor providing many options for the user.
Inside the FPGA, a state machine written in VHDL is configured to pull data across the
backplane using the SNOBUS protocol. A small C-program using the open source Light
Weight IP (LWIP) libraries is then run on the PowerPC with no operating system to pull
the data from the FPGA across the Xilinx peripheral local bus (PLB) and store it in local

5

RAM memory. LWIP is used to implement the tcp/ip stack and send the data to the DAQ.
This hybrid approach allows fast direct control of readout with the SNOBUS protocol as
well as the ease of C programming to allow flexibility on the ethernet side.

The XL3 board was designed by keeping intact much of the old XL2 schematics. The
ML403 daughterboard is powered by the backplane of the front end crate and is attached by
two connectors to the main board. The output of the board is contained to a single ethernet
cable.

2 Setting up Xilinx tools

2.1 Installation

The XL3 code was developed in EDK version 10.1 service pack 3. To install, you will
need to download ISE version 10.1, EDK version 10.1, ISE 10.1 service pack 3 upgrade,
and EDK 10.1 service pack 3 upgrade. You will need a license key for both ISE and
EDK. Make sure to install ISE before EDK. If you are on linux, make sure you uncheck
the box for installing the cable drivers. Once installation is finished, you will need to
find xps ll temac soft core permanent eval.lic and place a copy in the path to xilinx in-
stall/10.1/EDK/data/core licenses directory.

If you are on windows, you should be pretty much done with the installation. For linux
users, we will next need to configure some libraries. First find what version of libdb4.* you
have in /usr/lib, then do

sudo ln -s /usr/lib/libdb-4.* /usr/lib/libdb-4.1.so

Next, we need to fake the gmake utility

sudo ln -s make /usr/bin/gmake

If you don’t want to use acrobat reader, or dont have it installed,

sudo ln -s evince /usr/bin/acroread

Now we will need to install a bunch of other dependencies:

sudo apt-get install libusb-dev libstdc++5 build-essential gtkterm

sudo apt-get install fxload portmap libmotif3 libmotif-dev rlwrap

Now we need to get something to replace the cable drivers so the jtag cable will work.
We will use an alternative version available via git

git clone git://git.zerfleddert.de/usb-driver

Move to the directory created and type make. It should create a file called libusb-driver.so
copy that file to

6

{path to xilinx install}/10.1/usb-driver/.

We will next set up a bash command to configure your development environment. In
your .bashrc, add

x101sp3() {

local xil_home

xil_home = {path to xilinx install}/10.1

. $xil_home/ISE/settings64.sh

. $xil_home/EDK/settings64.sh

export PATH="$xil_home/EDK/gnu/powerpc-eabi/lin/bin:$PATH"

export PATH="$xil_home/EDK/gnu/microblaze/lin/bin:$PATH"

export XIL_IMPACT_USE_LIBUSB=1

export DISPLAY=":0"

alias inserter=’AWT_TOOLKIT=MToolkit inserter.sh"

alias analyzer=’AWT_TOOLKIT=MToolkit analyser.sh"

}

Now open a new terminal or source your bashrc and type x101sp3. You can now set up the
usb driver by moving to the path to xilinx install/10.1/usb-driver/ directory and doing

sudo ./setup_pcusb

sudo ./setup_pcusb

The first time you execute this command you may get some error messages, but you can
ignore them and just execute it a second time. This time it should work fine. Everything
should now be configured, so once you enter x101sp3 in a terminal, you should be able to
run ise, edk, xps, impact, etc.

2.2 Configuring the ML403 Project

When creating a project for the ML403, the architecture is virtex4, device size is xc4vfx12,
package is ff668, and speed grade is -10. Once the project is created, go to Software-¿Sofware
Platform Settings and in the Software Platform tab, check the lwip130 box to include the
lwip library. In the OS and Libraries tab, under lwip130 make sure that api mode is set to
RAW API.

Create a new Sofware Application Project, right click it and select Compiler Options.
Check the “Use Custom Linker Script” box and select the linker script included in the
ml403 code repository. This sets up the memory spaces on the RAM and ensures that space
is reserved for our fifo queues. Under the Debug and Optimization tab, set the Optimization
Level to “High (-O3)”, and if you would like to do debugging, check the Generate Debug
Symbols box. Finally in the Paths and Options tab, make sure that “-llwip4” is in the
Libraries to Link against box. You can now add the source and header files to the application.

You will need to assemble the hardware IP cores used in the project. Click on System
Assembly View and then the Bus Interfaces tab on the right hand window and the IP Catalog

7

in the left. First, add the buses. There should be one proc sys reset IP, one jtagppc cntlr IP,
and three plb v46 IPs. Add a ppc405 virtex4, and expand it to set up its Bus Connections.
RESETPPC should be connected to the reset bus, JTAGPPC should be connected to the
jtag bus. IPLB0 and DPLB0 should be connected to one plb bus, and IPLB1 and DPLB1
should each be connected to one of the other two. The first bus will be used to talk to most
of the various peripherals, while the second two are used only for input and output from
the RAM. Next add a mpmc IP, which is the ram controller. Connect DPLB1 to SPLB1
and IPLB1 to SPLB0. We will also use faster bram which exists in the FPGA, so create a
bram block and then an xp3 bram if cntlr and connect it to the first plb bus and to PORTA
on the bram block. Next add an xps intc which allows the peripherals to interrupt, and
connect it to the plb bus. An xps uartlite IP allows you to printf to the serial port, and also
needs to be hooked up to the plb bus. Right click it and select Configure IP to set the baud
rate and parity. For ethernet, create an xps ll fifo and an xps II temac. Link them together
and connect them both to the plb bus. Finally, add a clock generator IP.

You will now need to import the custom IP that contains the VHDL state machine.
Go to Hardware-¿Create or Import Peripheral. Click Import Existing Peripheral, To an
XPS Project, and then enter the name of the file in the pcores directory of the ml403 code
repository. Once the IP has been imported, add one to the project and connect it to the plb
bus.

Now we will set up the port connections. Click the Ports tab in the right hand window.
The powerpc should have a signal from the interrupt IP to EICC405EXTINPUTIRQ, and
a signal from the clock called proc clk s to CPMC405CLOCK. The plb buses should all
have a signal from the reset IP to SYS Rst, and a signal from the clock called sys clk s to
PLB Clk. The RAM should have many signals that are hopefully auto configured since I
will not be detailing their configuration here. It should also have a reset signal and three
clocks: one to MPMC Clk 200MHz, one to MPMC Clk90, and one to MPMC Clk0. Again I
hope the temac is auto configured. The custom IP has many ports that need to be created.
Ext Clock should be connected to a clock signal like sys clock s. For Dtack, Gated strobe,
V all ok, Write star, Memreg, Board Select, Addr Bus, Data Bus, Leds, ML403 Happy, and
XL3 Alarm, click the select box and pick “Make External”, which will automatically create
an external port that you can assign to a pin on the FPGA. We can now set up the clock
frequencies since we have made our clock signals. Back in the Bus Connections tab, right
click the clock IP and go to configure IP. The Input clock CLKIN should be connected to
dcm clk s and should be set to 100,000,000 Hz. The output clocks are sys clk s (100 MHz),
proc clk s (300 MHz), DDR SDRAM mpmc clk 90 s (100 MHz), clk 200mhz s (200 MHz),
and temac clk s (125 Mhz). The DDR SDRAM mpmc clk 90 s should also have a phase
shift set by clicking the Ports Overview tab and entering 90 into the Phase Shift field.

Next click the Addresses tab in the right hand window. Set the state machine Size to
64K, and the bram to 8K. The interrupt, xps ll IPs, and uart should all be set to 64K, the
powerpc to 256, and the RAM to 64M. Then click Generate Addresses in the top right.

Now in the Project tab in the left hand window, double click the UCF File to open it up
in the editor. You will want to base it off the ucf file included in the ml403 code repository,

8

changing any port names that are different to match.
Finally, check in xl3 utils.c where the fifo queues are allocated and make sure they are

properly placed in memory that has been allocated to the RAM in the linker script and in
the Addresses window in the System Assembly View, and check that the peripheral address
is the same as that for the custom IP.

3 XL3 Hardware

Much of the XL3 hardware is the same as the old XL2. A description of the XL2 hardware
and a copy of the schematics can be found at http://nubar.hep.upenn.edu/snoplus/DAQ/.
The XL3 schematics should also soon be available at the same location.

The XL3 hardware can be broken up into five main parts, as shown on the first page of
the schematic.

The slow control interface is the simplest block. It is merely a connector for a cable
to the slow control system. Currently there are three signals used by slow control. The
ML403 RESET comes from the slow controls to the XL3 and is a 5V TTL logic line. When
this line is driven high, the power to the ML403 is disconnected. When it is then brought
low, power returns, and so this can be turned on for a few milliseconds to reset the ML403.
V ALL OK and TEMP ALL OK are also 5V TTL logic lines that go from the XL3 to the
slow controls. They are high if the voltages and temperatures are ok, and drop low when
there is a problem. It is not latched so it will remain low only for as long as the problem
remains.

The ML403 BLOCK shows the connection to the evaluation board. There are two 3x32
pin connectors. Each connector has one row that is all connected to ground. One has the
whole 32 bit data bus, and the other has address and control lines. In addition, one connector
has 4 VCC pins. These are directly connected to the power lines on the ml403, and so all
the current to power the evaluation board goes through these pins. The AP280 ic connected
to this line is a switch that connects or disconnects these pins to VCC of the rest of the XL3
based on the ML403 RESET signal.

The XILINX INTERFACE block is where the signals are converted from the LVCMOS
3.3V signals used on the ML403 to the 5V TTL logic used for the rest of the XL3. The data
lines are bidirectional with the direction controlled by the WRITE* signal. The address
and control signals go from the ML403 to the XL3, and the alarms go from the XL3 to the
ML403.

The SB BUS INTERFACE block is almost identical to what it was on the XL2. The
GTL16612s translate from the 5V TTL logic of the XL3 to the GTL logic levels used on
the SNOBUS backplane. Again the address and control lines go one way from the XL3 to
the backplane. The data lines are sent from the XL3 to the backplane when WRITE is
high and GATED STROBE arrives. The lines are opened from the backplane to the XL3
when WRITE is low and GATED STROBE arrives, and they are latched when LEBA (latch
everything B to A) arrives. The DATA AVAILABLE lines and DTACK from the backplane
are always enabled from the backplane to the XL3.

9

http://nubar.hep.upenn.edu/snoplus/DAQ/

The relay signals, the clocks, the xilinx programming lines, and the reset also all come
from XL3 and are sent to the backplane. The powers for the XL3 - VCC, VEE, VP8, VP24,
VM24 - all come from the backplane, and from these lines V33P, V08P, VGTLTERM, V2M,
V15P and V15M are generated. VGTLTERM and VGTLREF (V08P) are sent back to the
backplane to make the GTL lines work.

The XL3 REGISTERS block is subdivided into the different hardware registers on the
XL3. In the CSR REG, we have the xilinx programming lines, the crate address lines, and
the logic reset. The Xilinx chips on the FECs are programmed over four lines. Data in,
clock, and xilinx active are all one way signals from the XL3 to the FEC and are converted
to the backplane voltage levels with HCT125s. There is a maximum allowed low time for
the clock signal, so it is sent through a one-shot to get low going pulses and is pulled high
after the HCT125. The Done/Program* line is a wired-AND signal (can only be drive low
or set to high impedance, and then is pulled high). The XL3 pulls it low for a few clock
cycles to tell the xilinx to start programming, and then releases it. The xilinx chip will hold
it low for as long as it is being programmed, and when it completes successfully, it will let
it go high again. The crate geo address lines come straight off the backplane and I believe
are set by jumpers on the crate itself. The logic reset is a one shot that is fired whenever
the reset register address is written to. It is ored with another one shot that is configured
to fire once when the power turns on. This reset signal clears all the XL3 hardware registers
and sends a reset signal to the SNOBUS backplane.

The RLY XL TEST REG block contains the relay, xilinx control, and test registers. The
relay register is five bits that go directly to the backplane and can open or close the relays
on the pmtics. The xilinx control register is eight bits that provide a little extra security in
making sure that the FEC xilinx is never accidentally reprogrammed. In order to actually
send the xilinx clock or data line from the CSR REG, the signal XL PERMIT must be high.
This signal only goes high when bits 8-5 of the xilinx control register are set to 0101. In
addition, when XL PERMIT is high, the upper four address bits (A¡20-17¿) are replaced by
the lower four bits of the xilinx control register. These bits must be set to 10XX in order
for the FECs to be put into xilinx load mode. The test register is the only 32 bit register on
the XL3 itself. It is mostly useful for lighting up leds. Note that a mod has made bit 0 of
the test register responsible for enabling the local voltage readout adcs, so the test register
should be left on 0xFFFFFFFF.

The DAV MASK REG allows you to control which data available lines are enabled.
Coming off the backplane, the data available lines are driven low when the fifo has data to
be read out, but the line is also low when no FEC is present in the slot. In order to make
sure that we ignore any empty slots, there is a mask register that is anded with the data
available lines.

There are three clocks on the XL3 that can be programmed with the CLOCK register:
the adc, memory, and sequencer clocks. These are mostly used by the FECs. All three clocks
are driven from a 16 MHz ECS2100AX oscillator. The clocks themselves are ics307-02s, and
the programming instructions can be found on the datasheet (FIXME).

The VOLTAGE MONITOR block contains registers for reading local low voltages and

10

temperatures on the XL3, as well as several alarms. Voltage monitoring exists on the FECs,
but the ability to also check the local status of the XL3s as well as possibly a way way to
check voltages without generating as much noise was desired. When writing to the voltage
monitoring register, the lower eight bits are used to set up the alarm threshold dacs. These
dacs are AD5724s and their programming instructions can be found on their datasheet
(FIXME). These dacs set upper and lower limits for VP15, VM15, VCC, VEE, VP8, VP24,
VM24, and a temperature sensor. The voltages are then put through comparators and if
it crosses either upper or lower limit V ALL OK or T ALL OK is set low. In addition you
can write to bits 11-9 of the voltage monitoring register to select a voltage or temperature
sensor to measure. Once you select a voltage, you can read back bits 14-3 to get the 12 bit
adc result.

The HV CONTROL block has all the registers related to the high voltage. The hv csr
register has various error bits and flags and must be written to in order to enable the hv
supplies. The hv setpoint register sets the hv level for both supplies. Bits 11-0 control
supply A and bits 27-16 control supply B. Coming out of the dacs the setpoints are a 0-10V
signal. This signal first goes past a diode which caps the voltage at 9V, ensuring that the
high voltage never goes above 2700V. It then goes through a switch which diverts the signal
to ground if either the XL3 ALARM signal or the HV KILL signal is high, otherwise it
passes it through to the hv supply. The XL3 ALARM signal comes from the ML403, and
the HV KILL signal comes from a physical switch on the XL3 front panel. The hv readback
registers allow you to monitor the HV voltage and current. The hv supply sends a 0-10V
signal for each, which is then divided down to 0-5V. It alternates digitizing the currents and
the voltages, and stores the most recent digitization of each in the register.

The XL3 LOGIC block is where the addresses are decoded to select the correct register,
and some of the SNOBUS protocol is implemented. Five bits of the address are used to
select a FEC or CTC, with a sixth used to select the XL3 (note that the XL3 can be selected
at the same time as a single FEC). Once the address has been set, the VHDL state machine
sets the GATED STROBE signal high. This clocks the flip flops for whichever register has
been selected. For read/writes to XL3 registers, the dtack signal is generated by delaying
gated strobe. The FECs generate their own dtack when read from or written to. When this
dtack is received, LEBA is set and the data lines are latched from the backplane.

FIXME add appendix with register and bit maps

4 VHDL State Machine

As seen in the hardware section, the ML403 communicates to the rest of the XL3 through
roughly 64 pins: 32 data pins, 20 address pins, and an assorted group of control pins. The
data pins are set up as GPIO pins, and the address pins are set up to be output only.

The state machine communicates with the PowerPC through six read and six write
registers. The registers readable by the C code are: word1 word2 word3 error spare1
result v all ok. The register writeable by the C code are: data, address, start bundle,
start command, reset. FIXME. Currently the state machine is clocked by the ml403’s 300

11

MHz system clock. In it’s idle state, it waits for the c code to either set start bundle or
start command. If start command is set, it reads in the address register and parses it to
determine whether it’s a read or write. It then puts the address and data out over the pins
to the XL3, and once this is done, sets the gated strobe signal high. It waits for dtack to
return from the XL3, and then reads the result of the read from the data pins. Once it has
latched the result, it sets gated strobe low. It then waits for dtack to drop. Once dtack is
low, it goes back to idle to await another command. Reading bundles is similar except that
it does three reads in a row.

Each clock tick, the state machine checks that it is actually in one of its known states. If
the register that holds the state glitches to any unrecognized value, the error register is set
high to alert the PowerPC.

5 PowerPC code

The C code that runs on the PowerPC is based around the LWIP library. It is single threaded
and uses interrupts and callbacks to send and receive packets. It runs in one main loop that
is continually telling lwip to check its input buffers, and then allows the XL3 to do one action
before repeating.

5.1 main

This file contains only the main function which has the main while loop. Before starting
the loop, it calls init XL3() to set up the VHDL registers, and initialize variables. It then
initializes lwip and its callbacks using platform setup interrupts() and lwip init(). Once lwip
is ready it sets up a connection for the daq and then enters the main loop. Each time through
the loop it calls xemacif input which allows lwip to process incoming packets and call the
callbacks. It then calls run XL3 to do all other processing.

5.2 run xl3

The function run XL3() just calls the four functions that make the XL3 tick - check connection(),
update status(), decide(), and do what was decided(). Check connection() maintains the
connection to the daq, and update status() checks the various fifo queues and polls the
FECs for their memory and data available status.

int decide(void);

This function uses the XL3 status to determine what action should be done this time through
the loop. In order to LWIP to function efficiently, it is important that the xemacif input()
function is called often and consistently and so nothing should hold up the loop for that
long. Thus we determine the one and only thing we will do this time through the loop. The
current decision tree is as follows:

12

If the daq connection is not setup or not ok:

First do commands if there are commands to do and there is room in the command out queue.

If you can’t do a command, if there are bundles to be read, read bundles.

If you can’t do a command or read bundles, just idle.

If any packet failed to be sent correctly:

Attempt to send the packet again.

If any error flag was just switched on:

Send an error packet.

If any error flag was just switched off:

Send an error packet.

If it is time to send a ping:

Send a ping packet.

If any of the FECs have just had their fifo completely fill up:

Send a screwed packet.

If any of the FECs have returned to a stable fifo level:

Send a screwed packet.

If the command in queue is nearly full:

If there is room in the command out queue, do a command.

Otherwise send a command result packet.

(below is normal running)

If the message queue is over threshold:

Send a message packet.

If the command out queue is over threshold:

Send a command result packet.

If the command in queue is over threshold:

Do a command.

If the command out queue is under threshold but not zero:

Send a command result packet.

If the crate’s average memory level is too high:

If there is room in the bundle queue read a bundle.

Otherwise send a megabundle packet.

If the bundle queue is over threshold:

Send a megabundle packet.

If at least one FEC has data available:

Read a bundle.

If the bundle queue is not empty:

Send a megabundle packet.

Otherwise, idle.

In general it first checks that everything is ok, and deals with any errors or alarms. It
then deals with any queue that is near full. It then prioritizes sending messages and sending
command results to the daq first, followed by doing new commands, to make sure that the
XL3s are always as responsive to the daq as possible. Once there are no new commands to

13

do, it then first checks whether the crate is filling up, and if it is, it prioritizes reading out
the FEC fifos before sending packets. Otherwise it will always send out megabundle packets
as soon as they are ready.

int do_what_was(int decided);

This function is just a switch on the result of the previous one, and calls a single function
each time.

run XL3.h contains the definitions for the return values of decide().

5.3 platform

This file contains xilinx specific code that deals with setting up the interrupts.

5.4 xl3 types.h

This header contains definitions of the basic packet types used by the XL3:

typedef struct

{

uint16_t packet_num;

uint8_t packet_type;

uint8_t num_bundles;

} XL3_CommandHeader; //!< Header for every xl3 packet

typedef struct

{

XL3_CommandHeader cmdHeader;

char payload[XL3_MAXPAYLOADSIZE_BYTES];

} XL3_Packet; //!< all packets to and from xl3 look like this

typedef struct

{

uint32_t word1;

uint32_t word2;

uint32_t word3;

} PMTBundle; //!< Bundle from FEC

typedef struct

{

uint32_t cmd_num; // id number unique for the packet it came from

uint16_t packet_num; // number of the packet that created this command

uint16_t flags; // 0 = ok, 1 = there was a bus error

14

uint32_t address; // address =

// spare MEMREG WRITE* SPARE Board_select<5..0> Address<19..0>

uint32_t data;

} FECCommand; //!< Register read or write

typedef struct

{

uint32_t howmany;

FECCommand cmd[MAX_ACKS_SIZE];

} MultiFC; //!< many register reads or writes

5.5 queues

The header has all the queue data structures defined:

typedef struct

{

FECCommand queue[MAX_FEC_COMMANDS];

unsigned int first;

unsigned int count;

} FECCommandQueue;

typedef struct

{

PMTBundle queue[MAX_BUNDLES];

unsigned int first;

unsigned int count;

} PMTBundleQueue;

typedef struct

{

XL3_Packet queue[MAX_MESSAGES];

unsigned int first;

unsigned int count;

} MessageQueue;

Methods for allocating and accessing queue structures live in queues.c.

FECCommandQueue* fcq_alloc(uint32_t address);

Allocates a block of memory at address and zeros it, mercilessly. There is no check on
address, so ”please” make sure it’s safe to write there. In the EDK project, I have reserved
a block of the SDRAM of size 0x00A00000 at 0x00100000. See the linker script for details.
If you regenerate it, you MUST put back in the fifo mem block!!

15

void fcq_free(FECCommandQueue* queue);

Deallocates the memory reserved for queue. The code actually never calls this anywhere,
since there is really no condition in which we ”quit” the application.

void fcq_push(FECCommandQueue* queue, FECCommand cmd);

Push a FECCommand cmd onto the end of a software FIFO FECCommandQueue. If it
doesn’t overflow (only enough space for MAX FEC COMMANDS is allocated), it adds it to
the buffer and increments ’count.’

FECCommand fcq_pop(FECCommandQueue* queue);

Pops a FECCommand off the beginning of a software FIFO FECCommandQueue. If it
doesn’t underflow (ALWAYS CHECK that count¿0 before popping!), it removes the com-
mand at the ’first’ pointer, increments ’first,’ decrements ’count,’ and returns the popped
command.

FECCommand build_cmd(FECCommand* newcmd);

As it is now, takes a pointer to a FECCommand and returns it as an actual FECCommand
struct. Sort of pointless... I think this started as something more useful, like building a user-
defined command.

Equivalent functions exist for both PMTBundleQueues and MessageQueues.

5.6 bus

Contains all the methods that deal with the VHDL state machine and communicate with
the rest of the XL3 and the crate.

int do_command(void);

This function is called to execute a single command from the command in queue. It
pops a command off, and writes it’s address and data to the VHDL registers. It then sets
the start command bit high to tell the state machine to begin. It will then wait for the
read ready to be set high from the VHDL, which tells it that the state machine has finished
the command and the results are ready to be read out. If it times out waiting for read ready,
or if it sees the error bits written to by the VHDL, it resets the state machine and returns
an error. The results of the command are then pushed into the command out queue.

uint32_t do_specified_command(uint32_t data, uint32_t address);

This method is very similar to do command but it does not use the command in and out
queues. Instead it takes the data and address as an argument and returns the result of the
command.

16

int read_bundle(void);

This method loops through the FECs from slot 0 to slot 15, finds the first one with data
available, and reads up to 120 bundles from it, or until the FECs fifo is empty, whichever
comes first. Like in do command(), it can time out while waiting for the read ready signal
from the VHDL. We need to be extra careful here in case there is a glitch midway through
the bundle. Since each bundle takes three reads, it is possible to read out part of a bundle
and become offset in the fifo. If this is not corrected, every following bundle read out will
have parts of two bundles and will be undeciferable. Thus, whenever there is an error during
a bundle read, the code attempts to resync the fifo. After reading each bundle, it is pushed
onto the pmt bundle queue.

int read_specified_bundle(int slot, PMTBundle *p_bundle);

This method is identical to read bundle except that you must specify which slot to read
from. It will then read one and only one bundle, and returns a pointer to it instead of
pushing it onto the bundle queue.

int resync_bundle_readout(int slot);

This is the method called when there is an error during a bundle read. It checks the fifo
difference pointer for the slot in question, and reads out longwords until the difference is a
multiple of three, indicating it is filled with full bundles.

void deselect_fecs(void);

This method just clears the address register read by the VHDL to ensure that the address
pins are all set low across the backplane and no board is selected.

5.7 xl3 utils

The c file contains various utility functions for the XL3, while the header contains a majority
of the global variables, including all the counters, the pointers to the VHDL registers, and
the queues.

int init_XL3(void);

This is the first method called from main. It initializes all the global variables, and sets
up and zeroes the VHDL registers. It also allocates space in the ML403’s ram for four fifo
queues: a message queue that holds generic XL3 Packets to be sent back to the daq, a pmt
bundle queue that holds PMTBundles, and a command in and command out queue that
hold FECCommands. All the FECs are masked out of the data available mask to ensure
that on boot up nothing happens. It then reads from the XL3 CS REG to get the crate
geo address, and compares this with a list of known addresses to get the crate number. It
returns this number so it can be used to set the ip address.

17

int change_mode(uint32_t new_mode, uint32_t slot_mask);

This function is called to either enable or disable the XL3s automatic readout. When the
readout is disabled, the XL3 ignores the bundle queue and the FECs data available status
so bundles are never read out nor pushed to the daq. When the readout is switched on, it
needs to be told a slot mask so that it can mask off the data available bits of any slots that
have no FECs.

int read_local_voltage(int select, float *readout);

This method reads out the adc results for one of several voltages or temperature sensors
on the XL3. It first writes to the XL3 VR REG to select which voltage it wants to check,
then reads it and converts the adc counts to a voltage.

int do_nothing(void);

This method begins by not doing anything, and then continues in a similar fashion for
no time at all. After finishing nothing, it doesn’t check that any condition is met or attempt
to do anything else. It does return 1.

void d_printf(char *buffer);

This method prints to the serial port only if XL3 debugging has been enabled.

5.8 xl3 status

The header file contains all the status globals and definitions for the queue status flags and
the c file contains all the methods that set the status globals.

void update_status(void);

This function is called each time through the main loop. It first blinks the ml403 happy
light so you can always tell if the ml403 is looping correctly or is stuck. It then checks the
ping. If it is time to send another ping packet, it sets the ping requested flag. If a ping has
been sent but no pong has been received, it ticks the ping timeout. Once it has timed out, it
retries several times, but then aborts the connection and tries to reconnect to the daq. Next,
it checks how full the command and message queues are. If it is in NORMAL MODE, it also
checks the data available register, the FEC fifo levels, and the bundle queue. Otherwise, it
ignores them and set their status to empty. Finally, it checks whether any of the FECs fifos
are overflowing, and if they are, sets the appropriate screwed flag. Once a screwed packet
has been sent to the daq, it keeps track of when the fifo memory level drops back down.
Once it remains below some critical level for a certain number of loops, the code determines
that the FEC is ok again and sends the daq another screwed packet to update it on the new
status.

18

void check_data_available(void);

If the data available status is still nonzero, this method does nothing. When it is zero,
it reads out the data available register, sets the appropriate data available flags for each
FEC, and then sets the data available status equal to the number of FECs with data to read
out. Each time read bundle reads from a FEC, it zeroes that FECs data available flag and
decrements the data available status. Thus it will loop all the way through the slots before
coming back to slot 0 even if it gets more data in the meantime. If there is an error reading
the data available register, it sets a flag and will send an error packet to the daq.

void check_fec_mem_level(void);

This method polls all the FECs in the data available mask for their current fifo difference
pointer. If there is an error during these reads, it sets a flag and will send an error packet
to the daq.

void check_X_queue(void);

Checks the queue count and compares it to a threshold level and a warning level specified
in main.h.

5.9 lwip functions

These files contain everything for handling sending and receiving packets. The header has
the globals that buffer the last sent packet until it is verified to have arrived ok, as well as
the definitions for all the packet types that can be sent by the XL3 to the daq. (FIXME see
appendix A) There are two functions that are used to send packets. quick response takes a
packet as an argument and will immediately tcp write it and return the result. This is ok if
used sparingly and not during readout. There is some danger that this will fail since there
is nothing limiting how often it is called and so it can overflow lwip’s buffers. The other
function, transfer packet, is only called from the main loop and only once per loop. It builds
packets by popping data off the queues. Since this is only done once a loop, we can be sure
that the lwip functions are being called frequently enough that it will be written safely.

int transfer_packet(uint8_t type);

This method is used to send data from any of the queues to the daq. It first ensures that
the connection is still ok, and that there is room in lwip’s output buffers for the packet. Then,
depending on the type of packet to be sent, it either pops message packets, FECCommand
results, or PMTBundles out of the queues and puts them into a packet payload. A flag is set
when the packet is written, and is only cleared when the write returns ERR OK indicating
that there were no errors. Otherwise it will try again to send the same packet.

int quick_response(XL3_Packet *aPacket);

19

Immediately sends the packet passed to it to the daq. Returns the error code of the
write. This is the only way to send packets to the daq manually - otherwise you have to
trust the main loop to decide to send it and then actually send it on its own time.

err_t recv_callback(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err);

This callback is called by lwip every time a packet is received from the daq connection.
If the daq has disconnected, this is also called but with a null pointer for the pbuf. The
XL3 expects all packets it receives to be exactly 1444 bytes, so it checks the length of the
data that it receives, and parses each 1444 bytes as its own XL3 Packet. If there are leftover
bytes, they are stored away and added on in front of the next packet that is received. For
each packet that is received, it calls processBuffer() to determine what to do. Note that this
is all done as an interrupt and is not part of the main loop.

void err_callback(void *arg, err_t err);

Called whenever lwip has an error. If it reports that the connection has somehow died, it
changes the connection status so the next time through the loop it can try connecting again.

err_t connected_callback(void *arg, struct tcp_pcb *tpcb, err_t err);

Called whenever a connection is fully established.

int open_connection(void);

Calls tcp connect() and sets up the error callback function.

int close_connection()

Calls tcp close().

void check_connection(void);

Is called once at the beginning of every time through the main loop. If the connection to
the daq is still ok, it does nothing. If the connection was reset, it waits a few loops and then
creates a new connection and attempts to connect. This also occurs when penn daq isn’t
running yet when you start the XL3. If the connection is aborted, it closes the connection
and creates a new one to attempt to connect on. This happens whenever you miss too many
pings or when the XL3 isn’t plugged in to the network yet.

int setup_daq_connection(void);

This method sets up the network interface for connecting to the daq and allocates a
tcp pcb struct for the connection.

20

void mq_printf(char* string, int sendnow);

This method can be used to send message strings by packet to the daq. Each time it
is called, the string it is passed is added on to current string until it reaches 1440 bytes, at
which point an XL3 Packet is created and is pushed onto the message queue. For messages
that you want to push onto the message queue right away, you can set the sendnow argument
to 1. Note that even with sendnow enabled, you still have to wait for the main loop to get
to it in the message queue. If you really want to send a message immediately you need to
construct your own packet and set it with quick response.

5.10 process packet

The header file contains all the packet types that the XL3 can receive from the daq (FIXME
see appendix A). The c files contains the functions that deal with parsing XL3 Packets.

void processBuffer(XL3_Packet* aPacket);

This function is a switch on the xl3 packet type. Since this function is called from the
recv callback, all the functions called from here also occur outside the main loop. For this
reason it is important to ensure that no function is too long or can crash, or lwip may start
having problems. For most packet types, a function is called, and then once it returns, any
results are stuffed into the payload of the same packet and it is then pushed into the message
queue to be sent back. The daq then just waits to get the same packet type back to know
that a command has been executed.

int queue_cmds(XL3_Packet *aPacket);

This function casts the packet’s payload as a MultiFC and then pushes each command
there into the command queue to be executed whenever the main loop decides. The packet
immediately sent back to the daq is only there to inform the daq that the commands have
been queued; it does not contain the actual results of the reads/writes.

int do_single_cmd(XL3_Packet* aPacket);

This casts the packet’s payload as a single FECCommand, executes the command im-
mediately, and returns the results in the same packet. This is useful if you want to get the
results right away and not wait for the main loop.

int do_multi_cmd(XL3_Packet* aPacket);

This is like do single cmd but with a MultiFC.

21

5.11 fec utils

Various utilities that read or write to the FECs.

uint32_t board_id_read_single(int mb, int chip, int reg);

Does a serial read of one of the id chips on the FEC

int load_tac_bits(uint32_t select_reg, uint16_t *tacbits_ptr);

Clocks in to the cmos shift register the tac delay bits.

int reset_fifos(uint32_t slot_mask);

Resets the FEC fifos without resetting the rest of the board.

int check_total_count(int slot, uint32_t *data);

Reads the cmos total count register which tells you how many times that channel has
fired. Since there can be errors reading this register, it reads it up to ten times until it reads
it without the error bit showing up.

int reset_crate(void);

Just writes to the reset register on the XL3, which will fully reset the XL3 and all FECs,
including fifos and xilinxi.

int xilinx_load(uint32_t slot_mask, uint32_t file);

Writes the xilinx code to the FEC xilinx chips. The bitstream is hardcoded into the data.h
header file. First writes to the xlcon register to turn on xlpermit, then sets done/program*
low and clocks in the data. When it’s finished, waits to see done/program* come back high.
If it doesn’t, returns an error.

int XL3_clock_load(void);

Loads the three clocks on the XL3.

int build_crate_config(uint32_t slot_mask);

Updates the crates record of which FECs and DBs are in the crate. It first tries to read
from each FEC’s general csr register, and if it can’t, it marks that slot as empty. Otherwise
it reads out the id chips.

int dac_fullbuff(int slot);

22

int load_cmos_shift(int slot);

int fec_load_crate_add(int crate, uint32_t slot_mask);

Writes the crate address to each FECs general csr register so that it is properly recorded
in each pmt bundle.

int set_crate_pedestals(u_short slot_mask, uint32_t pattern);

Sets the pedestal enable registers for all the fecs in the crate, using the XL3’s knowledge
of which slots are empty to avoid waiting for a bunch of writes that will never finish.

uint8_t read_voltage_value(uint32_t amask, int slot);

Attempts to read a voltage from the FEC several times until it manages to do it without
the VMON BUSY BIT being set.

5.12 hv utils

5.13 crate init

Crate init packets must be sent from the daq to the XL3 17 times in order to actually start
a crate init. The first 16 times they carry the database information for one of each of the
FECs. The last time they have any leftover database info and tell it to start. Each time it
calls crate init packet()

int crate_init_packet(char *payload);

First parses the packet to get the mb number. It keeps track of which FECs it has gotten
database information for, and will not start if it misses some. After receiving data for all 16,
on the next packet it starts the initialization. It then sends back in the final results packet
the current crate configuration.

int crate_init(uint8_t xil_load, uint8_t hv_reset, uint8_t shift_only, uint16_t slot_mask);

This method actually does the initialization. If shift only is set, it only loads the cmos
shift register, and uses this just as a cheezy way to get the database info all updated first.
Otherwise, it resets the crate and loads the XL3 clocks. It then attempts to load the xilinx
to each FEC. Next it updates the crate configuration. Then, for each FEC that is masked it,
it tries to clear it by a write to the general csr register. This is the first place where it is easy
to see whether the FEC is actually installed, so if there is an error here it quits instead of
letting crate init continue and take forever throwing lots of error messages. It then loads the
dacs, the shift register, clears everything, sets the CTC delay, then loads the crate address
into the FEC general csr register, and finally resets the XL3 mask register and test register.

23

5.14 load dacs

A bunch of functions for loading different dacs on the FECs.

5.15 vmon dacs

A bunch of functions for loading different dacs on the XL3s.

5.16 cald test

This test is used to make sure that the three different charge adcs and the tac adc are
functioning correctly. You can switch them to digitizing the output of a dac, so you can set
the level of the dac and then make sure the output matches and is nice and linear. Note
that you need to load the alternate bitstream to the FEC xilinx chips before this test will
work.

int cald_test(uint32_t slot_mask, uint32_t num_points, uint32_t samples, uint32_t upper, uint32_t lower);

This function just uses the articles to determine what dac counts to sample at. For each
point it calls caldac get point(). Every 100 points, it sends a CALD RESPONSE ID packet
back to the daq. It does not respond with the original command packet until the whole test
is done.

int caldac_get_point(uint16_t setval, uint16_t *adc, int slot);

It first sets the dac to the right value, and manually starts the adc conversion, then
latches the results and reads them out.

5.17 fec test

5.18 mem test

5.19 vmon

5.20 zdisc

This test plays with the discriminator level until it is firing at the desired rate.

6 Penn DAQ

If you are looking for help using Penn DAQ, please refer to “Penn DAQ for dummies: The
Official Penn DAQ User’s Guide.” This section is for code documentation and development.
Penn DAQ is a multi threaded program that uses pthreads and unix sockets. Since it is multi
threaded, it can have one thread constantly monitoring the sockets for new data. Whenever a

24

user requests a command be run, a new thread is spawned to execute it, and is deleted when it
is done. This allows us to run tests or commands on different XL3s independently at the same
time. All commands that work this way are made up of two functions; command name(char
*buffer) and pt command name(void *args). The first function is called when a command
comes in and buffer is the command string. This function parses the string for arguments,
and fills the struct command name t. This struct is used to pass all the arguments to a
pthread. Before spawning a thread, it checks to make sure all XL3s and SBCs required by
the command are free and not currently in use. If any of them are, it returns an error.
Otherwise, it marks those XL3s/SBCs as in use and spawns a thread with the function
pt command name. This function will actually perform the command and can communicate
to the sockets it locked down. When the thread finishes or exits on an error, it marks those
sockets as free again and sets a flag to let the main thread know that it is finished. The
main thread will then free the thread to be used again.

6.1 Core

6.1.1 main

Initializes all globals, parses all command line arguments, and reads in the configuration
document. It then sets up all the listener sockets and begins the main loop. Each time
through the loop it checks which sockets are available to check, and then select()s them. It
then loops through every readable socket and calls read socket();

6.2 Crate

6.2.1 Crate init

Contains the crate init command. This command first pulls

6.2.2 Run Pedestals

6.3 db

7 Register Map

//XL3 registers

#define RESET_REG (0x02000000)

#define DATA_AVAIL_REG (0x02000001)

#define XL3_CS_REG (0x02000002)

#define XL3_MASK_REG (0x02000003)

#define XL3_CLOCK_REG (0x02000004)

#define RELAY_REG (0x02000005)

#define XL3_XLCON_REG (0x02000006)

#define TEST_REG (0x02000007)

25

#define HV_CS_REG (0x02000008)

#define HV_SETPOINTS (0x02000009)

#define HV_VR_REG (0x0200000A)

#define HV_CR_REG (0x0200000B)

#define XL3_VM_REG (0x0200000C)

#define XL3_VR_REG (0x0200000E)

//FEC registers

//Discrete

#define GENERAL_CSR (0x00000020)

#define ADC_VALUE_REG (0x00000021)

#define VOLTAGE_MONITOR (0x00000022)

#define PEDESTAL_ENABLE (0x00000023)

#define DAC_PROGRAM (0x00000024)

#define CALDAC_PROGRAM (0x00000025)

#define FEC_HV_CSR (0x00000026)

#define CMOS_PROG_LOW (0x0000002A)

#define CMOS_PROG_HIGH (0x0000002B)

#define CMOS_LGISEL (0x0000002C)

#define BOARD_ID_REG (0x0000002D)

//Sequencer

#define SEQ_OUT_CSR (0x00000080)

#define CMOS_CHIP_DISABLE (0x00000090)

#define FIFO_READ_PTR (0x0000009c)

#define FIFO_WRITE_PTR (0x0000009d)^M

#define FIFO_DIFF_PTR (0x0000009e)

//CMOS internal

#define CMOS_INTERN_TEST(num) (0x00000100 + 0x00000004 + 0x00000008*num)

#define CMOS_INTERN_TOTAL(num) (0x00000100 + 0x00000003 + 0x00000008*num)

//CTC registers

#define CTC_DELAY_REG (0x00000004)

// add to register value

#define READ_MEM (0x30000000)

#define READ_REG (0x10000000)

#define WRITE_MEM (0x20000000)

#define WRITE_REG (0x00000000)

#define FEC_SEL (0x00100000) // to select board #i, (0..15), use FEC_SEL * i

#define CTC_SEL (0x01000000)

#define XL3_SEL (0x02000000)

26

// define MTC register space

#define MTCRegAddressBase (0x00007000)

#define MTCRegAddressMod (0x29)

#define MTCRegAddressSpace (0x01)

#define MTCMemAddressBase (0x03800000)

#define MTCMemAddressMod (0x09)

#define MTCMemAddressSpace (0x02)

//MTC registers

#define MTCControlReg (0x0)

#define MTCSerialReg (0x4)

#define MTCDacCntReg (0x8)

#define MTCSoftGTReg (0xC)

#define MTCPedWidthReg (0x10)

#define MTCCoarseDelayReg (0x14)

#define MTCFineDelayReg (0x18)

#define MTCThresModReg (0x1C)

#define MTCPmskReg (0x20)

#define MTCScaleReg (0x24)

#define MTCBwrAddOutReg (0x28)

#define MTCBbaReg (0x2C)

#define MTCGtLockReg (0x30)

#define MTCMaskReg (0x34)

#define MTCXilProgReg (0x38)

#define MTCGmskReg (0x3C)

#define MTCOcGtReg (0x80)

#define MTCC50_0_31Reg (0x84)

#define MTCC50_32_42Reg (0x88)

#define MTCC10_0_31Reg (0x8C)

#define MTCC10_32_52Reg (0x90)

8 Packet types

8.1 DAQ to XL3

8.1.1 DAQ QUIT ID

Tells the XL3 to disconnect from the daq and exit the main loop.

27

8.1.2 PONG ID

The DAQ echos this packet type back when it gets a ping to let the XL3 know the connection
is still alive.

8.1.3 CHANGE MODE ID

typedef struct{

uint32_t mode;

uint32_t davail_mask;

} change_mode_args_t;

typedef struct{

uint32_t error_flags;

} change_mode_results_t;

#define INIT_MODE (1)

#define NORMAL_MODE (2)

Used to turn the XL3 readout on or off. When the readout is turned on (normal mode),
a data available mask must also be specified to tell the XL3 which slots to read from.

8.1.4 STATE MACHINE RESET ID

First clears the start command and start bundle registers, and then sets the VHDL reset
register high. This should put the state machine back in the idle state and it should stay
there. It then reads the error and spare1 registers to ensure that it actually is now in the
idle state.

8.1.5 DEBUGGING MODE ID

typedef struct{

uint32_t on_off;

} debugging_mode_args_t;

Turns on more verbose output to the serial port.

8.1.6 FAST CMD ID

typedef struct{

FECCommand command;

} fast_cmd_args_t;

typedef struct{

FECCommand command_result;

28

} fast_cmd_results_t;

Does one command immediately using do specified command and then sends the results
back immediately with quick response. The result of the read/write is put into the data field
of the command, and the flag field is set to busstop.

8.1.7 MULTI FAST CMD ID

typedef struct{

MultiFC commands;

} multi_fast_cmd_args_t;

typedef struct{

MultiFC command_results;

} multi_fast_cmd_results_t;

Just like fast cmd except with many commands in a MultiFC. Does all the commands
immediately and returns the results with quick response.

8.1.8 QUEUE CMDS ID

typedef struct{

MultiFC commands;

} queue_cmds_args_t;

Pushes each command from the MultiFC into the command queue. Returns the same
packet, does not return the results of the commands.

8.1.9 FEC LOAD CRATE ADD ID

typedef struct{

uint32_t slot_mask;

uint32_t crate_num;

} fec_load_crate_add_args_t;

typedef struct{

uint32_t error_flags;

} fec_load_crate_add_results_t;

Loads the crate address into each FEC’s general csr register.

29

8.1.10 SET CRATE PEDESTALS ID

typedef struct{

uint32_t slot_mask;

uint32_t pattern;

} set_crate_pedestals_args_t;

typedef struct{

uint32_t error_flags;

} set_crate_pedestals_results_t;

Loads the pedestal enable registers on the FECs. Any FEC not in the slot mask that is
known to be connected will have its pedestal enable register zeroed.

8.1.11 BUILD CRATE CONFIG ID

typedef struct{

uint32_t slot_mask;

} build_crate_config_args_t;

typedef struct{

uint32_t error_flags;

hware_vals_t hware_vals[16];

} build_crate_config_results_t;

Checks each slot to see if there is a FEC there and if there is, reads the id chips for the
FEC and the DBs.

8.1.12 LOADSDAC ID

typedef struct{

uint32_t slot_num;

uint32_t dac_num;

uint32_t dac_value;

} loadsdac_args_t;

typedef struct{

uint32_t error_flags;

} loadsdac_results_t;

Loads one dac on the FEC.

30

8.1.13 MULTI LOADSDAC ID

typedef struct{

uint32_t num_dacs;

loadsdac_args_t dacs[50];

} multi_loadsdac_args_t;

typedef struct{

uint32_t error_flags;

} mutli_loadsdac_results_t;

Loads up to 50 dacs one after the other.

8.1.14 DESELECT FECS ID

Zeroes the VHDL address register.

8.1.15 READ PEDESTALS ID

typedef struct{

uint32_t slot;

uint32_t num_reads;

} read_pedestals_args_t;

Pushes num reads memory reads into the command queue. This is useful when the
number of reads is many more than would fit in a normal QUEUE CMDS packet.

8.1.16 LOADTACBITS ID

typedef struct{

uint32_t crate_num;

uint32_t select_reg;

uint16_t tacbits[32];

} loadtacbits_args_t;

8.1.17 RESET FIFOS ID

typedef struct{

uin32_t slot_mask;

} reset_fifos_args_t;

31

8.1.18 READ LOCAL VOLTAGE ID

typedef struct{

uint32_t voltage_select;

} read_local_voltage_args_t;

typedef struct{

uint32_t error_flags;

float voltage;

} read_local_voltage_results_t;

8.1.19 CHECK TOTAL COUNT ID

typedef struct{

uint32_t slot_num;

} check_total_count_args_t;

typedef struct{

uint32_t error_flags;

uint32_t count[32];

} check_total_count_results_t;

8.1.20 SET HV RELAYS ID

typedef struct{

uint32_t mask1;

uint32_t mask2;

} set_hv_relays_args_t;

8.1.21 GET HV STATUS ID

typedef struct{

uint32_t error_flags;

float voltage_a;

float voltage_b;

float current_a;

float current_b;

} ge_hv_status_results_t;

8.1.22 HV READBACK ID

typedef struct{

float voltage;

float current;

32

} hv_readback_results_t;

8.1.23 READ PMT CURRENT ID

typedef struct{

uint32_t slot;

uint32_t channel_mask;

} read_pmt_current_args_t;

typedef struct{

uint32_t error_flags;

uint8_t pmt_current[32];

} read_pmt_current_results_t;

8.1.24 SETUP CHARGE INJ ID

typedef struct{

uint32_t slot;

uint32_t channel_mask;

} setup_charge_inj_args_t;

8.1.25 FEC TEST ID

typedef struct{

uint32_t slot_mask;

} fec_test_args_t;

typedef struct{

uint32_t error_flag;

uint32_t discrete_reg_errors[16];

uint32_t cmos_test_reg_errors[16];

} fec_test_results_t;

8.1.26 MEM TEST ID

typedef struct{

uint32_t slot_num;

} mem_test_args_t;

typedef struct{

uint32_t error_flag;

uint32_t address_bit_failures;

uint32_t error_location;

uint32_t expected_data;

33

uint32_t read_data;

} mem_test_results_t;

8.1.27 VMON ID

typedef struct{

uint32_t slot_num;

} vmon_args_t;

typedef struct{

float voltages[21];

} vmon_results_t;

8.1.28 BOARD ID READ ID

typedef struct{

uint32_t slot;

uint32_t chip;

uint32_t reg;

} board_id_args_t;

typedef struct{

uint32_t id;

} board_id_results_t;

8.1.29 ZDISC ID

typedef struct{

uint32_t slot_num;

uint32_t offset;

float rate;

} zdisc_args_t;

typedef struct{

uint32_t error_flag;

float MaxRate[32];

float UpperRate[32];

float LowerRate[32];

uint8_t MaxDacSetting[32];

uint8_t ZeroDacSetting[32];

uint8_t UpperDacSetting[32];

uint8_t LowerDacSetting[32];

} zdisc_results_t;

34

8.1.30 CALD TEST ID

typedef struct{

uint32_t slot_mask;

uint32_t num_points;

uint32_t samples;

uint32_t upper;

uint32_t lower;

} cald_test_args_t;

8.1.31 SLOT NOISE RATE ID

typedef struct{

uint32_t slot_num;

uint32_t channel_mask;

uint32_t period;

} slot_noise_rate_args_t;

typedef struct{

uint32_t error_flags;

float rates[32];

} slot_noise_rate_results_t;

8.2 XL3 to DAQ

8.2.1 CALD RESPONSE ID

typedef struct{

uint16_t slot;

uint16_t point[100];

uint16_t adc0[100];

uint16_t adc1[100];

uint16_t adc2[100];

uint16_t adc3[100];

} cald_response_packet_t;

8.2.2 PING ID

typedef struct{

uin32_t mem_level[16];

} ping_packet_t;

8.2.3 MEGA BUNDLE ID

typedef struct{

35

PMTBundle bundles[MEGA_SIZE];

} mega_bundle_packet_t;

8.2.4 CMD ACK ID

typedef struct{

MultiFC commands;

} cmd_ack_packet_t;

8.2.5 MESSAGE ID

typedef struct{

char message[1440];

} message_packet_t;

8.2.6 ERROR ID

typedef struct{

uint32_t cmd_in_rejected;

uint32_t transfer_error;

uint32_t xl3_data_avail_unknown;

uint32_t bundle_read_error;

uint32_t bundle_resync_error;

uint32_t mem_level_unknown[16];

} error_packet_t;

8.2.7 SCREWED ID

typedef struct{

uint32_t screwed[16];

} screwed_packet_t;

36

	Introduction to the XL3
	Setting up Xilinx tools
	Installation
	Configuring the ML403 Project

	XL3 Hardware
	VHDL State Machine
	PowerPC code
	main
	run_xl3
	platform
	xl3_types.h
	queues
	bus
	xl3_utils
	xl3_status
	lwip_functions
	process_packet
	fec_utils
	hv_utils
	crate_init
	load_dacs
	vmon_dacs
	cald_test
	fec_test
	mem_test
	vmon
	zdisc

	Penn DAQ
	Core
	main

	Crate
	Crate_init
	Run_Pedestals

	db

	Register Map
	Packet types
	DAQ to XL3
	DAQ_QUIT_ID
	PONG_ID
	CHANGE_MODE_ID
	STATE_MACHINE_RESET_ID
	DEBUGGING_MODE_ID
	FAST_CMD_ID
	MULTI_FAST_CMD_ID
	QUEUE_CMDS_ID
	FEC_LOAD_CRATE_ADD_ID
	SET_CRATE_PEDESTALS_ID
	BUILD_CRATE_CONFIG_ID
	LOADSDAC_ID
	MULTI_LOADSDAC_ID
	DESELECT_FECS_ID
	READ_PEDESTALS_ID
	LOADTACBITS_ID
	RESET_FIFOS_ID
	READ_LOCAL_VOLTAGE_ID
	CHECK_TOTAL_COUNT_ID
	SET_HV_RELAYS_ID
	GET_HV_STATUS_ID
	HV_READBACK_ID
	READ_PMT_CURRENT_ID
	SETUP_CHARGE_INJ_ID
	FEC_TEST_ID
	MEM_TEST_ID
	VMON_ID
	BOARD_ID_READ_ID
	ZDISC_ID
	CALD_TEST_ID
	SLOT_NOISE_RATE_ID

	XL3 to DAQ
	CALD_RESPONSE_ID
	PING_ID
	MEGA_BUNDLE_ID
	CMD_ACK_ID
	MESSAGE_ID
	ERROR_ID
	SCREWED_ID

