
.

1



The Official Penn DAQ Users Guide

Richie Bonventre

All questions should be sent to rbonv@hep.upenn.edu. Bugs or feature requests can be
posted on github at

http://www.github.com/pennsnoplus/penn_daq

2



Contents

1 Installation and configuration 4
1.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Installing debugDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Installing penn daq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Running Penn DAQ 6

3 List of commands 7
3.1 DAQ commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 XL3 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 FEC commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 MTC commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Using debug DB 15
4.1 The Main Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Quick Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Recent Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Test Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Final Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 CrateView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 XL3 setup 17

6 SBC setup 17

3



1 Installation and configuration

1.1 Dependencies

Penn daq has been designed to be platform independent and to have as few dependencies
as possible. At the moment, the only thing actually required is the curl library in order to
communicate with the database. If you want to host the debug database locally, you will
also need couchdb, and kansojs.

1.2 Installing debugDB

If you are only going to be using the database on snotpenn01, you can skip this section.
First, clone the debugdb repository:

git clone git://github.com/mastbaum/debugdb.git

Then, from within the debugdb directory,

kanso push <database name>

kanso pushdata <database name> daq_docs.json

”debugdb” is recommended as the database name.
Check that the installation was successful by visiting the URL returned by kanso push.

1.3 Installing penn daq

You can get the most up to date version of the code by cloning the penn daq git repository.
If you aren’t going to be committing any changes to the code, you can get a read-only copy
with the command

git clone git://github.com/pennsnoplus/penn_daq.git

If you are going to need commit privileges, you can either fork your own copy (see github
documentation), or contact us to get your account added to the pennsnoplus organization.
You then should create a local ssh key, and in your account settings for github, add the public
key you’ve created. You can now check out a copy of the repository with the command

git clone git@github.com:pennsnoplus/penn_daq.git

Once you have your penn daq directory cloned, move there and type ”make”. That
should be it. If there are any error messages or if it fails to compile, please submit a bug
report on github.

1.4 Networking

By default the XL3 expects to be on the 10.0.0.x network. It will try to connect to the DAQ
at 10.0.0.31. Each XL3’s ip address will be 10.0.0.(crate number 1-19) and it will connect to
the DAQ on port 44600+(crate number 1-19). The SBC’s address and port and the ports
for viewers and controllers can all be changed in the penn daq configuration file.

4



1.5 Configuration

The last step before running the code is to set up the configuration file. This file is located
in the data directory and is called, somewhat redundantly, ”config.cfg”. That folder also has
several other ”.cfg” files with default settings for various places and occasions; you should
copy over whichever one suits your need.

DB ADDRESS If you are running a local database, this should be set to ”localhost”. For
snotpenn01, set it to ”snotpenn01.snolab.ca”

DB PORT By default this is 5984. Only change this if you changed the port for your local
database

DB USER For a local database in admin party mode, leave this blank. For snotpenn01,
set to ”snoplus”

DB PASSWORD For admin party, leave blank. For snotpenn01, set to default snoplus
password

DB BASE NAME Leave as default value

DB VIEW DOC Leave as default value

XL3 PORT Unless you configure the ml403s differently, this should be set to 44601

NEED TO SWAP If you are not running on a big endian machine, this should be left at
1

SBC PORT Can be anything besides (XL3 PORT - XL3 PORT+20) and should be dif-
ferent than CONT PORT and VIEW PORT

SBC USER Leave as default value

SBC SERVER Should be set to the ip address given to the SBC

MTC XILINX LOCATION Leave as default value

DEFAULT SSHKEY If your sbc user has a password, you can create a local ssh key and
give it to the sbc. This should point at the location of the ssh key relative to the penn
daq directory. If the sbc has no password, you can leave this blank

CONT PORT Can be anything besides (XL3 PORT - XL3 PORT+20) and should be
different than SBC PORT and VIEW PORT

CONT CMD ACK Leave as default value

CONT CMD BSY Leave as default value

5



VIEW PORT Can be anything besides (XL3 PORT - XL3 PORT+20) and should be
different than SBC PORT andCONT PORT

CURRENT LOCATION Can be set to ”penn”, ”ag”, or ”ug” to set the location that
will be recorded in the debug database

BUNDLE PRINT Sets frequency it will print readout speed to screen. It will print out
after this many packets.

MAX PENDING CONS Leave as default value

2 Running Penn DAQ

For this section we will assume that you already have your SBC and XL3 both set up and
running. If you need help getting these set up, please check the relevant sections of the
documentation (note that they don’t need to be started up in any particular order, you can
run penn daq first and start the XL3’s after).

Once everything else is running, you are ready to start up penn daq. First, run (penn daq
directory)/bin/penn daq. If everything is set up correctly, it should tell you that it connected
to the database with return code 200. If you get a 404 or 403 or any other error code, then
check that the database is running and that you have the configuration all set up correctly.
Next, if the XL3 is running and you are connected to the xl3 network with the correct IP,
you should see the e3 connect to penn daq. Now that you are connected, you should start a
control terminal to start issuing commands to the XL3. The control terminal can be started
by running (penn daq directory)/bin/tut. You can also issues commands by telnetting to the
daq on the port specified in the configuration document. You should see a notice once you
connect on the main penn daq window that a controller was connected. Finally, to connect
to the sbc, from tut enter the command ”sbc control”. If you have the address of the SBC
correct, you should see it remotely start up OrcaReadout and connect.

Penn DAQ is now a multi threaded program. When you issue it a command, it checks
which of its connections are available, and any connections that will be used by that command
are locked until it finishes. If you try running a second test on the same connection, the tut
window will flash ”connection busy” to let you know. Otherwise, you can have penn daq
running multiple things at once, so for example you can initialize the mtc and the fecs at
the same time.

Results of all SNO+ electronics testing through penn daq are automatically logged to a
CouchDB database. debugdb is a CouchDB application written with the kanso framework
to provide a user interface to the test data.

6



3 List of commands

3.1 DAQ commands

help Gives a list of all the commands recognized by penn daq. Can also list the various
register address maps.

print connected Prints out a list of the connected devices. Note that the DAQ does not
know when an XL3 disconnects, so it will continue to show the XL3 connected unless
you manually quit it from the DAQ

start logging Logs all the output to a file

stop logging Stops logging output to a file. By default logging is off.

set location Tells the DAQ whether it is being run at Penn, or above ground or under-
ground at site. Can also be set in configuration file

sbc control Starts or stops the readout code on the SBC and connects it to the daq

-r (default) Kill OrcaReadout and then restart it before connecting

-c Start OrcaReadout and connect to it

-k Kill OrcaReadout

clear screen Clears the main terminal of output

reset speed Zeroes the average speed calculated for pedestal runs

run macro Run a list of commands from a file in the macro folder

-f (filename) Location of the file relative to the macro folder

stop macro Stops a running macro from issuing any more commands

3.2 XL3 commands

xr Read from an xl3 register specified by number

-r (int) Register number

-c (int) Crate number

xw Write to an xl3 register specified by number

-r (int) Register number

-c (int) Crate number

-d (hex) Data

7



xl3 rw Read/write to an xl3/fec register by address

-c (int) Crate number

-a (hex) Address

-d (hex) Data

xl3 queue rw Add an xl3/fec register read/write to the xl3 command queue

-c (int) Crate number

-a (hex) Address

-d (hex) Data

debugging on Turn debugging output to serial port on for an xl3

-c (int) Crate number

debugging off Turn debugging output to serial port off for an xl3

-c (int) Crate number

change mode Turn xl3 readout on or off

-c (int) Crate number

-n Normal mode - readout is on

-i Init mode - readout is off

-s (hex) Data available slot mask for readout

sm reset Reset the vhdl state machine on an xl3

-c (int) Crate number

read local voltage Read the voltages on an xl3

-c (int) Crate number

-v (int) Voltage select FIXME

hv readback Read out HV voltage and current

-c (int) Crate number

-a Show supply A

-b Show supply B

crate init Initialize the xl3 and fec and load fec xilinx

-c (int) Crate number

8



-s (hex) Slot mask

-x Load normal xilinx code

-X Load caldac xilinx code

-v Reset HV setpoints

-b Use most recent cbal values

-d Use most recent zdisc values

-t Use most recent ttot values

-a Use cbal,zdisc,ttot values

-w Use crate/slot specific ECAL/ECA values

3.3 FEC commands

fr Read from a fec register specified by number

-r (int) Register number

-c (int) Crate number

fw Write to a fec register specified by number

-r (int) Register number

-c (int) Crate number

-d (hex) Data

read bundle Read a single bundle from a specified fec

-c (int) Crate number

-s (int) Slot number

-q Quiet output

3.4 MTC commands

mr Read from a mtc register specified by number

-r (int) Register number

mw Write to a mtc register specified by number

-r (int) Register number

-d (hex) Data

mtc read Read from a mtc register specified by address

9



-a (hex) Address

mtc write Write to a mtc register specified by address

-a (hex) Address

-d (hex) Data

mtc init Initialize the mtcd and mtca

-x Load xilinx

set mtca thresholds Load mtca threshold dacs

-(00-13) (float) Load dac (00-13) to x volts

set gt mask Set which triggers are masked in

-m (hex) Mask of triggers

set gt crate mask Set which crates are masked in to the global trigger

-m (hex) Crate mask

set ped crate mask Set which crates are masked in to get pedestals

-m (hex) Crate mask

enable pulser

disable pulser

enable pedestal

disable pedestal

set pulser freq Change the frequency of the pulser

-f (float) Frequency in Hz. Set to 0 to enable software triggers

send softgt Send one software global trigger

multi softgt Send multiple software global triggers

-n (int) How many to send

10



3.5 Tests

run pedestals Fully set up a pedestal run. Sets up mtcd, turns on pedestals and pulser,
sets crate masks, then enables pedestals on crates and switches them to readout mode.

-c (hex) Crate mask

-s (hex) Slot mask for all crates

-(00-19) Slot mask for crate (00-19)

-p (hex) Channel mask for all crates, all slots

-f (float) Pulser frequency in Hz. Set to 0 to enable software triggers

-t (int) Global trigger delay

-w (int) Pedestal width

run pedestals mtc Sets up the mtcd to run pedestals. Turns on pedestals and pulsers,
but does not set crate masks.

-f (float) Pulser frequency in Hz. Set to 0 to enable software triggers

-t (int) Global trigger delay

-w (int) Pedestal width

run pedestals crate Sets up crates to run pedestals. Enables pedestals on channels and
switches xl3s to readout mode

-c (hex) Crate mask

-s (hex) Slot mask for all crates

-(00-19) Slot mask for crate (00-19)

-p (hex) Channel mask for all crates, all slots

end pedestals Fully stops a pedestal run. Turns off pedestals and pulser and disables
pedestals on fecs, then turns off readout on the xl3s.

-c (hex) Crate mask

end pedestals mtc Stops a pedestal run on the mtcd. Turns off pedestal and pulser

end pedestals crate Stops a pedestal run on crates. Disables pedestals on fecs, then turns
off readout on the xl3s.

-c (hex) Crate mask

trigger scan Scans mtcas across threshold and nhit

-t (int) Trigger to mask in on mtcd

11



-c (hex) Crate mask to mask in to gt

-s (hex) Slot mask for all crates

-(00-19) Slot mask for crates (00-19)

-m (int) Minimum threshold in dac counts to scan down to

-d (int) Which dac to program thresholds on mtca. By default will be the same as
the trigger set by -t.

-n (int) Total nhit to scan up to

-q Enable quick mode (only scans every 10th nhit)

-f (filename) File to print results to

fec test Does read/write test of xl3/fec/cmos registers

-c (int) Crate number

-s (hex) Slot mask

-d Write results to database

mem test Does a read/write test of fec fifo and tests all address bits

-c (int) Crate number

-s (int) Slot number

-d Write results to database

vmon Reads voltages on fec

-c (int) Crate number

-s (hex) Slot mask

-d Write results to database

board id Reads out ids of motherboard, daughterboards, and hv card

-c (int) Crate number

-s (hex) Slot mask

-d Write results to database

ped run Run pedestals and check bundles

-c (int) Crate number

-s (hex) Slot mask

-p (hex) Channel mask

-n (int) Number of pedestals per cell

12



-l (int) Lower limit of charge before channel is flagged

-u (int) Upper limit of charge before channel is flagged

-f (float) Pulser frequency in Hz. Set to 0 to use software global triggers

-t (int) Global trigger delay

-w (int) Pedestal width

-b Mark as a balanced run in database

-d Write results to database

zdisc Zero discriminators

-c (int) Crate number

-s (hex) Slot mask

-r (float) Target rate

-o (int) Offset

-d Write results to database

crate cbal Balance short and long integration charges

-c (int) Crate number

-s (hex) Slot mask

-p (hex) Channel mask

-d Write results to database

cgt test Test global trigger counters and rollover

-c (int) Crate number

-s (hex) Slot mask

-p (hex) Channel mask

-d Write results to database

cmos m gtvalid Set delays to get correct gt valid window

-c (int) Crate number

-s (hex) Slot mask

-p (hex) Channel mask

-g (float) Global trigger cutoff

-n Do not adjust twiddle bits

-d Write results to database

13



cald test Test the fec adcs using the calibration dac

-c (int) Crate number

-s (hex) Slot mask

-l (int) Lowest dac count to start at

-u (int) Highest dac count to scan to

-n (int) Number of points to check between upper and lower limit

-s (int) Number of times to sample each point

-d Write results to database

get ttot Measure the trigger delay time FIXME

-c (int) Crate number

-s (hex) Slot mask

-t (int) Target time

-d Write results to database

set ttot Change rmp and vsi dacs to get ttot right

-c (int) Crate number

-s (hex) Slot mask

-t (int) Target time

-d Write results to database

fifo test Check that the fifo fills correctly and behaves as expected on overflow

-c (int) Crate number

-s (hex) Slot mask

-d Write results to database

disc check Checks that the discriminator is working and stable

-c (int) Crate number

-s (hex) Slot mask

-n (int) Number of pedestals to fire

-d Write results to database

mb stability test Checks that triggers are stable and none are skipped or corrupt

-c (int) Crate number

14



-s (hex) Slot mask

-n (int) Number of pedestals to fire

-d Write results to database

chinj scan Injects charge and does pedestal runs

-c (int) Crate number

-s (hex) Slot mask

-p (hex) Channel mask

-w (int) Pedestal width

-t (int) Global trigger delay

-n (int) Number of pedestals to fire per cell

-l (int) Chinj dac lowest dac count to start at

-u (int) Chinj dac highest dac count to stop at

-a (int) Which adc to inject charge to (0 = qhs, 1= qhl, 2 = qlx, 3 = tac)

-f (float) Pulser frequency in Hz

-e Enable pedestals

-d Write results to database

final test Run a full suite of tests

-c (int) Crate number

-s (hex) Slot mask

4 Using debug DB

4.1 The Main Page

The main page features three panes:
— Quick Links — Recent Tests — Documentation —

4.2 Quick Links

• CrateView: See below

• All FECs: List of all FECs that have been tested, sorted by FEC ID

• All Daughterboards: List of all DBs that have been tests, sorted by DB ID

• All Crates: List of all crates that have been tests, sorted by crate ID

• All Tests: List of all test types that have been run, sorted by test name. Useful for,
e.g., seeing all the fec tests.

15



4.2.1 Recent Tests

A quick summary of the most recent tests. Click ”view all” to see the entire history sorted
by date.

4.2.2 Documentation

Links to some DAQ-related documentation

4.3 Test Pages

Each type of test has a page designed to make results readable quickly and easily. All test
pages feature:

• The test name (e.g. ”Final Test”)

• Whether the test passed or failed

• The date the test was run

• The configuration in which the test was run:

• Location (Penn, surface, or underground)

• Crate ID

• Slot

• FEC ID

• Daughterboard IDs

• Additional information varies from test to test.

4.4 Final Test

Final tests may have any number of tests associated with them. The final test summary
page includes a form for comments on the FEC and daughterboards, dark matter measure-
ments, DC offsets, etc., and checkboxes indicating whether the board has been refurbished
or cleaned. To save changes, click ”Save” at the top of the form.

Under ”Tests,” the tests associated with this final test are listed along with their pass/fail
status. Click on any test name for that test’s details.

16



4.5 CrateView

CrateView provides a quick view of the most recent test in each slot of each crate. For
example, to see the most recent tests in crate 12, click ”12” on the left side of the table.
Click a test name for test details (or, as usual, a FEC ID or DB ID for all tests run on that
FEC/DB).

Below the most recent test data for each slot in CrateView is a link titled ”History.” This
will show all tests run in this crate/slot.

5 XL3 setup

6 SBC setup

17


