
Mozilla Addon Builder

DEPRECATED

Definition of the Package Building System

Piotr Zalewa

build — May 4, 2010

Download this document from

http://github.com/zalun/FlightDeck/raw/master/Docs/Addon%20Builder%20-DEPRECATED%20-%20Definition%20of%20Package%20Building\%20System.

pdf If in doubts, please take a look at the accompanied slides at

http://github.com/zalun/FlightDeck/raw/master/Docs/Addon\%20Builder\%20-\%20Build\%20System.pdf

1 This documet was working on assumptions which are not up to
date. There will be a different document created, which would
describe similar subjects.

2 Syntax

2.1 Objects

x, y, z — represents [a..z]

m, n — represents [0..9]+

Ux is the specific User (identified by User:name)

Px is the specific Package (identified by Package:name)
It should always be used within its type context as Lx — Library or Ax — Addon
Every Package has an associated PackageRevision1 (identified by a triplet Ux:Py.n
User/Package/PackageRevision:revisionNumber)

Mx is the Module (identified by Ux:Py.n:Mz PackageRevision/Module:name2)

2.2 Object identification — revision numbers and HEAD

Ux:Py.n defines revision of the Package.
Ua:La.1 — First revision of Library La saved by Ua.

Ux:Py.n:Mz defines the precise Module revision — a Module inside the PackageRevision.
Ua:La.1:Ma — Module Ma inside the first revision of Library La saved by Ua.

1PackageRevision is not the same as Package version. The latter is just meta-data, a text field of PackageRevision object
used only in exported XPI. It will no longer be used for data identification.

2Every data object is identified by a PackageRevision. The concept is similar to git’s commits. In essence, for every saved
Module change, a new PackageRevision is created.

1

Px =⇒ Uy:Px.n is the HEAD revision of the Package
La =⇒ Ua:La.1 — La’s HEAD points to the first revision of Library La saved by Ua.

Ux:Py.n ⊃ {Ux:Py.m:Mz, ...} Modules inside the Package revision.
Ua:La.2 ⊃ {Ua:La.1:Ma, Ub:La.2:Mb} — Second revision of Library La saved by Ua contains Ma
saved by Ua in his La’s first revision and Mb saved by Ub in his second La’s revision.

3 Relations between database objects

Graph of a sample database stage for the La =⇒ Ua:La.1 ⊃ {Ua:La.1:Ma, Ub:La.1:Mb}. Every object
relates to the appropriate User.

La

Uacrea
ted

by

Ub

Ua:La.0

Ua:La.1 Ua:La.1:Ma

Ub:La.0originated from

belongs to

Ub:La.1

relates to

HEAD revision

Ub:La.1:Mb

Real world example will be more complicated. In essence a PackageRevision might (and most of the time
will) be originated from more than one PackageRevisions. There is also no mention of Library dependencies.

4 Exporting XPI

Be aware that it is possible and common to export XPI3 from partially unsaved data. This happens when
User will use the ”Try in browser” functionality. In this case XPI may not be send to AMO4.

4.1 Creating directory structure

Directory structure should be as close as standard Jetpack SDK as possible.

Create temporary directory and copy Jetpack SDK Packages

• /tmp/packages {hash}5/

– development-mode/

– jetpack-core/

– nsjetpack/

– test-harness/

3An XPI (pronounced ”zippy” and derived from XPInstall) installer module is a ZIP file that contains an install script or a
manifest at the root of the file, and a number of data files.

4http://addons.mozilla.org/
5hash is a random string, different for every exported XPI

2

4.2 Exporting Packages with Modules

1. Create Package and its Modules directories
/tmp/packages {hash}/{Package:name}/
/tmp/packages {hash}/{Package:name}/lib/

2. Use collected data to create the Manifest.
/tmp/packages {hash}/{Package:name}/package.json

3. Create Module files
Iterate over the assigned Modules and create a ”.js” file with its content inside Package’s lib/
directory.

4. Export dependencies
Iterate over Libraries on which a Package depends and repeat this section (Export the Package with
Modules) for every Library.

4.3 Building XPI

System is already in a virtual environment knowing about Jetpack SDK. It is enough to change directory to
/tmp/packages {hash}/{Package:name}/ and call cfx xpi. The {Package:name}.xpi file will be created
in current directory. Its location is then send to the front-end to be used in further actions, usually calling
the FlightDeck Addon6 to download and install the XPI.

4.4 Uploading to AMO

Create XPI from the database object. Use mechanize lib to login to AMOand upload the file faking it was
done directly from the browser.

5 Editing Package and its Modules

How database evolves by changing the Packages and Modules. This description will be used later to design
structure and functionalities of the system.

5.1 Starting point

All next scenarios start from the Ua:La.1 defined as below.

La =⇒ Ua:La.1 ⊃ {Ua:La.1:Ma}

Package La is created by User Ua.
La’s HEAD is PackageRevision identified as Ua:La.1
It contains only one module - Ma
Following steps had to happen to achieve above status:

U
a

Ua:La.0 ⊃ {}Ua creates empty Library La

La =⇒ Ua:La.0System sets La’s HEAD
Ua:La.1 ⊃ {Ua:La.1:Ma}Ua adds new Milestone Ma to La

La =⇒ Ua.La.1Ua sets the HEAD
6FlightDeck Addon is a Jetpack extension allowing to temporary installation of the XPI. It needs to be called with an URL

of the XPI.

3

5.2 Scenario (1 Module, 2 Users, no dependencies)

Ua and Ub are working on La
Ub modified one module

U
a

U
b

Ub:La.0 ⊃ {Ua:La.1:Ma}Ub creates new branch
Ub:La.1 ⊃ {Ub:La.1:Ma}Ub saved changes to Ma

Ub sends request to La’s creator to updade La’s HEAD
La =⇒ Ub:La.1Ua accepts the request by setting the HEAD to Ub’s version

Result: La =⇒ Ub:La.1 ⊃ {Ub:La.1:Ma}

5.3 Scenario (2 Modules, 2 Users, no dependencies)

Ua and Ub are working on La
Ua created module Mb
Ub is working on Mb

U
a

U
b

Ua:La.2 ⊃ {Ua:La.1:Ma, Ua:La.2:Mb}Ua adds a new module Mb to La

La =⇒ Ua:La.2Ua sets the HEAD
Ub:La.0 ⊃ {Ua:La.1:Ma, Ua:La.2:Mb}Ub creates new branch
Ub:La.1 ⊃ {Ua:La.1:Ma, Ub:La.1:Mb}Ub modifies Mb

Ub sends request to Ua to upgrade La

Ua:La.3 ⊃ {Ua:La.3:Ma, Ua:La.2:Mb}Ua modifies Ma

Ua:La.4 ⊃ {Ua:La.3:Ma, Ub:La.1:Mb}Ua acepts Ub’s request, upgrades La

La =⇒ Ua:La.4Ua sets the HEAD

Result: La =⇒ Ua:La.4 ⊃ {Ua:La.3:Ma, Ub:La.1:Mb}

5.4 Scenario (2 Modules, 2 Users, no dependencies)

Ua and Ub are working on La
Ub created module Mb

U
a

U
b

Ub:La.0 ⊃ {Ua:La.1:Ma}Ub creates new branch
Ua:La.2 ⊃ {Ua:La.2:Ma}Ua modifies Ma

Ub:La.1 ⊃ {Ua:La.1:Ma, Ua:La.1:Mb}Ub adds a new module Mb to La

Ub:La.2 ⊃ {Ua:La.1:Ma, Ub:La.2:Mb}Ub modifies Mb

Ub sends request to Ua to upgrade La

Ua:La.3 ⊃ {Ua:La.2:Ma, Ub:La.2:Mb}Ua acepts Ub’s request
La =⇒ Ua:La.3Ua sets the HEAD

Result: La =⇒ Ua:La.3 ⊃ {Ua:La.2:Ma, Ub:La.2:Mb}

4

5.5 Scenario with conflict (2 Modules, 2 Users, no dependencies)

Ua and Ub are working on La
Ua created module Mb
Ua and Ub are working on Mb
Conflict arises...

Steps leading to the conflict:

U
a

U
b

Ua:La.2 ⊃ {Ua:La.1:Ma, Ua:La.2:Mb}Ua adds a new module Mb to La

La =⇒ Ua:La.2Ua sets the HEAD
Ub:La.0 ⊃ {Ua:La.1:Ma, Ua:La.2:Mb}Ub creates new branch
Ub:La.1 ⊃ {Ua:La.1:Ma, Ub:La.1:Mb}Ub modifies Mb

Ua:La.3 ⊃ {Ua:La.1:Ma, Ua:La.3:Mb}Ua modifies Mb

Libraries Ub:La.1 and Ua:La.3 are conflicted because Ub:La.1:Mb and Ua:La.3:Mb are both an evolution
of the Ua:La.2:Mb. From that moment many scenarios may happen. Just a few of them will follow.

5.5.1 Ua sets HEAD and Ub’s revision is outdated

La’s manager — Ua has chosen the HEAD. At that moment he doesn’t know about Ub’s changes to Mb.

U
a

U
b

Ub:La.1 ⊃ {Ua:La.1:Ma, Ub:La.1:Mb}
Ua:La.3 ⊃ {Ua:La.1:Ma, Ua:La.3:Mb}
La =⇒ Ua:La.3Ua sets the HEAD

Ub:La.1 is marked as conflicted. Send update request disabled
Ub receives info that his source is behind the HEAD

Ub:La.1 ⊃ {Ua:La.1:Ma, Ub:La.1:Mb}

Ub:La.2 ⊃ {Ua:La.1:Ma, Ub:La.2:Mb}Ub manually solves conflict by editing Mb

Ub sets the conflict as resolved

From that moment Ub:La.2 becomes a normal (not conflicted) PackageRevision. Ub may send Package
manager an upgrade request which could end by switching La’s HEAD to Ub:La.2. It is important to note,
that the Ub:La.2 is not an evolution of Ua:La.3, it will not be originated from it.7

5.5.2 Ub sends update request, Ua decides to drop his changes

Ub thinks his change to Mb is finished and requests update of the Library from its manager — Ua. He accepts
the request and marks his version of this module as discontinued. This mark prevents from the automatic
set to conflicted revision.

7Decide if this is the right thing to do.

5

U
a

U
b

Ub:La.1 ⊃ {Ua:La.1:Ma, Ub:La.1:Mb}
Ua:La.3 ⊃ {Ua:La.1:Ma, Ua:La.3:Mb}

Ub sends request to Ua to upgrade La

Ua marks the revision as discontinued (optional) Ua:La.3 ⊃ {Ua:La.1:Ma, Ua:La.3:Mb}
La =⇒ Ub:La.1Ua sets La’s HEAD

Draft/Ideas

update Library if Library HEAD has been changed something should tell the User that an update is
possible. It should then (on request) change the versions of all Modules which are not in conflict with
updating Library. In essence, if
Ua:La.1 ⊃ {Ua:La.1:Ma, Ub:La.2:Mb} is a Library to be updated and
La =⇒ Uc:La.3 ⊃ {Ub:La.1:Ma, Uc:La.3:Mb, Uc:La.1:Mc} is current HEAD, then
Ub:La.2:Mb should be updated to Uc:La.3:Mb and Uc:La.1:Mc should be added.
User should receive a notification that Ua:La.1:Ma is not in sync with HEAD.

To be continued. . .

6

