
Taming asynchronous
workflows with Functional

Reactive Programming
LambdaJam - Brisbane, 2013

Leonardo Borges
@leonardo_borges
www.leonardoborges.com
www.thoughtworks.com

Friday, 17 May 13

http://www.leonardoborges.com
http://www.leonardoborges.com
http://www.thoughtworks.com
http://www.thoughtworks.com

Leonardo Borges
@leonardo_borges
www.leonardoborges.com
www.thoughtworks.com

• Thoughtworker
• Functional Programming enthusiast
• Clojure Evangelist
• Founder & Organiser of the Sydney
Clojure User Group (clj-syd)
• World traveller
• Fan of Murray’s Beers :)

about:me

Friday, 17 May 13

http://www.leonardoborges.com
http://www.leonardoborges.com
http://www.thoughtworks.com
http://www.thoughtworks.com

Functional programmers like
programming with values:

a, b, c...

and pure functions:
f, g, h...

Friday, 17 May 13

We get new values by applying
functions to it

(f a) ;;=> b

Friday, 17 May 13

But that’s hardly useful when
we have multiple values

(def vals [a b c])

Friday, 17 May 13

So we use Higher Order
Functions

(map f vals)

Friday, 17 May 13

And compose them as we see fit

(-> vals
 (filter f)
 (map g)
 (reduce h))

Friday, 17 May 13

But what if the value isn’t
known...yet?

a?
Friday, 17 May 13

We make promises

;; thread#1
(def a (promise))

;; ...later in the program
(f @a) ;;<= blocks thread

;; thread#2
(deliver a 10) ;; now thread#1 continues

Friday, 17 May 13

Not great if we want to ‘react’
to a new value

Friday, 17 May 13

What about a list of - as of yet
unknown - values?

[a,b,c]? ? ?
Friday, 17 May 13

Or better yet, a value that
changes over time?

0

37.5

75

112.5

150

10s 20s 30s 40s 50s 60

 V
al

ue

Time
Friday, 17 May 13

Does this sound familiar?

Friday, 17 May 13

Spreadsheets: a poor man’s
reactive programming model

Values

Function

Friday, 17 May 13

Spreadsheets: a poor man’s
reactive programming model

As we change
a value

Our function cell
reacts to the

change

Friday, 17 May 13

‘Changing a value’ is an event

Several events over time form an
event stream

Friday, 17 May 13

“Functional Reactive
Programming is about effectively
processing event streams without

explicitly managing state”
- me

Friday, 17 May 13

“FRP is about handling time-
varying values like they were

regular values.”
- Haskell wiki

Friday, 17 May 13

We’ll use Reactive Extensions
(Rx) - but there are many

implementations

Friday, 17 May 13

In Rx, event streams are called
Observable sequences

Friday, 17 May 13

Rx 101

(-> (.returnValue js/Rx.Observable 42)
 (.map #(* % 2))
 (.subscribe #(.log js/console %)))

;; 84

Friday, 17 May 13

Rx 101

(-> (.fromArray js/Rx.Observable
 (clj->js [10 20 30]))
 (.map #(* % 2))
 (.reduce +)
 (.subscribe #(.log js/console %)))

;; 120

Friday, 17 May 13

Rx 101
(defn project-range [n]
 (.returnValue js/Rx.Observable (range n)))

(-> (.fromArray js/Rx.Observable
 (clj->js [1 2 3]))
 (.selectMany project-range)
 (.subscribe #(.log js/console (clj->js %))))

;; [0]
;; [0 1]
;; [0 1 2]

Friday, 17 May 13

Observables are Monads

Friday, 17 May 13

The Monad Type Class

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

Friday, 17 May 13

Monad functions: return

return :: a -> m a

returnValue :: a -> Observable a

Friday, 17 May 13

(>>=) :: m a -> (a -> m b) -> m b

selectMany :: Observable a -> (a -> Observable b) -> Observable b

Monad functions: >>= (bind)

Friday, 17 May 13

Demo: Simple polling app

Friday, 17 May 13

Server exposes poll questions
and results

e.g.:
{:id 7
 :question "Which is the best music style?"
 :results {:a 10
 :b 47
 :c 17}}

Friday, 17 May 13

What we want
• Render results
• Continuously poll server every 2 secs
• If current question is the same as the previous one
update results;
• Otherwise:
• Stop polling;
• Display countdown message;
• Render new question and results;
• Restart polling;

Friday, 17 May 13

The core idea

Friday, 17 May 13

Turn server results into an
event stream

112334

Friday, 17 May 13

Duplicate stream, skipping one

112334

123345

skip 1

Friday, 17 May 13

Zip them together
112334

1

2

zip

2

3

3

3

3

4

4

5 1

123345

1

Friday, 17 May 13

Now we have access to both
the previous and current

results, with no local variables

Friday, 17 May 13

Show me the code!

https://github.com/leonardoborges/frp-code
Friday, 17 May 13

https://github.com/leonardoborges/frp-code
https://github.com/leonardoborges/frp-code

(def results-connectable
 (let [obs (-> js/Rx.Observable
 (.interval 2000)
 (.selectMany results-observable)
 (.publish)
 (.refCount))
 obs-1 (.skip obs 1)]
 (.zip obs obs-1 (fn [prev curr]
 {:prev prev
 :curr curr}))))

Turn server results into an event stream{

The core idea

Clone stream, skip one

Zip them together {
Friday, 17 May 13

“FRP is about handling time-
varying values like they were

regular values.”
- Haskell wiki

Friday, 17 May 13

Questions?
Leonardo Borges

@leonardo_borges
www.leonardoborges.com
www.thoughtworks.com

Friday, 17 May 13

http://www.leonardoborges.com
http://www.leonardoborges.com
http://www.thoughtworks.com
http://www.thoughtworks.com

References
Code - https://github.com/leonardoborges/frp-code

RxJS - https://github.com/Reactive-Extensions/RxJS
RxJava - https://github.com/Netflix/RxJava

Other FRP implementations:
Reactive-banana - http://www.haskell.org/haskellwiki/Reactive-banana
Javelin (Clojurescript) - https://github.com/tailrecursion/javelin
Bacon.js - https://github.com/raimohanska/bacon.js

Friday, 17 May 13

https://github.com/leonardoborges/frp-code
https://github.com/leonardoborges/frp-code
https://github.com/Reactive-Extensions/RxJS
https://github.com/Reactive-Extensions/RxJS
https://github.com/Netflix/RxJava
https://github.com/Netflix/RxJava
http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
https://github.com/tailrecursion/javelin
https://github.com/tailrecursion/javelin
https://github.com/raimohanska/bacon.js
https://github.com/raimohanska/bacon.js

