
A Brief Summary of DOOM�style Rendering

Robert Forsman and Bernd Kreimeier

July ��� ����

Abstract

This article serves as a brief summary and �rst introduction to the idea underlying
DOOM�style rendering� It discusses storing the scene geometry using LineDefs� Sid�
eDefs and Sectors� and sketches how to render a scene described by a WAD �le� Its
purpose is to introduce the main concepts of restricted geometry rendering� A list of
references suggests further reading�

Introduction

DOOM by id Software combined a couple of well�known and already used techniques
with newly invented ones in a unique way� While upcoming �D hardware acceleration
allows for arbitrary scene geometry� restrictions of one kind or another are still valu�
able and sometimes necessary ways to trade versatility for performance or algorithmic
simplicity�

The main restriction of DOOM�style rendering is a static environment that can be
represented as a �D projection� DOOM used additional restrictions� e�g� did not allow
for sloped �oors and slanted walls� but these are not as important as the restriction to
a world that is� in principle� only two�dimensional in structure while obviously three�
dimensional in visual appearance�

To discuss this in further detail� we �ll �rst brie�y discuss the representation of the
scene geometry� as used in DOOM� A full summary can be found in 	�
�

The worlds of DOOM

The DOOM scene geometry is stored in several lookups for Vertices� LineDefs and
Sectors� During BSP building� additional descriptions are generated� In this document
we refer to SubSectors and LineSegs� but ignore Nodes� Placement of objects requires
yet another lookup�

Vertices

Vertices are two�dimensional� This means that multiple vertices of the �D scene implied
are represented by one projected vertex in the XY plane� The Z coordinate is implicit�
because it has to be obtained from the Sectors�

�



LineDefs and SideDefs

LineDefs are edges in the XY plane� de�ned by a start and an end vertex� Thus
LineDefs have a direction� and a right and a left side� Every LineDef has one or two
SideDefs� If a LineDef only has one SideDef� then this must be the right SideDef�
Consider the following �gure Fig� �� This LineDef only has one SideDef and it is the
right SideDef �if you stand on the �rst point and face the last point� the Sector is on
your right
� Note that Sectors are in turn referenced by SideDefs�

Sector 12

first point

last point
lin

ed
ef

No Sector

Fig� �

Sector 12

first point

last point

lin
ed

ef

Sector 7

Fig� �

In Fig� �� the LineDef has two SideDefs� A Sector � is on the left and a Sector ��
is on the right side of the LineDef�

The LineDef represents the geometry of the scene� It could be viewed as a projection
of one� two or three rectangular polygons along z� to the XY plane� The polygons are
implicitly de�ned by the data in the LineDef� its SideDefs and adjacent Sectors� In
consequence� DOOM describes up to three �D rectangles and eight �D vertices by two
�D vertices and four z heights�

Sectors

A Sector is an �D area completely surrounded by LineDefs� and referenced by the
LineDefs� SideDefs� As an example� consider the following Sectors�

2

1 3

4

Fig� �

You will notice that this area is reminiscent of the starting area in E�M�� There
are � pillars that aren�t sectors� and there are also two sectors ����
 that are inside
sector ��

These Sectors are not necessarily convex polygons� but could be concave� or even
have holes� In addition� as mentioned below� LineDefs could have two SideDefs refer�
encing the same Sector� i�e� have the same Sector adjacent on both sides�

�



Let�s look at the numbered list of linedefs that are used to de�ne the sectors�

1

3

2

26

27

28 30

31

32

456

7

8

9

10 11 12

13

14

15

16

17

18
19

20

21

22

23

24

25

29 33

And here�s a table of sectors referred to by sidedefs of a linedef� Pay special atten�
tion to the di�erence between linedefs ����� and linedefs ������

LineDef left right LineDef left right
number Sector Sector number Sector Sector

� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
�� � � �� � �
�� � � �� � �
�� � � �� � �
�� � � �� � �
�� � � �� � �
�� � � �� � �
�� � � �� � �

�� � �

Note� however� that there can be two�sided LineDefs with SideDefs referencing the
same Sector on both sides� the partly transparent grate texture walls on E�M� or
E�M� are a prime example�

�



Upper� Lower� Middle Textures

While the LineDefs and Sectors completely de�ne the scene geometry� the SideDefs
�as well as the Sectors
 determine the visual appearance of the world� DOOM�style
rendering relies heavily on texture mapping to give the world detail and a solid ap�
pearance� For each side of a LineDef� described by a SideDef� there are three possible
surfaces to be textured� These are rectangular polygons always perpendicular to the
XY plane� and are named upper� lower and middle �or normal
 texture� For each�
texture coordinate alignment in both directions can be controlled explicitly by o�sets�
and implicitly by pegging attributes representing some natural alignment given by the
scene geometry� The dimensions of the three surfaces are given by the LineDef and the
adjacent Sectors� the length is always the LineDef�s length� and the height is given by
�oor and ceiling heights of Sectors on one or both sides� For details see 	�
 or the Web�
View�D description 	�
� Note that WebView�D does not allow for di�erently textured
upper and lower textures� and that there are no middle textures on two sided LineDefs
in WebView�D�

Floor and Ceiling Textures

The Sectors de�ne �D areas which are textured as well� the �oor� and the ceiling� There
is only a �xed� natural texture alignment given by a �xed size world coordinate aligned
XY grid�

Viewing the world of DOOM

For reasons discussed later� a renderer bene�ts from the restriction to a �D repre�
sentable scene geometry only if accompanied by a restriction of possible directions of
view� DOOM�style rendering is often called ��� degree of freedom rendering� This
means that the POV has three degrees of freedom of movement in X�Y�Z� i�e� arbitrary
translation is possible �neglecting collision detection� of course
� but that only one full
degree of freedom in terms of rotation is available� around the Z axis� changing the
azimuth angle� A second rotation for limited looking up and down can be faked by
shearing� but a roll rotation around the view axis is prohibited�

Note that these restrictions are partly due to the restricted geometry� as we will see
below� while others are simply related to special case texture mapping� In addition�
restricted view rendering allows for using a very straightforward cylindrical mapping
for view position independent background� i�e� sky textures�

A Sample Scenery

Here is a sample from the well�known E�M� map� right at the start� Witness overlays in
the screen plane �status bar� weapon sprites
� and partly transparent billboard objects
�the barrel� guts� a dead player sprite
�

�



N N
NN

NNNNN

F

F

F F

C C

C

U

U

U

U

L L

Now consider the screenshot and its schematic in the terms coined above� F is a
�oor� C is a ceiling� N is a normal or middle texture� U is an upper texture� L is a
lower texture� Some billboards are marked as ellipsoids�

A few obvious observations� �oors and ceilings could never be adjacent� There are
no visible �oors above the middle row of the screen� and no visible ceilings below the
middle row of the screen� Ceilings might be separated by uppers� �oors are separated
by lowers� A middle always separates a �oor and a ceiling� Taking occlusion into
account� a lower or upper from a pillar might obscure anything behind� An opaque
middle obscures everything behind by de�nition� Note that single�sided LineDefs have
to carry an opaque middle on their right SideDef� Partly transparent textures are only
allowed on middle textures of double sided LineDefs�

�



DOOM�style Rendering Basics

Binary Space Partition

This introduction does not discuss BSP� as there is exhaustive material available� be it
in books 	�
� on the web 	�
 or FTP 	�
� The �D BSP used by DOOM partitions possibly
non�convex Sectors� creating SubSectors that are guaranteed to be convex planar �D
polygons� In the process� it uses LineDefs as partition lines� and splits other LineDefs
to LineSeg segments� During BSP traversal� SubSectors are processed in front to back
order� and for each SubSector the texture and surface data are obtained by referencing
the LineDef and the SideDef and the Sector� starting with each LineSeg found in the
SubSector� All the discussion above is still valid� except that the width of the actual
surface rendered is given by the length of the LineSeg� not the LineDef�s length�

Spanning Scanline

There is an alternative rendering approach that does not use a BSP� which has been
used e�g� by Chris Laurel�s �wt�� This is in principle an edge�sorted rasterizer rotated
by �� degrees� as� for reasons discussed below� the scanlines are not screen rows� but
screen columns in this case� Sorting is done for each frame� but is based on sorting �D
LineDefs instead of sorting upper� lower� middle surfaces separately�

Special case Texture Mapping

In the PCGPE 	�
 you will �nd many examples of a�ne texture mapping� This ap�
proach does not give perspective correct texture mapping in general� As the latter
requires a very expensive division per pixel� it is a common idea to restrict to those
cases in which a�ne texture mapping happens to be correct� This is discussed in detail
in 	�
� and the basic idea is that a�ne texture mapping yields correct results as long
as we are proceeding along a slice of constant z depth in screen space� Neglecting
free direction texture mapping� this enforces familiar restrictions on scene geometry
and view� the walls have to be perpendicular to the XY plane �thus each wall slice of
constant z distance maps to a screen column
� and �oors and ceilings have to be in the
XY plane �thus each screen row has constant z distance as well on a �oor or ceiling
�

Obviously� rendering �oors and ceilings is more expensive �we are proceeding along
a diagonal in texture space in most cases
� and it is more complicated with respect to
clipping� as we will see� Sean Barrett 	�
 gives an inner loop in assembly and mentions
the necessity to store �oor�ceiling textures in a particular way� a technique sometimes
called texture interleaving or pixmap interleaving � the basic idea being to have each
texture row starting on a ��� byte o�set� which allows for fast computation of the
current pixel�s address�

Within this document� the most important observation is that rendering walls with
perspective correct texture mapping could be done as fast as it gets� as long as the
view is not allowed to roll or tilt� and as long as we do not have to deal with sloped
or slanted surfaces with textures� In this case� texture mapping a wall slice to a screen
column is equivalent to scaling the texture� Note that limited looking up�down is
done by shifting the vertical slices within the screen columns up or down �including

�



clipping
� an operation sometimes called shearing that distorts the view but does not
require changing the rendering approach�

Per column rendering

We learned so far that wall rendering is best done per screen column� One problem
is to determine the start and end column indices from the projection of the vertices�
a problem that has to be solved in �D only� A fast approach as used by DOOM is
described in 	�
� So we know how to determine which screen columns we have to handle
for a given LineSeg or LineDef�

How is a screen column done� then� Both the BSP and the scanline approach have
in common that� somewhere down in the rendering loop� operations are performed
per screen column �with �D rendering� you would prefer rendering per screen row� for
obvious reasons
� From the schematic we learned that within the DOOM world� we
start with a ceiling or an upper texture or a middle texture in the topmost row� and
with a �oor or a lower or a middle texture in the bottom screen row� No matter what
sequence exactly� we know that a middle will �ll the column �nally�

The most important aspect of front to back rendering is to stop processing the
world as soon as the frame is done anyway� i�e� all other surfaces will not be visible�
So how do we clip our surfaces e�ciently�

Floating Horizons

The BSP approach processes surfaces in several columns� while the scanline approach
by its very nature deals with each screen volume separately� until it is done� For our
discussion this only means that the BSP approach needs to have the same lookup used
per column in as many copies as there are screen columns� Anything else is identical�

It is obvious that� given the restrictions to the scene geometry described above� the
view will grow from top down� and bottom up during front to back rendering� The
part of the screen row that is still empty is always one single slice in the middle of the
column� between the top slice already �lled by ceilings and upper textures� and the
bottom slice �lled by already drawn �oors and lower textures� As soon as a middle
texture is drawn� we are down� However� there is no guarantee that any middle texture
is visible� it might have been obscured by an upper or lower texture already� or even a
�oor or ceiling�

To handle which part of the scenery obscures other parts further away� we introduce
to clipping horizons within the screen column� two indices that indicate the topmost
pixel �from the bottom
 and the bottom pixel �from the top
 that has already been
drawn� Prior to texture mapping� we simply clip the vertical slice of the wall we want
to render against these �oating horizons� As soon as the top horizon is identical to
or below the bottom horizon� we are �nished with this column� Using a BSP� we
increment a counter and check against the total number of columns� to see if the frame
is complete� With a scanline approach� we proceed to the next screen column until the
leftmost �or rightmost� depending
 is done�

�



Partial Transparency

Obviously� the simple clipping approach used above does not work with partly trans�
parent wall textures or billboard objects �sprites
� for the same reason we cannot handle
multiple �oors and ceilings� in both cases� our single empty slice in the screen column
would have to be split into two or more separated slices�

It is possible to use a span bu�er� essentially a specialized list of already drawn slices
for each column� which has to be done if you want to add multiple �oor and ceiling
extensions� or include polygon objects in the front to back rendering pass� DOOM�style
rendering sticks to the restrictions� and the simple clipping� Partly transparent walls
and sprites are clipped against the �oating horizons as soon as they are encountered�
without updating them� and put on a stack� They are processed separately in a back
to front rendering pass as soon as the world has been done by a front to back pass�

Floors and Ceilings

The acute reader will by now have recognized that this descriptions is missing some�
thing essential � namely the rendering of �oors and ceilings� As has been explained
above� �oors and ceilings have to be rendered in horizontal slices to get correct results
by a�ne mapping� But our clipping is done by column� not by row�

It happens that this is the most di�cult thing in writing a DOOM�style renderer�
Chris Laurel�s �wt� used a �ood�ll approach that did not work with partly transparent
billboards� and restricted to �at �oors and ceilings that could be done in vertical slices�
just like walls� in the �nal release� Philip Stephens� BSP�based version of WebView�D
used perspective correct texture mapping with vertical slices� which trades speed for
algorithmic simplicity� The Di�erence Engine renderer never did �oor and ceilings
textures in the scanline version� There is a working �at shading source that does �oors
and ceilings in horizontal slices using the BSP� written by Jake Hill� that should serve
as a demonstration of how it could be done� The basic idea is to �ll all rows in the
space given by the current and the old top �or bottom
 clipping index across the space
spanned by the current LineSeg�s projection to the screen�

Summary and Comment

DOOM�style rendering comprises a neat example of how di�erent techniques and re�
strictions �t together to a streamlined design� Restrictions on degree of freedoms a�ect
both scene geometry representation and world to view transformation overhead� as well
as clipping and texture mapping requirements� While there are many examples of ex�
tending a DOOM�style approach to include lots of special cases hacks to soften the
restrictions� or fake more general scene representation� the approach really does work
well by being strict�

On the other hand� certain restrictions are serious design �aws in retrospect � the
�D collision detection used by DOOM is a prime example� Neglecting the current
height of objects introduced some serious animation and behavior artifacts that even
spoiled gameplay� and the performance gains are negligible�

Even with upcoming �D hardware� DOOM�style rendering in a more general sense
will have its place� What should be learned from DOOM is that restriction to a �D

�



representation of the environment is perfectly acceptable for �rst person perspective
games� for a lot of reasons including limited user interface interactions� kinesthetics�
and the fact that within a supposedly man�made virtual world with gravity� there is
not much that is essentially or necessarily �D�

Improved DOOM�style rendering might use Potential Visible Sets for �D BSP� which
are easier to approximate in �D� and �D based approximations of realtime incremental
radiosity� Realtime update of a BSP will be feasible for �D a lot earlier than in the �D
case� Polygon objects are possible using a simpli�ed span bu�er for clipping� Using
a z��ll during the front to back rendering of the static environment does allow for
particle animation� Many techniques currently developed for �D rendering e�g� with id
Software�s Quake could be used in DOOM�style rendering with a lot less overhead� It
might not always be worth the e�ort with a product in mind� but it will surely prove
educational�

Acknowledgments and Copyright

The authors acknowledge the detailed description written by Matt Fell without which
this document would not have been possible� and the PCGPE collected by Mark Feld�
man� therein the tutorial on texture mapping by Sean Barrett�

This article is Copyright �C
 ���� by Robert Forsman and Bernd Kreimeier� The
�gures and schematics and the description of LineDefs� SideDefs and Sectors were writ�
ten by Robert Forsman� the description of DOOM�style rendering by Bernd Kreimeier�
All rights reserved�

References

	�
 James D� Foley� Andries van Dam� Steven K� Feiner� John F� Hughes�
Computer Graphics � Principles and Practice

Addison Wesley� ����� �����

	�
 Matt Fell� Uno�cial DOOM Specs� ����� �����

	�
 Philip Stephens� Writing a fast �D graphics engine� �����

	�
 Sean Barrett� Texture Mapping� In� Mark Feldman� PCGPE� �����

	�
 William Doughty� One Approach to Real Time Texture Mapping� �����

	�
 Bretton Wade� BSP Frequently Asked Questions� ����� �����

	�
 Mark Feldman� PC Games Programmer�s Encyclopedia� �����

	


