
Dev-iQue LLC
T +44 (845) 805-72-28

T +38 (044) 362-49-64

Chabanivska str 9, r.102
Kiev, 03187, Ukraine

info@dev-ique.com
http://dev-ique.com

iQ SDK User Manual

1. Overview

iQ SDK is a software development kit for ultra-rapid application

development on the Appcelerator Titanium platform. It includes a set of

JavaScript frameworks, helper scripts, project templates and

documentation that allows easy and fast bootstrap in the area of application

development.

iQ SDK is based on a set of opensource frameworks that significantly

extend possibilities of JavaScript language and Titanium API:

• EnJS Framework that extends core JavaScript language with potent

iterators and helper functions. EnJS is based on well-known PrototypeJS

Framework, but has many improvements and modifications required for

Titanium compatibility.

• Joose Framework that enhances JavaScript with very simple and easy

to use shortcuts for objective-oriented programming, class inheritance

and event handling workflow.

• iQ Class Library — an extension on top of Appcelerator Titanium API

that utilizes Joose OOP and EnJS iterators to create a rich class library

for creating user interface and managing data.

mailto:info@dev-ique.com
mailto:info@dev-ique.com
mailto:info@dev-ique.com
http://dev-ique.com
http://dev-ique.com
http://dev-ique.com
mailto:info@dev-ique.com
mailto:info@dev-ique.com
http://dev-ique.com
http://dev-ique.com

1.1. Features

• Easy internationalization. All strings can be referenced throughout the

code using short identifiers (like ‘%windowTitle’) that are automatically

processed and resolved by the platform into a verbal string according to

the currently used locale.

• Separated design. Using iQ SDK design items (like colors, fonts) can be

defined only once and then easily referenced in any part of the UI

definition – and thus, to change the title bar color or backgound image,

you only need to change one string/value in one place – without the need

to go through all files finding and replacing old values.

• Themes. Like with internationalization strings, all references to the local

images and designs are stored in packages called “themes”, which can

be easily switched.

• Global interface hierarchy. iQCL gives a unique feature of addressing all

interface elements from any part of the program with easy “iQ path

expressions”. For instance, to access the object behind the input field

“userName” in the form “loginForm” located on the other tab called

“loginTab” you just need to write:

TheApp.getUI(‘@loginTab.@loginForm.@userName’).value();

1.2. Class Library Principles

• Constructor-oriented approach vs. factory pattern, used by

Appcelerator

// Creating object with Titanium SDK:

var button = Ti.UI.createButton({ … });

// Creating object with iQ SDK:

var button = new iQue.UI.Button({ … });

Why we use it: It is a good JavaScript practice to use new operator for

instantiating objects of specific type (class).

• Presentation and logic separation: user interface configuration (layout,

colors, design etc) are kept in separate JSON files clean of code and

program logic. From the other hand, program code does not get

obfuscated with a large UI configuration objects:

// Creating object with Titanium SDK, single file:
var win = Ti.UI.createWindow({

 modal: true,

 title: ‘Some window’

});

var button = Ti.UI.createButton({

 title: ‘Button title’,

 color: ‘white’,

 backgroundColor: ‘black’,

 selectedBackgroundColor: ‘gray’,

 font: {

 fontSize: 12,

 fontFamily: ‘Helvetica’,

 fontWeight: ‘bold‘

 },

 shadow: …

 …

});

win.add(button);

button.addEventListener(‘click’, function () {

 // Program logic goes here

});

// Creating object with iQ SDK:
// File 1 - User interface description

var Layout = {

 config: { title: ‘Some window’ },

 components: [

 { builder: iQue.UI.Button,

 config: {

 title: ‘%buttonTitle’,

 color: Design.buttonColor,

 backgroundColor: Design.buttonBackground,

 selectedBackgroundColor: ‘gray’,

 font: Design.buttonFont,

 shadow: …

 …

 },

 listeners: {

 click: TheApp.onButtonClick

 }

]

};

// File 2 - Program logic

TheApp = {

 mainWin: new iQue.UI.Window(Layout),

 onButtonClick: function () {

 // Program logic goes here

 }

};

TheApp.mainWin.open();

• Object-orientation taken to the edge with outstanding meta-

programming Joose Framework. iQ Class Library heavily utilizes class

inheritance, roles, traits, mutability, reflections and other modern OOP

concepts.

• Aspect-oriented approach that allows very sophisticated and elegant

hooking of the Class Library:

// This will result in loggin each single HTTP request to

// the console

iQue.HTTPClient.extend({before: { request: function () {

 this.debug(‘Sending HTTP request’);

}}});

2. Application Architecture

2.1. General Architecture Design

Application written with iQ SDK must use Model-View-Controller design

pattern. In case of touch-based mobile device with both client- and server-

side components this pattern is shown on Fig 1.

USER

User touches
and input Displaying

data

Data
modification

SERVER

Updating
data

Loading
non-cached
or outdated
data

VIEW

Data
retrieval

CONTROLLER

MODEL

local data data cache

app.js

Main application file with
controller logic code

iQ UI Components and views extending their core
functionality

model

Data model classes
(iQ Data and derived

classes)
SQLite

database
JSON Local
Data Files

SQLite
database

JSON Local
Data Files

Calling
event

listeners
Updating
UI views

Fig 1. Application architecture

iQ Class Library takes care of every aspect of the data flow. For instance it

has a rich set of classes to manage local and cached data in such a way

that developer does not need to care of local data caching or updating

information on the server – these all are done automatically.

Basically, developer needs to address just a number of points (like event

listener bindings), most of which reside at the level of application controller

(app.js file). This is keystone of the application, and from here developer

may access both user interface (update views or read user input) and data

model (by retrieving or updating data).

• Getting user input is done using event listeners. When describing user

interface layout (see next section) you can set up listeners for each

component in the following simple form:

// Layout definition file from layouts folder
Layout.someComponent = {

 name: ‘componentName’

, builder: iQ.UI.Button

, config: { … }

, listeners: {

 click: TheApp.onButtonClick

 }

};

// Main application controller in the app.js file

iQ.initApp({

 …

, methods: {

 onButtonClick: function (event) {

 // Perform some action

 }

 }

});

• Updating views is done using iQ Path Expressions. Briefly, you can

access any part of the user interface by calling TheApp.getUI function

with some iQ path – a sequence of dot-separated component names in

the layout hierarchy:

TheApp.getUI(‘@loginTab.@loginForm.@userName’).value();

iQ Path Expressions are very safe in use: even if you misspell some

component name it would just gracefully fail providing you with the

detailed information in the Titanium log. Using that information you can

easily track at what level of layout hierarchy path expression fails to

compute.

• Data retrieval and modification is done using rich set of iQ data

classes. For instance, each application by default have an associated

SQLite database that can be accessed using TheApp.db property. iQ

Database class have an embedded facility to synchronize the database

with the server – you can do that by just simply calling

TheApp.db.synchronize method. Additionally, you can define your

own smart data objects which automatically save themselves to

database and updates from the server:

Class(‘TheApp.data.User’, {

 isa: iQ.Data.SmartObject

});

TheApp.data.Users =

new iQ.Data.SmartCollection(TheApp.data.User, {

 database: { table: ‘users’ }

 // or alternatively you can keep it in file:

 // file: ‘users.json’

});

TheApp.loginAndUpdateEmail =

function (login, passwd, newEmail) {

 var user = TheApp.data.Users.find({

 email: login

 , password: passwd

 });

 if (!user) alert(“Wrong user name or password”);

 user.update(

 { email: newEmail }

 , { save: true, sync: true }

);

};

2.2. Project Structure

Typical application project structure is shown on the Fig 2.

app.js

Main application file with
configuration information
and controller logic code

views (JS)

Custom views
extending iQ.UI

classes

layouts (JSON)

JSON definitions of application UI

root.js

Main application layout
automatically initialized during

startup

layouts/components (JSON)

JSON definitions of other
application components
(windows, views, custom

controls)

i18n (JSON)

Files with locale-
specific strings;
each file should

be named after a
locale

themes

en.js ru.js

<theme_name>

design.js

Design
constants

(colors, fonts
etc)

theme.js

JSON
mappings of
res names to

file path

files

theme-specific
images,

sounds, font
files etc

model (JS)

Custom data model
classes

data

Directory containing
SQLite databases,

serialized JSON files and
other local data sources

res (png, mp3, m4v)

Common (non-theme-specific) resource files

Fig 2. Project directory structure

VIEW

CONTROLLER

app.js

Main application file with
configuration information
and controller logic code

views (JS)

Custom views
extending iQ.UI

classes

layouts (JSON)

JSON definitions of application UI

root.js

Main application layout
automatically initialized during

startup

layouts/components (JSON)

JSON definitions of other
application components
(windows, views, custom

controls)

i18n (JSON)

Files with locale-
specific strings;
each file should

be named after a
locale

themes

en.js ru.js

<theme_name>

design.js

Design
constants

(colors, fonts
etc)

theme.js

JSON
mappings of
res names to

file path

files

theme-specific
images,

sounds, font
files etc

MODEL

model (JS)

Custom data model
classes

data

Directory containing
SQLite databases,

serialized JSON files and
other local data sources

res (png, mp3, m4v)

Common (non-theme-specific) resource files

USER

User touches
and input

Displaying
data

Data
modification

SERVER

Updating
data

Loading
non-
cached
or
outdated
data

Data
retrieval

Fig 3. Application architecture and data flow put on top of the project file

hierarchy

