
2/6/13 Offline Web Applications - Dive Into HTML5

1/17diveintohtml5.info/offline.html

W

You are here: Home ‣ Dive Into HTML5 ‣

№№88..
LET’S TAKE THISLET’S TAKE THIS

OFFLINEOFFLINE

show table of contents

❧❧

DIVING INDIVING IN

hat is an offline web application? At first glance, it sounds like a

contradiction in terms. Web pages are things you download and render.

Downloading implies a network connection. How can you download

when you’re offline? Of course, you can’t. But you can download when

you’re online. And that’s how HTML5 offline applications work.

At its simplest, an offline web application is a list of URLs — HTML, CSS, JavaScript,

images, or any other kind of resource. The home page of the offline web application

points to this list, called a manifest file, which is just a text file located elsewhere on

the web server. A web browser that implements HTML5 offline applications will read

the list of URLs from the manifest file, download the resources, cache them locally, and

automatically keep the local copies up to date as they change. When the time comes

http://diveintohtml5.info/index.html
http://diveintohtml5.info/table-of-contents.html#offline
javascript:showTOC()

2/6/13 Offline Web Applications - Dive Into HTML5

2/17diveintohtml5.info/offline.html

that you try to access the web application without a network connection, your web

browser will automatically switch over to the local copies instead.

From there, most of the work is up to you, the web developer. There’s a flag in the

DOM that will tell you whether you’re online or offline. There are events that fire

when your offline status changes (one minute you’re offline and the next minute

you’re online, or vice-versa). But that’s pretty much it. If your application creates data

or saves state, it’s up to you to store that data locally while you’re offline and

synchronize it with the remote server once you’re back online. In other words, HTML5

can take your web application offline. What you do once you’re there is up to you.

OFFLINE SUPPORTOFFLINE SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· 3.5+ 4.0+ 5.0+ 10.6+ 2.1+ 2.0+

❧❧

THE CACHE MANIFESTTHE CACHE MANIFEST

An offline web application revolves around a cache manifest file. What’s a manifest

file? It’s a list of all of the resources that your web application might need to access

while it’s disconnected from the network. In order to bootstrap the process of

downloading and caching these resources, you need to point to the manifest file, using

a manifest attribute on your <html> element.

<!DOCTYPE html>

<html manifest="/cache.manifest">

<body>

...

</body>

http://diveintohtml5.info/storage.html

2/6/13 Offline Web Applications - Dive Into HTML5

3/17diveintohtml5.info/offline.html

☞

</html>

Your cache manifest file can be located anywhere on your web server, but it must be

served with the content type text/cache-manifest. If you are running an Apache-

based web server, you can probably just put an AddType directive in the .htaccess

file at the root of your web directory:

AddType text/cache-manifest .manifest

Then make sure that the name of your cache manifest file ends with .manifest. If

you use a different web server or a different configuration of Apache, consult your

server’s documentation on controlling the Content-Type header.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: My web application spans more than

one page. Do I need a manifest attribute

in each page, or can I just put it in the

home page?

A: Every page of your web application

needs a manifest attribute that points to

the cache manifest for the entire

application.

OK, so every one of your HTML pages points to your cache manifest file, and your

cache manifest file is being served with the proper Content-Type header. But what

goes in the manifest file? This is where things get interesting.

http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addtype

2/6/13 Offline Web Applications - Dive Into HTML5

4/17diveintohtml5.info/offline.html

☞

The first line of every cache manifest file is this:

CACHE MANIFEST

After that, all manifest files are divided into three parts: the “explicit” section, the

“fallback” section, and the “online whitelist” section. Each section has a header, on its

own line. If the manifest file doesn’t have any section headers, all the listed resources

are implicitly in the “explicit” section. Try not to dwell on the terminology, lest your

head explode.

Here is a valid manifest file. It lists three resources: a CSS file, a JavaScript file, and a

JPEG image.

CACHE MANIFEST

/clock.css

/clock.js

/clock-face.jpg

This cache manifest file has no section headers, so all the listed resources are in the

“explicit” section by default. Resources in the “explicit” section will get downloaded and

cached locally, and will be used in place of their online counterparts whenever you are

disconnected from the network. Thus, upon loading this cache manifest file, your

browser would download clock.css, clock.js, and clock-face.jpg from the root

directory of your web server. Then you could unplug your network cable and refresh

the page, and all of those resources would be available offline.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Do I need to list my HTML pages in my

cache manifest?

A: Yes and no. If your entire web

application is contained in a single page,

2/6/13 Offline Web Applications - Dive Into HTML5

5/17diveintohtml5.info/offline.html

just make sure that page points to the

cache manifest using the manifest

attribute. When you navigate to an HTML

page with a manifest attribute, the page

itself is assumed to be part of the web

application, so you don’t need to list it in

the manifest file itself. However, if your

web application spans multiple pages, you

should list all of the HTML pages in the

manifest file, otherwise the browser

would not know that there are other

HTML pages that need to be downloaded

and cached.

NETWORK SECTIONSNETWORK SECTIONS

Here is a slightly more complicated example. Suppose you want your clock application

to track visitors, using a tracking.cgi script that is loaded dynamically from an <img

src> attribute. Caching this resource would defeat the purpose of tracking, so this

resource should never be cached and never be available offline. Here is how you do

that:

CACHE MANIFEST

NETWORK:

/tracking.cgi

CACHE:

/clock.css

/clock.js

/clock-face.jpg

2/6/13 Offline Web Applications - Dive Into HTML5

6/17diveintohtml5.info/offline.html

This cache manifest file includes section headers. The line marked NETWORK: is the

beginning of the “online whitelist” section. Resources in this section are never cached

and are not available offline. (Attempting to load them while offline will result in an

error.) The line marked CACHE: is the beginning of the “explicit” section. The rest of

the cache manifest file is the same as the previous example. Each of the three resources

listed will be cached and available offline.

FALLBACK SECTIONSFALLBACK SECTIONS

There is one more type of section in a cache manifest file: a fallback section. In a

fallback section, you can define substitutions for online resources that, for whatever

reason, can’t be cached or weren’t cached successfully. The HTML5 specification offers

this clever example of using a fallback section:

CACHE MANIFEST

FALLBACK:

/ /offline.html

NETWORK:

*

What does this do? First, consider a site that contains millions of pages, like Wikipedia.

You couldn’t possibly download the entire site, nor would you want to. But suppose

you could make part of it available offline. But how would you decide which pages to

cache? How about this: every page you ever look at on a hypothetical offline-enabled

Wikipedia would be downloaded and cached. That would include every encyclopedia

entry that you ever visited, every talk page (where you can have makeshift discussions

about a particular encyclopedia entry), and every edit page (which you can actually

make changes to the particular entry).

That’s what this cache manifest does. Suppose every HTML page (entry, talk page, edit

page, history page) on Wikipedia pointed to this cache manifest file. When you visit any

page that points to a cache manifest, your browser says “hey, this page is part of an

http://en.wikipedia.org/wiki/Main_Page

2/6/13 Offline Web Applications - Dive Into HTML5

7/17diveintohtml5.info/offline.html

offline web application, is it one I know about?” If your browser hasn’t ever

downloaded this particular cache manifest file, it will set up a new offline “appcache”

(short for “application cache”), download all the resources listed in the cache manifest,

and then add the current page to the appcache. If your browser does know about this

cache manifest, it will simply add the current page to the existing appcache. Either way,

the page you just visited ends up in the appcache. This is important. It means that you

can have an offline web application that “lazily” adds pages as you visit them. You don’t

need to list every single one of your HTML pages in your cache manifest.

Now look at the fallback section. The fallback section in this cache manifest only has a

single line. The first part of the line (before the space) is not a URL. It’s really a URL

pattern. The single character (/) will match any page on your site, not just the home

page. When you try to visit a page while you’re offline, your browser will look for it in

the appcache. If your browser finds the page in the appcache (because you visited it

while online, and the page was implicitly added to the appcache at that time), then your

browser will display the cached copy of the page. If your browser doesn’t find the page

in the appcache, instead of displaying an error message, it will display the page

/offline.html, as specified in the second half of that line in the fallback section.

Finally, let’s examine the network section. The network section in this cache manifest

also has just a single line, a line that contains just a single character (*). This character

has special meaning in a network section. It’s called the “online whitelist wildcard flag.”

That’s a fancy way of saying that anything that isn’t in the appcache can still be

downloaded from the original web address, as long as you have an internet connection.

This is important for an “open-ended” offline web application. It means that, while

you’re browsing this hypothetical offline-enabled Wikipedia online, your browser will

fetch images and videos and other embedded resources normally, even if they are on a

different domain. (This is common in large websites, even if they aren’t part of an

offline web application. HTML pages are generated and served locally, while images and

videos are served from a CDN on another domain.) Without this wildcard flag, our

hypothetical offline-enabled Wikipedia would behave strangely when you were online

— specifically, it wouldn’t load any externally-hosted images or videos!

http://en.wikipedia.org/wiki/Content_delivery_network

2/6/13 Offline Web Applications - Dive Into HTML5

8/17diveintohtml5.info/offline.html

Is this example complete? No. Wikipedia is more than HTML files. It uses common CSS,

JavaScript, and images on each page. Each of these resources would need to be listed

explicitly in the CACHE: section of the manifest file, in order for pages to display and

behave properly offline. But the point of the fallback section is that you can have an

“open-ended” offline web application that extends beyond the resources you’ve listed

explicitly in the manifest file.

❧❧

THE FLOW OF EVENTSTHE FLOW OF EVENTS

So far, I’ve talked about offline web applications, the cache manifest, and the offline

application cache (“appcache”) in vague, semi-magical terms. Things are downloaded,

browsers make decisions, and everything Just Works. You know better than that, right?

I mean, this is web development we’re talking about. Nothing ever Just Works.

First, let’s talk about the flow of events. Specifically, DOM events. When your browser

visits a page that points to a cache manifest, it fires off a series of events on the

window.applicationCache object. I know this looks complicated, but trust me, this

is the simplest version I could come up with that didn’t leave out important

information.

1. As soon as it notices a manifest attribute on the <html> element, your browser

fires a checking event. (All the events listed here are fired on the

window.applicationCache object.) The checking event is always fired,

regardless of whether you have previously visited this page or any other page that

points to the same cache manifest.

2. If your browser has never seen this cache manifest before...

It will fire a downloading event, then start to download the resources listed

2/6/13 Offline Web Applications - Dive Into HTML5

9/17diveintohtml5.info/offline.html

in the cache manifest.

While it’s downloading, your browser will periodically fire progress events,

which contain information on how many files have been downloaded already

and how many files are still queued to be downloaded.

After all resources listed in the cache manifest have been downloaded

successfully, the browser fires one final event, cached. This is your signal

that the offline web application is fully cached and ready to be used offline.

That’s it; you’re done.

3. On the other hand, if you have previously visited this page or any other page that

points to the same cache manifest, then your browser already knows about this

cache manifest. It may already have some resources in the appcache. It may have

the entire working offline web application in the appcache. So now the question

is, has the cache manifest changed since the last time your browser checked it?

If the answer is no, the cache manifest has not changed, your browser will

immediately fire a noupdate event. That’s it; you’re done.

If the answer is yes, the cache manifest has changed, your browser will fire a

downloading event and start re-downloading every single resource listed in

the cache manifest.

While it’s downloading, your browser will periodically fire progress events,

which contain information on how many files have been downloaded already

and how many files are still queued to be downloaded.

After all resources listed in the cache manifest have been re-downloaded

successfully, the browser fires one final event, updateready. This is your

signal that the new version of your offline web application is fully cached

and ready to be used offline. The new version is not yet in use. To “hot-swap”

to the new version without forcing the user to reload the page, you can

manually call the window.applicationCache.swapCache() function.

If, at any point in this process, something goes horribly wrong, your browser will fire

an error event and stop. Here is a hopelessly abbreviated list of things that could go

wrong:

2/6/13 Offline Web Applications - Dive Into HTML5

10/17diveintohtml5.info/offline.html

The cache manifest returned an HTTP error 404 (Page Not Found) or 410

(Permanently Gone).

The cache manifest was found and hadn’t changed, but the HTML page that

pointed to the manifest failed to download properly.

The cache manifest changed while the update was being run.

The cache manifest was found and had changed, but the browser failed to

download one of the resources listed in the cache manifest.

THE FINE ART OF DEBUGGING,THE FINE ART OF DEBUGGING,
A.K.A. “KILL ME! KILL ME NOW!”A.K.A. “KILL ME! KILL ME NOW!”

I want to call out two important points here. The first is something you just read, but I

bet it didn’t really sink in, so here it is again: if even a single resource listed in your

cache manifest file fails to download properly, the entire process of caching your offline

web application will fail. Your browser will fire the error event, but there is no

indication of what the actual problem was. This can make debugging offline web

applications even more frustrating than usual.

The second important point is something that is not, technically speaking, an error, but

it will look like a serious browser bug until you realize what’s going on. It has to do

with exactly how your browser checks whether a cache manifest file has changed. This

is a three-phase process. This is boring but important, so pay attention.

1. Via normal HTTP semantics, your browser will check whether the cache manifest

has expired. Just like any other file being served over HTTP, your web server will

typically include meta-information about the file in the HTTP response headers.

Some of these HTTP headers (Expires and Cache-Control) tell your browser

how it is allowed to cache the file without ever asking the server whether it has

changed. This kind of caching has nothing to do with offline web applications. It

2/6/13 Offline Web Applications - Dive Into HTML5

11/17diveintohtml5.info/offline.html

happens for pretty much every HTML page, stylesheet, script, image, or other

resource on the web.

2. If the cache manifest has expired (according to its HTTP headers), then your

browser will ask the server whether there is a new version, and if so, the browser

will download it. To do this, your browser issues an HTTP request that includes

that last-modified date of the cache manifest, which your web server included in

the HTTP response headers the last time your browser downloaded the manifest

file. If the web server determines that the manifest file hasn’t changed since that

date, it will simply return a 304 (Not Modified) status. Again, none of this is

specific to offline web applications. This happens for essentially every kind of

resource on the web.

3. If the web server thinks the manifest file has changed since that date, it will

return an HTTP 200 (OK) status code, followed by the contents of the new file,

along with new Cache-Control headers and a new last-modified date, so that

steps 1 and 2 will work properly the next time. (HTTP is cool; web servers are

always planning for the future. If your web server absolutely must send you a file,

it does everything it can to ensure that it doesn’t need to send it twice for no

reason.) Once it’s downloaded the new cache manifest file, your browser will

check the contents against the copy it downloaded last time. If the contents of the

cache manifest file are the same as they were last time, your browser won’t re-

download any of the resources listed in the manifest.

Any one of these steps can trip you up while you’re developing and testing your offline

web application. For example, say you deploy one version of your cache manifest file,

then 10 minutes later, you realize you need to add another resource to it. No problem,

right? Just add another line and redeploy. Bzzt. Here’s what will happen: you reload the

page, your browser notices the manifest attribute, it fires the checking event, and

then... nothing. Your browser stubbornly insists that the cache manifest file has not

changed. Why? Because, by default, your web server is probably configured to tell

browsers to cache static files for a few hours (via HTTP semantics, using Cache-

Control headers). That means your browser will never get past step 1 of that three-

phase process. Sure, the web server knows that the file has changed, but your browser

never even gets around to asking the web server. Why? Because the last time your

2/6/13 Offline Web Applications - Dive Into HTML5

12/17diveintohtml5.info/offline.html

browser downloaded the cache manifest, the web server told it to cache the resource

for a few hours (via HTTP semantics, using Cache-Control headers). And now, 10

minutes later, that’s exactly what your browser is doing.

To be clear, this is not a bug, it’s a feature. Everything is working exactly the way it’s

supposed to. If web servers didn’t have a way to tell browsers (and intermediate proxies)

to cache things, the web would collapse overnight. But that’s no comfort to you after

you spend a few hours trying to figure out why your browser won’t notice your

updated cache manifest. (And even better, if you wait long enough, it will mysteriously

starts working again! Because the HTTP cache expired! Just like it’s supposed to! Kill

me! Kill me now!)

So here’s one thing you should absolutely do: reconfigure your web server so that your

cache manifest file is not cacheable by HTTP semantics. If you’re running an Apache-

based web server, these two lines in your .htaccess file will do the trick:

ExpiresActive On

ExpiresDefault "access"

That will actually disable caching for every file in that directory and all subdirectories.

That’s probably not what you want in production, so you should either qualify this

with a <Files> directive so it only affects your cache manifest file, or create a

subdirectory that contains nothing but this .htaccess file and your cache manifest

file. As usual, configuration details vary by web server, so consult your server’s

documentation for how to control HTTP caching headers.

Once you’ve disabled HTTP caching on the cache manifest file itself, you’ll still have

times where you’ve changed one of the resources in the appcache, but it’s still at the

same URL on your web server. Here, step 2 of the three-phase process will screw you. If

your cache manifest file hasn’t changed, the browser will never notice that one of the

previously cached resources has changed. Consider the following example:

CACHE MANIFEST

2/6/13 Offline Web Applications - Dive Into HTML5

13/17diveintohtml5.info/offline.html

rev 42

clock.js

clock.css

If you change clock.css and redeploy it, you won’t see the changes, because the

cache manifest file itself hasn’t changed. Every time you make a change to one of the

resources in your offline web application, you’ll need to change the cache manifest file

itself. This can be as simple as changing a single character. The easiest way I’ve found

to accomplish this is to include a comment line with a revision number. Change the

revision number in the comment, then the web server will return the newly changed

cache manifest file, your browser will notice that the contents of the file have changed,

and it will kick off the process to re-download all the resources listed in the manifest.

CACHE MANIFEST

rev 43

clock.js

clock.css

❧❧

LET’S BUILD ONE!LET’S BUILD ONE!

Remember the Halma game that we introduced in the canvas chapter and later

improved by saving state with persistent local storage? Let’s take our Halma game

offline.

To do that, we need a manifest that lists all the resources the game needs. Well, there’s

the main HTML page, a single JavaScript file that contains all the game code, and…

that’s it. There are no images, because all the drawing is done programmatically via the

canvas API. All the necessary CSS styles are in a <style> element at the top of the

http://diveintohtml5.info/canvas.html#halma
http://diveintohtml5.info/storage.html#halma
http://diveintohtml5.info/canvas.html

2/6/13 Offline Web Applications - Dive Into HTML5

14/17diveintohtml5.info/offline.html

HTML page. So this is our cache manifest:

CACHE MANIFEST

halma.html

../halma-localstorage.js

A word about paths. I’ve created an offline/ subdirectory in the examples/

directory, and this cache manifest file lives inside the subdirectory. Because the HTML

page will need one minor addition to work offline (more on that in a minute), I’ve

created a separate copy of the HTML file, which also lives in the offline/

subdirectory. But because there are no changes to the JavaScript code itself since we

added local storage support, I’m literally reusing the same .js file, which lives in the

parent directory (examples/). Altogether, the files look like this:

/examples/localstorage-halma.html

/examples/halma-localstorage.js

/examples/offline/halma.manifest

/examples/offline/halma.html

In the cache manifest file (/examples/offline/halma.manifest), we want to

reference two files. First, the offline version of the HTML file

(/examples/offline/halma.html). Since these two files are in the same directory,

it is listed in the manifest file without any path prefix. Second, the JavaScript file which

lives in the parent directory (/examples/halma-localstorage.js). This is listed in

the manifest file using relative URL notation: ../halma-localstorage.js. This is

just like you might use a relative URL in an attribute. As you’ll see in the

next example, you can also use absolute paths (that start at the root of the current

domain) or even absolute URLs (that point to resources on other domains).

Now, in the HTML file, we need to add the manifest attribute that points to the

cache manifest file.

<!doctype html>

http://diveintohtml5.info/storage.html#halma

2/6/13 Offline Web Applications - Dive Into HTML5

15/17diveintohtml5.info/offline.html

<html lang="en" manifest="halma.manifest">

And that’s it! When an offline-capable browser first loads the offline-enabled HTML

page, it will download the linked cache manifest file and start downloading all the

referenced resources and storing them in the offline application cache. From then on,

the offline application algorithm takes over whenever you revisit the page. You can play

the game offline, and since it remembers its state locally, you can leave and come back

as often as you like.

❧❧

FURTHER READINGFURTHER READING

Standards:

Offline web applications in the HTML5 specification

Browser vendor documentation:

Offline resources in Firefox

HTML5 offline application cache, part of the Safari client-side storage and offline

applications programming guide

Tutorials and demos:

Gmail for mobile HTML5 series: using appcache to launch offline - part 1

Gmail for mobile HTML5 series: using appcache to launch offline - part 2

Gmail for mobile HTML5 series: using appcache to launch offline - part 3

Debugging HTML5 offline application cache

an HTML5 offline image editor and uploader application

http://diveintohtml5.info/examples/offline/halma.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html
https://developer.mozilla.org/En/Offline_resources_in_Firefox
http://developer.apple.com/safari/library/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/OfflineApplicationCache/OfflineApplicationCache.html
http://developer.apple.com/safari/library/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/Introduction/Introduction.html
http://googlecode.blogspot.com/2009/04/gmail-for-mobile-html5-series-using.html
http://googlecode.blogspot.com/2009/05/gmail-for-mobile-html5-series-part-2.html
http://googlecode.blogspot.com/2009/05/gmail-for-mobile-html5-series-part-3.html
http://jonathanstark.com/blog/2009/09/27/debugging-html-5-offline-application-cache/
http://hacks.mozilla.org/2010/02/an-html5-offline-image-editor-and-uploader-application/

2/6/13 Offline Web Applications - Dive Into HTML5

16/17diveintohtml5.info/offline.html

20 Things I Learned About Browsers and the Web, an advanced demo that uses

the application cache and other HTML5 techniques

HTML5 Offline Application Cache Tools:

Cache Manifest Validator, an online validation service

Manifesto, a validation bookmarklet

❧❧

This has been “Let’s Take This Offline.” The full table of contents has more if you’d

like to keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats,

including paper, ePub, Mobi, and DRM-free PDF.

The paid edition is called “HTML5: Up &

Running,” and it is available now. This chapter is

included in the paid edition.

If you liked this chapter and want to show your

appreciation, you can buy “HTML5: Up &

Running” with this affiliate link or buy an

electronic edition directly from O’Reilly. You’ll

get a book, and I’ll get a buck. I do not currently

accept direct donations.

http://www.20thingsilearned.com/
http://manifest-validator.com/
http://manifesto.ericdelabar.com/
http://diveintohtml5.info/table-of-contents.html
http://www.amazon.com/HTML5-Up-Running-Mark-Pilgrim/dp/0596806027?ie=UTF8&tag=diveintomark-20&creativeASIN=0596806027
http://oreilly.com/catalog/9780596806033

2/6/13 Offline Web Applications - Dive Into HTML5

17/17diveintohtml5.info/offline.html

Copyright MMIX–MMXI Mark Pilgrim

powered by Google™ Search

http://diveintohtml5.info/about.html

