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Abstract

We propose a new class of quickly reacquirable mutual exclusion locks (QRLs) that are optimized for
the case in which a single process repeatedly acquires and releases the lock and in which no other process
attempts to acquire the same lock. This case is very common in an important class of applications that
includes such systems as Java™ Virtual Machines.

When the first holder of a QRL first acquires the lock, it biases the lock to itself. This requires the
process to execute a one-time compare-and-swap instruction. Thereafter, this bias holder process can
reacquire and release the lock via a highly optimized ultra fast path. If a second process attempts to
acquire a QRL, then the lock reverts to a “default” lock. We demonstrate generalized techniques that
enable use of any standard mutual exclusion lock as the default lock. Finally, we discuss sample techniques
to allow reinitialization of a QRL lock so that it can be rebiased. Such techniques are particularly valuable
in the case of migratory data access patterns.

Although relaxed consistency models would typically require the use of expensive synchronization
mechanisms such as memory barriers or read-modify-write instructions, we demonstrate a novel colloca-
tion technique that constrains reordering of loads and stores in the TSO (Total Store Order) memory
model without their use. In our strongest result, we use this technique to create a highly optimized class
of QRLs.

1 Introduction

1.1 Mutual Exclusion

The mutual exclusion problem has a long history. Beginning with Dijkstra’s publication of Dekker’s first
correct mutual exclusion lock in 1965 [4], and continuing through to the present time, mutual exclusion locks
have been the focus of hundreds if not thousands of research papers and other technical writings. Because
the problem is so pervasive, it ranks among the most well-known in all of computer science.

The mutual exclusion problem arises in a domain wherein each participating process executes, in strict
cyclic order, program regions labeled remainder, acquire, critical section, and release. A solution to the
mutual exclusion problem consists of code for the acquire() and release() operations. These operations
are required to guarantee that once a process successfully completes an acquire () operation, no other process
will complete an acquire() operation before the first process invokes a release() operation. Solutions to
the mutual exclusion problem are often referred to as locks.

1.2 Performance Characterization of Locks

An important advance in the study of lock performance is due to Lamport [6]. In his fast mutual exclusion
algorithm, a fast path guarantees that the lock and unlock operations complete in time independent of the
number of potential contending processes in the important case where a single process contends for the lock
in isolation. Locks that share this property are called fast locks, and most important locks used in production
software are fast locks.
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Within the category of fast locks, we have focused on identifying particularly important sub-cases as well
as on how to optimize for them. One sub case that we believe to be particularly important in systems such
as Java™ Virtual Machines is the case wherein a single process repeatedly acquires and releases a lock,
but other processes rarely if ever access this lock. Such cases arise because the overall historical expense
due to the overhead of locking has been such that system designers have gone to extensive lengths to avoid
synchronization wherever possible. (Locks in these cases are present in order to provide safety in the case
where another process needs to share access to the data; however, these cases are very rare by design. Such
locks are also useful for minimizing synchronization overhead in code that needs to run in both single-
threaded and multi-threaded configurations.) It is for this very case that our proposed class of locks are
optimized. We shall refer to locks optimized for this case henceforth as quickly reacquirable locks (QRLs).
We shall also refer to the optimized code path in which a process reacquires and subsequently releases a lock
that it has previously held, and that no other process has ever held, as an wltra fast path.

Having identified QRLs as a sub-case of interest, we now proceed to develop techniques for optimizing
them. In order to do this, however, we must first decide upon what constitutes an optimized reacquirable
lock. Generally speaking, QRLs are optimized by reducing the type and number of instructions that are
required in the ultra fast path. In particular, we focus on the use of atomic read-modify-write instructions
in the ultra fast path, because these instructions are typically much more expensive than other instructions.

2 Overview

2.1 Atomic Read-Modify-Write Instructions

In this section we describe several atomic read-modify-write instructions that are commonly used in locks,
and that we wish to avoid in the ultra fast path of QRLs. In the remainder of this paper, we will adopt the
industry convention of referring to these particular instructions as atomic instructions.

The first instruction, compare-and-swap (hereafter, CAS), atomically checks to see whether the value in
the memory location referenced by a pointer is some given value and if so, replaces it with another given
value. Pseudocode for the CAS instruction is as follows:

Boolean CAS(int *ptr, int old, int new) {
atomically {
if (#ptr == old) {
*ptr = new;
return true;
} else {
return false;

}

Another common instruction, SWAP, atomically substitutes a value for the contents of the memory location
referenced by a pointer and returns the old contents of that location. Pseudocode follows:

int SWAP(int *ptr, int new) {
atomically {
int result = *ptr;
*ptr = new;
return result;

One final instruction bears mention. The memory barrier (hereafter, membar) constrains the processor
from performing certain types of instruction reorderings. In particular, membars are typically used in the
Total Store Order (TSO) memory model [8] to prevent read operations from being reordered before write
operations. These instructions are expensive because their implementation typically consists of draining a



processor’s reorder buffer, thereby limiting the pipelining of instructions that the processor can perform. For
this reason, we wish to avoid membar instructions in the ultra fast paths of QRLs.

2.2 Categorization of Previous Locks

Most existing well-known locks contain atomic instructions in both the acquire() and release() fast path
operations. The MCS lock [7] is a typical example in that, even absent contention, it uses a SWAP instruction
in the acquire path and a CAS in the release path. Another well-known lock, TATAS (the so-called test and
test and set lock) uses a test-and-set or CAS atomic instruction to acquire the lock, though releasing the
lock is a simple write. Other locks optimized specifically for use inside Java™ Virtual Machines include
Metalock [1] (CAS in both acquire and release), Thin locks [2] (CAS in acquire), and Relaxed-locks [3] (CAS
in acquire). For QRLSs, our target is to avoid all such instructions in both the acquire and release portions
of the ultra fast code path.

3 Construction of Atomic-Free QRLs

In this section, we first present an overview and detailed description of our preferred QRL embodiment.
Later, we discuss several potential design alternatives. This latter set is not meant to be an exclusive list of
all possible QRL implementations; rather, it provides an indication of the wide applicability of this idea.

3.1 Generic QRL Implementation

Our atomic-free QRLs consist of two additional fields added to some default lock (which can be any standard
lock). The first field is a status word that takes on one of the values: {NEUTRAL, BIASED, REVOKING,
DEFAULT}. Initially the lock is NEUTRAL and the first time the lock is acquired, the process acquiring the lock
changes the status to BIASED. If a second process attempts to acquire the lock, it eventually changes the lock
status to DEFAULT, but may set the status to REVOKING as an intermediary state in the revocation protocol.
When the lock state is BIASED, the first field additionally contains a process identifier for the current bias
owner. In a non-rebiasable QRL, the state can only move forward, in order, through these values. We later
discuss QRLs that can be rebiased.

The second field is a Boolean bit that indicates whether the bias holder currently holds the lock. Hence,
when the lock has been acquired, and not subsequently revoked, the bias holder can acquire or release the
lock by simply toggling this bit. We adopt the notation that a process that has set this bit has acquired the
QRL via the quicklock. A process can acquire the QRL via either the quicklock or via the default lock; our
constructions ensure that both “sub-locks” cannot be concurrently held.

Switching a lock from NEUTRAL to being biased to a particular process can be done for the one-time cost
of a single CAS operation. The CAS (or some equivalent mechanism) is necessary in order to prevent a race
condition in which multiple processes simultaneously attempt to acquire a previously NEUTRAL lock.

The main difficulty in constructing an atomic-free QRL lies in coordinating the revocation of a lock
between a revoking process and the bias holder process (that might be anywhere in the acquire-release
cycle). Race conditions that must typically be addressed include a revocation that occurs simultaneous to
a biased acquire as well as a revocation that occurs simultaneous to a biased release. Yet another race
condition occurs when multiple processes attempt to revoke the lock simultaneously; however, this last race
can be avoided by using CAS to change the lock status word to the intermediate REVOKING state: the process
for which the CAS succeeds is the “true revoker” and any other processes revert to acquiring the default lock.

3.2 Atomic-Free QRL Implementation Overview

Our goal is to avoid the use of expensive synchronization instructions such as membars and atomic instructions.
In a sequentially consistent multiprocessor [5], it is straightforward to design a technique in which a bias
holder reacquires the lock by first writing its quicklock bit and then verifying that the lock has not been
revoked; and revoking processes first indicate revocation and then check whether the bias holder has acquired
the quicklock. This is attractive because the ultra fast path consists only of load and store instructions.
Unfortunately, however, such techniques are not typically correct in multiprocessors with memory models



that are weaker than sequential consistency, and therefore expensive membar instructions are needed to ensure
correctness.

For our purposes, we do not require the full effects of a membar instruction in the biased acquire and
release code paths. Rather, it is sufficient to preclude a single read (of the lock status) from being reordered
before a single write (of the quicklock). This in turn allows us to consider techniques that exploit subtleties
of the TSO memory model. In particular, TSO requires that instructions in the same thread appear to be
executed in program order. Hence, if we can introduce an artificial dependency between the write and read
instructions mentioned above, we can ensure that they are not adversely reordered.

Our scheme for introducing this dependency is to collocate the status field and the quicklock field into
the two halves of a 32-bit word. Then, we perform the following steps in order to reacquire the lock on the
ultra fast path:

1. perform a half-word store on the quicklock field
2. load the ENTIRE 32 bit word
3. shift out the status field from what we just read

Now, because the data read in step 2 includes the data that was written in step 1, the read must be
ordered after the write. Locks based on this technique, including both a generalized implementation and
examples that use MCS and TATAS as the default lock may be found in Appendix A. (The lines marked with
triple asterisks in the generic QRL lock are replaced with whatever code is appropriate to the specific default
lock in question.) This approach provides portability to any memory model in which apparent program
order is guaranteed for instructions executed on the same processor; further, it requires no operating system
intervention. We note that some care must be used to ensure that a compiler does not optimize steps S2
and S3 into a half-word read, as this would once again allow the read to be reordered.

This collocation technique, for precluding the reordering of a single read, is likely to be useful in many
more situations than just this lock. In general, schemes of this form can potentially be used in any situation
where a memory barrier is used to prevent one or more reads from being reordered ahead of a particular
write.

3.3 Detailed Description of Lock

In this section, we provide a detailed description of our generic QRL lock, the source code for which may be
found in Appendix B.

When a thread attempts to acquire the QRL, there are four distinct cases to consider, based on the value
of the status word.

Case 1: The first case occurs when the lock has never been held (so the lock’s status word is NEUTRAL).
In this case, the thread verifies the lock state (lines 1, 13, 16) and attempts to install itself as the lock’s
bias holder via a CAS instruction (lines 18-20). A CAS is necessary here to prevent two or more threads from
simultaneously biasing the lock to themselves. (Threads that fail this CAS fall through to the revocation code,
described below as the third acquisition case.) We note that some thread is guaranteed to complete the CAS
operation successfully. When a thread successfully installs itself as the bias holder, this step simultaneously
changes the lock state from NEUTRAL to BIASED and implicitly grants the lock to the new bias holder (hence
the “1” in the first part of the DWORD in line 20). Finally, the return of “1” (line 22) indicates that the
lock was acquired via (and should thus be released via) the ultra fast path.

Case 2: The expected common case for QRL locks occurs when a bias holder thread attempts to reacquire
the lock. This case is detected immediately by checking the lock status word (line 4). In this case, the
process simply resets the quicklock flag (line 6), verifies that the lock hasn’t been revoked (line 7), and
signals acquisition of the lock via the ultra fast path (line 8). In the event that the lock has been revoked,
the bias holder clears the quicklock flag and falls through to the default acquisition case (lines 9 and 70-73).
Note that the collocation technique described in the overview ensures that the resampling of the lock’s status
word (line 7) cannot be reordered above the write to the quicklock flag (line 6). This in turns ensures that if
a bias holder attempts to reacquire the lock simultaneously with some other process attempting to revoke the
lock, then either the revoker detects that the bias holder has reacquired the lock or the bias holder detects
that the lock has been revoked. Thus, they do not both proceed to their critical sections.



Case 3: The next acquisition case occurs the first time that a thread other than the bias holder attempts
to acquire the lock, detected by the lock status field being biased to another thread. Like the first acquisition
case, this can happen at most once in the lifetime of the lock. This case is detected in line 30, when the
thread determines that the lock is currently biased, but not to itself. Lines 34-37 set up and attempt a CAS
operation to convert the lock from BIASED status to REVOKING. (REVOKING means that a thread is currently
in the middle of revoking the lock.) This CAS is in a loop (lines 32, 60) because it could fail if the bias holder
toggles the quicklock flag between lines 34 and 35. In any event, a fresh read of the status word is needed
in this case; line 58 accomplishes this. Assuming that such a toggle eventually does not happen, the CAS
ensures the existence of a unique revoking thread. Any other threads that were concurrently attempting
to revoke the lock will note that the lock is no longer biased (line 60), and spin until the default lock is
established by the revoker (lines 66-67). Finally, non-revokers fall through to the default acquisition path
(lines 70-73). Meanwhile, the revoker thread initializes the default lock to an acquired state (line 40) and
changes the lock status to DEFAULT. As demonstrated in the QRL-MCS and QRL-TATAS implementation
examples in Appendix A, initializing the default lock is uncontended, so may be done without using atomic
instructions that might otherwise be needed. Next, the revoker waits until the former bias holder is not
holding the quicklock (lines 47-48). Finally, because successfully revoking the bias holder implicitly grants
the first non-quick acquisition of the lock, the revoker signals success via the default path (line 49).

Case 4: The final case occurs when the lock status is DEFAULT. From this point forward, lock acquisition
consists of three steps. First, a thread fails the two tests for non-DEFAULT status on lines 13 and 30. Next,
it acquires the default lock using whatever default protocol is desired (implied here by line 72; this should
actually be replaced with appropriate code for the default lock). Finally, it signals success via the default
path (line 73) by returning 0.

Releasing a QRL is very simple. If the thread acquired the QRL via the fast path (line 74), it just resets
the quicklock (line 75). Otherwise, it executes the default lock’s release protocol (lines 76-79).

One other implementation note bears mention. Specifically, the MAKEDWORD, LOWWORD, and HIGHWORD
macros are all configured for machines with a 32-bit big-endian memory hardware access scheme. Anyone
skilled in the art can trivially create appropriate equivalent macros for other platforms as needed.

3.4 Other QRL Implementations

In this section we briefly describe other techniques that can be used to implement QRLs.

Our first alternative QRL uses signals during the revocation cycle. Specifically, a signal handler executed
by the bias owner at the request of the revoking process can inspect the state of the QRL and switch it
over to the default lock if the bias holder is not currently holding the lock. If the bias holder is currently
holding the lock, the signal handler can set state such that the revoking process must wait until the bias
holder releases its lock. Once this latter state is set, the bias holder cannot reacquire the QRL except via
the default lock path. Source code for our signal-based lock may be found in Appendix B.

Although the signal-based approach works well in many cases, many large pre-existent code bases are
not signal safe; adding signals to such code bases can introduce bugs. For example, the basic file 1/0
functions read () and write () report what looks like an I/O error if they are interrupted during an operation:
additional checking is required to determine that the operation need only be retried. Finally, signals are not
supported in all operating systems, so a signal-based lock is inherently limited to platforms that do support
them.

A close relative to the signal-based alternative applies in a garbage-collected environment. Here, at
stop-the-world garbage-collection time, all threads other than the garbage collector are paused. By adding
a special revocation handler to the garbage collection process, it becomes possible to effect the revocation
directly without worrying about concurrency. There are two major drawbacks to this approach. First,
tying the revocation process to garbage collection requires that a revoking thread wait for the next garbage
collection, which can be an arbitrarily long wait. Second, this approach is intimately tied to particular
garbage collection implementations and implicitly requires the ability to stop threads.

For completeness, we mention that another alternative QRL can be constructed in a manner similar to
our preferred embodiment, but using membar instructions instead of the collocation trick. Such an approach
could conceivably be preferable if the practical cost of a membar were to become sufficiently small (because
it would be portable to more memory models); however, this is not the case in current hardware. Source



code for a membar-based QRL may be found in Appendix C. We note also that this implementation can be
restructured to make the revoking process spin until the quicklock flag is cleared. An improvement of this
form has already been incorporated into our preferred embodiment and may be seen in Appendix A.

As yet another example alternative QRL, Solaris cross-calls could be used to generate memory barriers
in a remote processor when a revoking process needs to coordinate with it. In this approach, instead of
executing a membar for every acquire and release by the bias holder, only a single membar would be needed
at revocation time. This is sufficient to achieve an atomic-free lock; however, it would be highly operating
system specific and thus difficult to port to other platforms.

4 Construction of Re-biasable Locks

QRL locks are optimized for a single-process repeated-acquisition data access pattern. However, another
common pattern, migratory data access, would not get nearly as much benefit from a QRL lock. Nonetheless,
a straightforward extension of the QRL concept can be used in order to support such access. Specifically, if
we add the ability to rebias a QRL lock once contention dies down, this reversion will be sufficient.

Unlike the basic QRL scheme, rebiasing cannot easily be generalized to all underlying default lock types.
This is because the absence of contention is more readily detected at release time for some locks, but at
acquire time for others. For example, the best indication that contention has concluded in the MCS lock is
if a lock holder has no successor in the lock queue, but the only place where contention can be detected in
the TATAS lock is by counting the number of attempts required to CAS the lock to “held”.

In the following subsections, we detail sample schemes for rebiasing QRL locks that use two different
default locks. One skilled in the art could readily identify other options for creating rebiasable QRL locks;
we provide these schemes to illustrate the concept.

4.1 Rebiasable QRL-MCS Lock Construction

To create a rebiasable QRL-MCS lock, the ideal place to perform the rebiasing is at release time. Here, the
following code can be executed (where I is the current lock holder’s MCS gnode and L is the QRL-MCS lock
pointer) at the beginning of the default release path:

if (NULL == I->next && !I->flag) /* !I->flag: uncontended acquire */
{
L->lockword = MAKEDWORD (REBIASING, 0);
membar () ;
if (NULL == I->next) /* resample */
{
L->lockword = MAKEDWORD (BIASED(id), 0);
return;
}
L->lockword = MAKEDWORD (DEFAULT, 0);
}

...remainder of release code follows here...

This change adds a state REBIASING which is used to mark the reversion from DEFAULT to BIASED in
the same way that REVOKING marks the transition from BIASED to DEFAULT. The code itself uses the same
general resampling technique to verify that the reversion of the lock completed before any other process got
in line in the default lock; this prevents a race condition that might otherwise occur.

In addition to this modification, updates to the QRL-MCS acquisition code are required. These are very
similar to the code that pauses processes during the window while the lock is being revoked; therefore, we
do not present them here.

4.2 Rebiasable QRL-TATAS Lock Construction

To create a rebiasable QRL-TATAS lock, two modifications to the basic scheme suffice. First, if a process is
able to acquire the TATAS default lock on its first attempt, then this is an indication that either the process



“got lucky” or that contention is low. (Conversely, if the process is not able to acquire the TATAS lock on
its first CAS, this definitely means that contention remains.) So, a counter can be added to the lock that
is only modified when a process holds the TATAS default lock. Initialized to some constant tuned to the
application for which the lock is used, this counter is reset each time a process acquires the TATAS default
lock under contention, and decremented each time a process acquires the TATAS default lock on its first
attempt. If the counter ever hits zero, the current default lock holder simply needs to overwrite the QRL
lock fields with a tuple indicating that the lock is biased to and currently acquired by the current lock holder.
Effectively, then, the lock holder is switching to holding the QRL lock from the default TATAS lock.

A second needed modification is to add a check to the default lock acquisition path to test for reversion
of the lock. When this is detected, a process simply retries the entire lock acquisition from the beginning of
the acquire function.

5 Summary

We have presented QRL locks, a novel class of mutual exclusion algorithms that are heavily optimized for a
very common data access pattern in which a single process repeatedly and solely acquires a lock. Our QRL
locks represent the first true atomic-free locks for this ultra fast path. Because they can be generalized to
use any mutual exclusion algorithm with a standard interface, as well as many algorithms that do not use a
standard interface, QRL locks can obtain the benefits of any properties of such locks for the uncontended case
at the expense of a mere handful of non-atomic instructions in their critical path. QRL locks are optimized
for a single-process repeated-acquisition data access pattern; however, we have also demonstrated rebiasable
QRLs that can be used with migratory data access patterns.

References

[1] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and Derek White. An
efficient meta-lock for implementing ubiquitous synchronization. ACM SIGPLAN Notices, 34(10):207—
222, 1999.

[2] David F. Bacon, Ravi B. Konuru, Chet Murthy, and Mauricio J. Serrano. Thin locks: Featherweight syn-
chronization for java. In SIGPLAN Conference on Programming Language Design and Implementation,
pages 258-268, 1998.

[3] D. Dice. Implementing fast java[tm] monitors with relaxed-locks. In Proceedings of the USENIX JVM 01
Conference, 2001.

[4] E. Dijkstra. Solution to a problem in concurrent programming control. Communications of the ACM,
8(9):569, 1965.

[5] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEF Transactions on Computers, C-28(9):241-248, September 1979.

[6] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems, 5(1):1-11,
1987.

[7] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multipro-
cessors. ACM Transactions on Computer Systems, 9(1):21-65, 1991.

[8] D. Weaver and T. Germond. The SPARC Architecture Manual Version 9. PTR Prentice Hall, Englewood
Cliffs, NJ 07632, USA, 1994.



A Collocation-based QRL implementations

A.1 Definitions Common to All Implementations

/* statuses for qrl locks */

#define BIASED(id) ((int)(id) << 2)

#define NEUTRAL 1

#define DEFAULT 2

#define REVOKED 3

#define ISBIASED(status) (0 == ((status) & 3))

/* word manipulation (big-endian versions shown here) */

#define MAKEDWORD (low, high) (((unsigned int) (low) << 16) | (high))
#define HIGHWORD(dword) ((unsigned short)dword)

#define LOWWORD(dword) ((unsigned short) (((unsigned int) (dword)) >> 16))

A.2 Generalized Lock

typedef volatile struct tag_qrlgeneric_lock
{
volatile union
{
volatile struct
{
volatile short quicklock;
volatile short status;
}
h;
volatile int data;
}
lockword;
/* xxx PLUS WHATEVER FIELDS ARE NEEDED FOR THE DEFAULT LOCK **% x/
}

qrlgeneric_lock;

int grlgeneric_acquire(qrlgeneric_lock *L, int id)

{

01 int status = L->lockword.h.status;

02

03 /* If the lock’s mine, I can reenter by just setting a flag */

04 if (BIASED(id) == status)

05 {

06 L->lockword.h.quicklock = 1;

07 if (BIASED(id) == HIGHWORD(L->lockword.data))

08 return 1;

09 L->lockword.h.quicklock = 0; /* I didn’t get the lock, so be sure */
10 /* not to block the process that did */
11}

12

13 if (DEFAULT != status)

14 {

15 /* If the lock is unowned, try to claim it */

16 if (NEUTRAL == status)

17 {

18 if (CAS(&L->lockword, /* By definition, if we saw */



19 MAKEDWORD (O, NEUTRAL), /* neutral, the lock is unheld */

20 MAKEDWORD (1, BIASED(id))))

21 {

22 return 1;

23 }

24 /* If I didn’t bias the lock to me, someone else just grabbed
25 it. Fall through to the revocation code */

26 status = L->lockword.h.status; /* resample */

27 b

28

29 /* If someone else owns the lock, revoke them */

30 if (ISBIASED(status))

31 {

32 do

33 {

34 unsigned short biaslock = L->lockword.h.quicklock;

35 if (CAS(&L->lockword,

36 MAKEDWORD (biaslock, status),

37 MAKEDWORD (biaslock, REVOKED)))

38 {

39 /* I'm the revoker. Set up the default lock. */

40 /* **x INITIALIZE AND ACQUIRE THE DEFAULT LOCK HERE **x x/
41 /* Note: this is an uncontended acquire, so it */

42 /* can be done without use of atomics if this is */

43 /* desirable. */

44 L->lockword.h.status = DEFAULT;

45

46 /* Wait until quicklock is free */

47 while (LOWWORD(L->lockword.data))

48 ;

49 return 0; /* And then it’s mine */

50 }

51

52 /* The CAS could have failed and we got here for either of
53 two reasons. First, another process could have done the
54 revoking; in this case we need to fall through to the

55 default path once the other process is finished revoking.
56 Secondly, the bias process could have acquired or released
57 the biaslock field; in this case we need merely retry. */
58 status = L->lockword.h.status;

59 }

60 while (ISBIASED(L->lockword.h.status));

61 }

62

63 /* If I get here, the lock has been revoked by someone other

64 than me. Wait until they’re done revoking, then fall through
65 to the default code. */

66 while (DEFAULT != L->lockword.h.status)

67 ;

68 }

69

70 /* Regular default lock from here on */
71 assert(DEFAULT == L->lockword.h.status);
72 /* *xx DO NORMAL (CONTENDED) DEFAULT LOCK ACQUIRE FUNCTION HERE **x* x*/



73
}

return O;

void qrlgeneric_release(qrlgeneric_lock *L, int acquiredquickly)

{

74
75
76
77
78
79
}

if (acquiredquickly)
L->lockword.h.quicklock = O;
else
{
/* *x*x DO NORMAL DEFAULT LOCK RELEASE FUNCTION HERE **x* */
}

A.3 MCS-based Lock

typedef struct tag_qrlmcs_node

{

}

volatile struct tag_qrlmcs_node *next;
volatile int flag;

qrlmcs_node;

typedef volatile struct tag_qrlmcs_lock

{

h;

}

volatile union

{

volatile struct

{

}

volatile short quicklock;
volatile short status;

volatile int data;

}

lockword;
volatile grlmcs_node *defaultlock;

qrlmcs_lock;

void qrlmcs_initialize(qrlmcs_lock *L)

{

}

L-
L-

>lockword.data = MAKEDWORD (O, NEUTRAL);
>defaultlock = NULL;

int gqrlmcs_acquire(qrlmcs_lock *L, grlmcs_node *I, int id)

{

int status = L->lockword.h.status;

/* If the lock’s mine, I can reenter by just setting a flag */
if (BIASED(id) == status)

{

L->lockword.h.quicklock = 1;
if (BIASED(id) == HIGHWORD(L->lockword.data))

10



return 1;
L->lockword.h.quicklock = 0; /* I didn’t get the lock, so be sure */
} /* not to block the process that did */

if (DEFAULT != status)

{
/* If the lock is unowned, try to claim it */
if (NEUTRAL == status)

{
if (CAS(&L->lockword, /* By definition, if we saw */
MAKEDWORD (O, NEUTRAL), /* neutral, the lock is unheld */
MAKEDWORD (1, BIASED(id))))
{
return 1;
b
/* If I didn’t bias the lock to me, someone else just grabbed
it. Fall through to the revocation code */
status = L->lockword.h.status; /* resample */
}

/* If someone else owns the lock, revoke them */
if (ISBIASED(status))
{
do
{
unsigned short biaslock = L->lockword.h.quicklock;
if (CAS(&L->lockword,
MAKEDWORD (biaslock, status),
MAKEDWORD (biaslock, REVOKED)))

/* I’'m the revoker. Claim the head of the queue. */
I->next = NULL;

L->defaultlock = I;

L->lockword.h.status = DEFAULT;

/* Wait until lock is free */
while (LOWWORD(L->lockword.data))
return 0; /* And then it’s mine */

}

/* The CAS could have failed and we got here for either of
two reasons. First, another process could have done the
revoking; in this case we need to fall through to the
default path once the other process is finished revoking.
Secondly, the bias process could have acquired or released
the biaslock field; in this case we need merely retry. */

status = L->lockword.h.status;

3
while (ISBIASED(L->lockword.h.status));
}

/* If I get here, the lock has been revoked by someone other
than me. Wait until they’re done revoking, then fall through
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to the default code. */
while (DEFAULT != L->lockword.h.status)

}

/* Regular MCS from here on */
assert (DEFAULT == L->lockword.h.status);
I->next = NULL;
grlmcs_node *pred = (qrlmcs_node *)SWAP(&L->defaultlock, I);
if (NULL != pred)
{
I->flag = 1;
pred->next = I;
while (I->flag)

’

}

return O;

}

void qrlmcs_release(qrlmcs_lock *L, qrlmcs_node *I, int acquiredquickly)
{
/* Releasing a quickly acquired lock is very easy */
if (acquiredquickly)
{
L->lockword.h.quicklock = O;
return;

}

/* Otherwise, go through the MCS release procedure */
if (NULL == I->next)
{
if (CAS(&L->defaultlock, I, NULL))
return;
while (NULL == I->next)

>

}
I->next->flag = 0;
}

A.4 TATAS-based Lock

#define QRL_BASE 50 /* Initial backoff value */
#define QRL_CAP 800 /* Maximum backoff value */

typedef struct tag_qrltas_lock
{

volatile union

{
struct
{
short quicklock;
short status;

}
h;
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int data;
}
lockword;
volatile long defaultlock;
}
qrltas_lock;

void qrltas_initialize(qrltas_lock *L)
{
L->lockword.data =
L->defaultlock = 0;
}

MAKEDWORD (0, NEUTRAL);

int gqrltas_acquire(qrltas_lock *L, int id)
{

int status = L->lockword.h.status;

/* If the lock’s mine, I can reenter by just setting a flag */
if (BIASED(id) == status)
{

L->lockword.h.quicklock = 1;

if (BIASED(id) == HIGHWORD(L->lockword.data))

return 1;
L->lockword.h.quicklock = 0; /* I didn’t get the lock, so make sure I
don’t block up the process that did */

}

if (DEFAULT != status)

{
/* If the lock is unowned, try to claim it */
if (NEUTRAL == status)

{
if (CAS(&L->lockword, /* By definition, if we saw */
MAKEDWORD (O, NEUTRAL), /* neutral, the lock is unheld */
MAKEDWORD (1, BIASED(id))))
{
/* Biasing the lock counts as an acquisition */
return 1;
}
/* If I didn’t bias the lock to me, someone else just grabbed
it. Fall through to the revocation code */
status = L->lockword.h.status; /* resample */
}

/* If someone else owns the lock, revoke them */
if (ISBIASED(status))
{
do
{
unsigned short biaslock = L->lockword.h.quicklock;
if (CAS(&L->lockword,
MAKEDWORD (biaslock, status),
MAKEDWORD (biaslock, REVOKED)))
{
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}

}

}

/%

/* I’m the revoker. Claim my lock. */
L->defaultlock = 1;
L->lockword.h.status = DEFAULT;

/* Wait until lock is free */
while (LOWWORD(L->lockword.data))

>

return O0; /* And then it’s mine */

The CAS could have failed and we got here for either of
two reasons. First, another process could have done the
revoking; in this case we need to fall through to the
default path once the other process is finished revoking.
Secondly, the bias process could have acquired or released
the biaslock field; in this case we need merely retry. */

status = L->lockword.h.status;

}

while (ISBIASED(L->lockword.h.status));

/* If I get here, the lock has been revoked by someone other
than me. Wait until they’re done revoking, then fall through
to the default code. */

while (DEFAULT != L->lockword.h.status)

’

’

/* Regular Tatas from here on */

assert (DEFAULT == L->lockword.h.status);
while (!CAS(&L->defaultlock, 0, 1))
while (L->defaultlock)

return O;

void qrltas_release(qrltas_lock *L, int acquiredquickly)

{

if (acquiredquickly)

L->lockword.h.quicklock = O;

else

L->defaultlock = 0;
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B Appendix II: Signal-based QRL implementation

// UMux.Bias encoding:

// 0100 : Neutral == NULL

// TI00 : Biased - unlocked

// TI01 : Biased - locked

// 0110 : Default

//

// T is of type "UThread *" or a direct "raw" %g7 value.

#define BNEUTRAL O
#define BBIAS 1
#define BDEFAULT 2

// Support alternate "thread" encodings:
// a. raw = G7
// b. raw = UThread *

#define RAWID TLSSELF // UThread *
#define RAW2T(r) (r)

#define RAWID _RawSelf // g7 -> ulwp_t or uthread_t
#define RAW2T(r) EELookup(r)

static
int revTrap ( int signo, siginfo_t * si, ucontext_t * ctx)
{

uintptr_t * regv ;

uintptr_t ip, rs, b ;

UThread * Self ;

int isp, err ;

UMux * m ;

MEMBAR (Storeload) ;
regv = ctx->uc_mcontext.gregs ;
printf ("Signal %d: code=%X addr=Y%X trp=/X pc=VX USP=JX ISP=YX\n",
signo,
si->si_code,
si->__data.__fault.__addr,
si->__data.__fault.__trapno,
regv[REG_PC],
regv [REG_06],
&isp) ;

// If interrupt IP is within a critical section, restart it.
ip = regv[REG_PC] ;
rs = csRestart (ip) ;
if (rs == NULL) rs = QRestart(ip) ;
if (rs 1= 0) {
if (Verbose) printf ("Restart %X\n", rs) ;
regv [REG_PC]
regv [REG_nPC]

rs ;
rs + 4 ;
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Self = TLSSELF ;
m = Self->revMux ;
ASSERT (m && m->Bias == (RAWID|BBIAS)) ;

// Promote/Inflate: Convert to heavy-weight lock

b = m—>Bias ;

if (b & BBIAS) {
err = _lwp_mutex_trylock (m->Inflated) ;
ASSERT (err == 0) ;

}

m->Bias = BDEFAULT ;

Self->revMux = NULL ;

return 0 ;

static
int Revoke (UThread * t, UMux * m) // Cancel reservation

{
if (Verbose) printf ("REVOKE (%X %X)\n", t, m) ;

_lup_mutex_lock (&t->revLock) ;

if (m->Bias == BDEFAULT) {
_lwp_mutex_unlock (&t->revLock) ;
return 0 ;

}

// Promote to heavy-weight inflated state

// Should _this thread lock m->Inflated, or the revokee?
ASSERT (m->Inflated == NULL) ;

m->Inflated = (lwp_mutex_t *) malloc (sizeof (lwp_mutex_t)) ;
memset (m->Inflated, O, sizeof (lwp_mutex_t)) ;

// Make a synthetic synchronous RPC call : revTrap (m)
t->revMux = m ;

thr_kill (t->ThreadID, SIGUSR1) ; // X-call
while (t->revMux != NULL) ; // spin
_lup_mutex_unlock (&t->revLock) ;

return 0 ;

int ILock (UMux * m)

uintptr_t b ;
UThread * Self ;

Self = RAWID ;

// Optimisitic agro form ... avoids RTS->RTO upgrade on MP systems.
if (Agro && csCAS (&m->Bias, Self, INT(Self) |BBIAS) == Self) return O ;

Retry:
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b = m—>Bias ;
if (b == Self) {
if (csCAS (&m->Bias, b, b|BBIAS) == b) { return 0 ; }

goto Retry ;
}
if (b == BDEFAULT) { goto DefaultPath ; }
if (b == BNEUTRAL) { CAS (&m->Bias, b, Self) ; goto Retry ; }

ASSERT (b != (INT(Self)|BBIAS)) ;

Revoke (RAW2T(INT(b) & "BBIAS), m) ;
DefaultPath:

return _lwp_mutex_lock (m->Inflated) ;

}
int IUnlock (UMux * m)
{
UThread * Self ;
uintptr_t b ;
uintptr_t bs ;
Self = RAWID ;
bs = INT(Self) |BBIAS ;
if (Agro &% csCAS (&m->Bias, bs, Self) == bs) return O ;
Retry:
b = m—>Bias ;
if (b == (INT(Self)|BBIAS)) {
if (csCAS (&m->Bias, b, Self) == b) {
return O ;
}
goto Retry ;
}
ASSERT (b == BDEFAULT) ; // Caveat: Proper error checking needed here
return _lwp_mutex_unlock (m->Inflated) ;
}
int ITry (UMux * m)
{
return O ;
}
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C Appendix III: membar-based QRL implementation

int qrl_membar_lock (UMux * m)

{
Thread * Self ;
Thread * Bias ;
Self = GetReflexiveSelf ();
Top:
Bias = m—->Bias ;
if (Bias == Self) { // ultra fast-path locking
ASSERT (Self->InCrit == NULL) ;
Self->InCrit = m ; // Enter inner critical section
MEMBAR (StoreLoad) ; // store incrit, load bias
if (m->Bias == Self) { // resample
ASSERT (m->0Owner == NULL); // error check / diagnostics
m->0wner = Self ; // Take ownership of the mutex
Self->InCrit = NULL ; // Exit inner critical section
return 0 ; // Success
}
Self->InCrit = NULL ; // Exit inner critical section
MEMBAR (StorelLoad) ;
goto Top ;
}
if (Bias !'= DEFAULT) {
if (Bias == NULL) { // Neutral 7
CAS (&m->Bias, NULL, Self); // transition neutral->biased
goto Top ;
} else {
if (Bias == REVOKING)
goto Top ; // spin
// Contention: demote and revoke the oplock
// 1st revoker performs the revocation
// subsequent revokers spin until the 1st revoker completes.
// Store bias, Load incrit
if (CAS(&m->Bias, Bias, REVOKING) != Bias) {
goto Top ;
}
MEMBAR (StoreLoad) ;
while (Bias->InCrit == m) ; // spin while CS is occupied
ASSERT (m->Bias == REVOKING) ;
m->Bias = DEFAULT ; // transition biased->default
goto Top ;
}
}
ASSERT (Bias == DEFAULT) ;
. default path ...
// The ultra-fast path and the default path share UMux.Owner.
Acquire lock via CAS (&m->Owner, NULL, Self)
}

int qrl_membar_unlock (UMux * m)
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UThread * Self = GetReflexiveSelf ();

Top:
if (m—->Bias == Self) {
ASSERT (Self->InCrit == NULL) ;

Self->InCrit = m ; // Enter inner critical section

MEMBAR (StorelLoad) ; // Store incrit, load bias

if (m->Bias == Self) { // resample
m->0wner = NULL ; // Drop ownership of the lock
Self->InCrit = NULL ; // Exit inner critical section
return O ;

}

Self->InCrit = NULL ; // Exit inner critical section

MEMBAR (StoreLoad) ;

goto Top ;

... default path ...
m->0Owner = NULL ; wakeup successors, etc.
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