
11
Creating an Application

So far we've been quite website-centric: Creating pages, filling them with
content and providing some add-ons. With the previous chapter's forms, we
started to take it into a more advanced, application-centric direction. In our
example, the data stored in the database wouldn't be directly displayed in the
frontend again. Other, well-known examples would be Twitter as a one-page
application, and CNN.com, which is mainly a website, but has reader logins,
management interfaces and an API, and many more.

In this chapter we'll keep going into this direction, but take some bigger steps:

�� Retrieving values from our member card form definitely needs an improvement—at
the moment we need to manually query the database for that

�� Now that we've gathered the contact details of our customers, we should make
some use of them—we'll start sending newsletters

Time to use some more features of SilverStripe to get our "application" going...

The distinction between website and application is definitely fuzzy; some
wouldn't make it at all. In making the distinction, we are taking into account
whether something is mainly based on pages or goes beyond that—requiring
more application logic to drive it.

Creating an Application

[2]

Using the Model Admin class
Using DBPlumber (SilverStripe's own database frontend in the CMS, covered in Chapter 4,
Storing and Retrieving Information) for finding the latest member cards is both inconvenient
and dangerous. Imagine accidentally dropping the whole table with two bad clicks. That's
also the reason why non-admin users can't use DBplumber by default.

To solve that problem, there's Model Admin—an automagically, on-the-fly generated admin
interface that is tightly integrated into the CMS.

Time for action – managing member cards the easy way
So how do we actually accomplish that?

1.	 In the Membercard class of the previous chapter (in mysite/code/Membercard.
php, but you already know that) add the following statements:

public static $singular_name = 'Membercard';
public static $plural_name = 'Membercards';

public static $searchable_fields = array(
 'ID' => array(
 'field' => 'TextField',
 'filter' => 'PartialMatchFilter',
),
 'FirstName',
 'Surname',
 'City',
 'Zip',
 'MustCreateCard',
);

public static $summary_fields = array(
 'ID',
 'FirstName',
 'Surname',
 'Email',
 'MustCreateCard',
);

public function getCMSFields(){
 $fields = parent::getCMSFields();
 $fields->addFieldToTab(
 'Root.Main',

Chapter 11

[3]

 new TextField('FirstName', 'First name', '', 32),
 'Surname'
);
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('Surname', 'Surname', '', 32),
 'Birth'
);
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('Address', 'Address', '', 64),
 'Zip'
);
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('City', 'City', '', 32),
 'Phone'
);
 $fields->addFieldToTab(
 'Root.Main',
 new EmailField('Email', 'Email', '', 64),
 'MustCreateCard'
);
 return $fields;
}

2.	 Rebuild the database for the settings to take effect.

3.	 Create a class MembercardAdmin with the following content:

class MembercardAdmin extends ModelAdmin {

 public static $managed_models = array(
 'Membercard',
);

 public static $url_segment = 'membercard';

 public static $menu_title = 'Membercard';

}

Creating an Application

[4]

4.	 Reload the CMS and the new menu item Membercard will appear in the upper
navigation panel.

5.	 Open it up and click on the Search button, without filling in any information. By
default, no records are shown, but if you leave the search fields empty, all database
records will be found. Once you've added some data (we'll come to that in a
minute), you should see something like the following screenshot:

Chapter 11

[5]

6.	 On clicking on an entry you'll be taken to the following screen:

What just happened?
All the changes that we've added in the Model are to configure the Model Admin CMS page.

Singular and plural name
We start off by defining the singular ($singular_name) and plural name ($plural_name)
for the view, so the labels are correctly named.

Searchable fields
$searchable_fields defines the fields that should be available to the search function.
When choosing which fields to make available, it's best to think about what you need
to accomplish—for example:

�� Find people by name

�� See how many people are from a specific region—sharing the same ZIP code

�� Get an overview of how many cards you've already created and how many
are still missing

Creating an Application

[6]

Except for the ID attribute, where we add some formatting options for the CMS, everything
is nice and easy. If you added ID without the array defining further details, instead of a
search box you'd get a drop-down list with all available values. This is fine when you only
have a few dozen entries, but isn't efficient for more than that. By specifying that you want
a TextField matching exact and partial values (PartialMatchFilter), you can freely
enter any search term like in the other fields.

As our site is so good, we're expecting loads of people to sign up—so the drop down is no
good for us. If you're a little less ambitious, you can easily switch to the other method.

After pressing the Search button the available data objects are searched based on your
input. The more details you enter, the more limited the search results get. Leaving all fields
empty fetches all data objects available.

Summary fields
The $summary_fields, another array, are the fields shown in the overview after searching.
You can also sort the table entries by the available columns. Often you'll display most of the
searchable fields in the overview.

You can disable available values in the web interface but not add new ones:

Overwriting the CMS Field definition
Just like in the frontend we're limiting the number of characters according to the database
definition with the method getCMSFields(). This is optional and can be left out, if you're
satisfied with the default behavior.

Chapter 11

[7]

We're not expecting too many edits in the Model Admin, but we can still avoid some
potential problems. Define the limited length of text fields like you would for adding them
on a regular Page. The major difference is the third argument of addFieldToTab(), that
defines which field should follow after this element.

So whenever these fields are editable in the CMS, this definition will be used instead of
a default one, not including a limit. Unfortunately text field size limits are currently not
automagically picked up by SilverStripe.

Defining the Model admin
What we need to do in the MemberCardAdmin class is very easy now:

�� You need to define which model or models should be managed by the admin view.

�� Additionally you need to select an URL for your view, being appended to /admin. If
the frontend page is available under /membercard, /admin/membercard would
be a good choice for the model admin.

�� Finally (even though the order is up to you) you need to find a meaningful name for
the top navigation—in this example an easy choice again.

Final note
When we defined the underlying data object, we said that we'd take another look as to
why we needed a default value for the attribute Sex. So, click on the Create 'Membercard'
button in the Model Admin view. For enumerations the first array element is always the
default selection. Having added the "-" we won't accidentally set the wrong sex or add one if
it's unknown. Just one more little trick to make our frontend more user-friendly.

If you're familiar with other frameworks, you may have seen
some automatically generated code based on the Model.
SilverStripe doesn't take this approach. In the frontend such
code is generally not production-ready and rewriting it is often
more work than starting from scratch. But for admin purpose it's
perfect, and here auto-generation really shines—we don't need
to change anything when the underlying Model changes. The
drawback is that customizing the admin interface is a bit trickier,
and can be even more than changing generated code.

Permissions
Something we've mostly ignored so far is the security of our backend. Let's integrate that
aspect into our code.

Creating an Application

[8]

Time for action – limiting the permissions on member cards
1.	 First off, add the following code to the Membercard class. Note that it's not final

yet, we'll extend it throughout this section.

public function canView($member = null){
 return true;
}
public function canEdit($member = null){
 return true;
}
public function canDelete($member = null){
 return true;
}
public function canCreate($member = null){
 return true;
}
public function canPublish($member = null){
 return true;
}

2.	 If you haven't already done so, create a new member of the Content Authors
group under /admin/security. Allow members of this group to access the new
member card section on the Permissions tab: Access to 'Membercard' section.
This option is automagically added when creating a Model Admin subclass, but not
activated by default:

Chapter 11

[9]

3.	 If you don't activate this permission, Content Authors simply won't have the
navigation element in the top navigation bar and also can't access the page
directly through its URL.

4.	 Now logout through the bottom right link, then log in as a content author.
Alternatively open up a second browser; not an instance of the same browser you're
currently using, however, as the session would be shared between them. In the
second browser, log in as the new user. Comment out the five methods starting with
"can" (canView(), canEdit(), and so on) for temporary demonstration purposes.
Go to the member card page in the backend—it should look like this:

Note that you can't create or import new objects, nor can you edit or delete existing
ones—the buttons are simply not there. Also the Security and DBPlumber tabs are
not visible, as only admin users may use them (in the default configuration).

5.	 As soon as you activate the five methods again, members of the Content Authors
group have full control over member card objects—just like admin users. You can
only activate or deactivate the view in the CMS; the specific permissions must be
set on the code level.

Creating an Application

[10]

What just happened?
The methods starting with "can" follow a special convention. As you've already seen, they
manage permissions in the CMS. Depending on the current user, the return value of these
methods is either true (allowing the action) or false (disallowing it).

Always returning true simply allows anyone able to view the Model Admin interface
to execute the method name's action. The specific actions should be pretty obvious.
canCreate() defines whether a user may create new objects, but not edit existing
ones—that is handled by canEdit() and so on.

canPublish() is only useful for elements of the SiteTree. Many content
editors can create new pages, but only a few selected ones could publish
them online. For the sake of completeness we've included this option here,
even though it's not really doing anything.

In case you need more fine-grained security settings, you need to know how SilverStripe
organizes users and their permissions.

Security roles
You can't define settings for specific users, only groups of them—the so-called roles. Once
you think about it, this makes perfect sense. Sooner or later you'll need to have a new user
with the same permission set as an existing one. Configuring each one individually is both
time-consuming and error-prone. By using roles, you'll never be stuck with such a limitation.

Roles can be nested. As sub-elements inherit the rights of their parent, you can add
permissions thorough inheritance but not remove them. Having more powerful users inherit
from less powerful ones may seem counter-intuitive, but it works very well in practice. Let's
take a look at an example (though not from our installation):

�� Administrators

�� Content Authors

�� Member Editors

�� Members

On the first level, we've the two default roles and we've also added a new one for
Members—not having any privileges. For Content Authors we've created a new sub-role
Member Editors. Only this role (besides the almighty Administrators) is allowed to edit
member cards. Regular Content Authors can only view them.

Chapter 11

[11]

Permission codes
Actual permissions are set by assigning permission codes to specific roles specific—these
codes are pre- or self-defined strings. For example ADMIN is a pre-defined code, by default
given to admin users. By convention the code should be uppercased.

In order to define a permission code yourself, you need to implement the interface
PermissionProvider. It requires you to write a method providePermissions() which
returns an array with your own codes. These are then available on the Permissions tab of the
user groups. Don't worry, we'll try that out in a moment.

An interface (in object-oriented programming) is very similar to an abstract
class. The major difference is that all interface methods are implicitly
abstract. You define which functions must be implemented. There is no
default implementation which can either be used or overwritten.

Permissions in the controller
We've already used $allowed_actions in the controller. So far we've only used them in
the most basic way, but there is more. Take a look at the following example:

public static $allowed_actions = array(
 'allowed',
 'alsoallowed' => true,
 'adminonly' => 'ADMIN',
 'advanced' => '->canAdvanced',
);

�� The methods allowed() and alsoallowed() could be accessed by anyone.

�� adminonly() could only be accessed by users with the ADMIN permission code.

�� The final function advanced() could only be accessed by users for whom the
method $this->canAdvanced() returns true. You'll need to create this
check method yourself—starting its name with can is not required, but it's
a sensible convention.

Permissions in the model
We've already seen the different can methods. You can also check for specific permission
codes: Permission::checkMember($member, 'ADMIN'), for example, checks for
admin rights. Or you might implement any other check useful for your requirements.

Creating an Application

[12]

Using our powers
Now that we know so much about permissions, let's make use of them in our example.

Have a go hero – set up roles and users
We'll extend our very basic example to use the roles that we've already discussed. We'll also
need to define our own permission code for the system to be useful.

Creating users
Start off by creating the roles we've discussed above in SilverStripe and add one user to
Member Editors. Due to inheritance, users of a sub-role are also part of the super-role, so
Content Authors should now have two participants. You did create the one in Content
Authors itself before, right?

Creating permission codes
Implement the interface by changing the class definition:

class Membercard extends DataObjectDecorator implements
PermissionProvider {

And add its required method in that class:

public function providePermissions(){
 return array(
 'MEMBER_EDITOR' => 'Create, edit and delete members',
);
}

Within the array, you're first defining the code and then providing a labeling text for
the CMS.

In general you would define the permission code within the class where it's used. However
you're not bound to it; you could use Page_Controller for example. This would change
your internal organization, keeping all codes in a single place rather than distributing them
over various classes.

Both approaches have their advantages and disadvantages, there
isn't a clear winner. Go with the one you find more "natural" and you
should be fine.

Chapter 11

[13]

Assigning permission codes
Now you can reload /admin/security/ and the Permissions tab should include a new
entry—the one we've just defined. Activate it for Member Editors.

All other boxes are unchecked. These permissions are inherited from
Content Author; you will need to check them to actually grant them
to Member Editors.

Additionally leave the Access to 'Membercard' section activated for Content Editors.
Also check that Members don't have any permissions at all—they shouldn't by default, but
check just in case.

Checking permission codes
Of the five methods, we can remove canPublish() as there isn't anything to publish
here—we're not on a regular page.

Creating an Application

[14]

The remaining four methods look like this:

public function canEdit($member = null){
 if(!$member){
 return false;
 }
 return Permission::checkMember($member, 'MEMBER_EDITOR');
}
public function canDelete($member = null){
 return $this->canEdit($member);
}
public function canCreate($member = null){
 return $this->canEdit($member);
}
public function canView($member = null){
 return $this->canEdit($member);
}

The $member parameter is optional. But as we're logged into the CMS when viewing this
page, there should be a valid user object, otherwise we're refusing the action.

Depending on the permission settings of the current user, we're returning true or false.
Admin users have all permissions by default, so there's no point in doing another check for
them. For content authors we've specifically set the MEMBER_EDITOR permission.

As we're using the same settings for all four actions, we're simply reusing canEdit() each
time. And that's it—log in with the different user accounts and see the difference. While
these settings could get a lot more complicated, we now have a good starting point for any
enhancements you may need to add to your own projects in the future.

Internal organization
Before finishing off this section, let's take a look at how SilverStripe implements users
internally, specifically the Member class. We'll need this information soon.

As you may have guessed, there is a table for the Member class, holding all the information of
the individual members. Then there's a Group table—containing the title shown in the CMS,
the hierarchy to children groups, a unique code and some more fields. It should look like the
following image in DBPlumber :

Chapter 11

[15]

We'll use the code later to find the right user group and add members to a specific code. This
is done with the Group_Members table, join table (see Chapter 4, Storing and Retrieving
Information for more on these).

Here is a schematic representation of this: Member with the ID 1 is connected to the Group
1 (an Administrator), while Member 2 is a Member Editor, and so on.

And there's also the table MemberPassword, storing the password history and how they are
encrypted—each row belonging to exactly one user object. The current user passwords are
stored in Member.Password.

Preparing to send newsletters
Everything seems to be perfect, but now that our customers are providing their contact
details, it would be pretty handy to send them newsletters.

Creating an Application

[16]

Luckily there is a module just for that purpose, http://silverstripe.org/
newsletter-module/. But there's one little problem: It only works on the default member
class. We already started thinking about different implementation methods in the previous
chapter—now it's time to switch from our own data object to a data object decorator.

Please note that this module is less powerful and scalable
than dedicated mailing applications such as http://www.
mailchimp.com and requires a properly configured server. While
it's not officially maintained by SilverStripe, it has been put together
by some of the core developers and integrates very well into the
rest of the system. Specifically you can send newsletters to existing
members and you can use SilverStripe templates to create the
general layout.

Decorating the member class
This is not too hard, but there are still some points to watch out for, so let's take a look at
the code.

Time for action – switching to a data object decorator
1.	 First we need to change our member card quite a bit—changes are highlighted:

<?php

class Membercard extends DataObjectDecorator implements
PermissionProvider {

 public function extraStatics(){
 return array(
 'db' => array(
 'Sex' => "Enum('-, male, female', '-')",
 'Birth' => 'Date',
 'Address' => 'Varchar(64)',
 'Zip' => 'Int',
 'City' => 'Varchar(32)',
 'Phone' => 'Int',
 'MustCreateCard' => 'Boolean',
),
 'searchable_fields' => array(
 'ID' => array(
 'field' => 'TextField',
 'filter' => 'PartialMatchFilter',
),

Chapter 11

[17]

 'FirstName',
 'Surname',
 'City',
 'Zip',
 'MustCreateCard',
),
 'summary_fields' => array(
 'ID',
 'FirstName',
 'Surname',
 'Email',
 'MustCreateCard',
),
);
 }

 public function updateCMSFields(&$fields){
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('FirstName', 'First name', '', 32),
 'Surname'
);
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('Surname', 'Surname', '', 32),
 'Birth'
);
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('Address', 'Address', '', 64),
 'Zip'
);
 $fields->addFieldToTab(
 'Root.Main',
 new TextField('City', 'City', '', 32),
 'Phone'
);
 $fields->addFieldToTab(
 'Root.Main',
 new EmailField('Email', 'Email', '', 64),
 'MustCreateCard'
);
 }

Creating an Application

[18]

 public function providePermissions(){
 return array(
 'MEMBER_EDITOR' => 'Create, edit and delete members',
);
 }

 public function canEdit($member = null){
 if(!$member){
 return false;
 }
 return Permission::checkMember($member, 'MEMBER_EDITOR');
 }
 public function canDelete($member = null){
 return $this->canEdit($member);
 }
 public function canCreate($member = null){
 return $this->canEdit($member);
 }

}

2.	 Next we need to register our new decorator in the configuration file:

DataObject::add_extension('Member', 'Membercard');

3.	 The MembercardAdmin class needs to change its underlying model
($managed_models) from Membercard to Member.

4.	 Additionally add the following statement to the class so that we can exclude users
which are not part of the Members group. We don't want to manage those in the
model admin:

public static $collection_controller_class = 'MembercardAdmin_
CollectionController';

5.	 In the same file add the following class, which we registered in the previous point:

class MembercardAdmin_CollectionController extends ModelAdmin_
CollectionController {

 public function getSearchQuery($searchCriteria){
 $group = DataObject::get_one('Group', "\"Code\" = 'members'");
 if($group){
 $groupId = (int)$group->ID;
 } else {
 $groupId = 0;

Chapter 11

[19]

 }
 $query = parent::getSearchQuery($searchCriteria);
 $query->from(', "Group_Members"');
 $query->where(
 '"Member"."ID" = "Group_Members"."MemberID" AND' .
 '"Group_Members"."GroupID" = ' . $groupId
);
 $query->orderby('"MustCreateCard" DESC, "Created" ASC');
 return $query;
 }

}

6.	 In MembercardPage::duplicateEmail($email) be sure to change the
following line from Membercard to Member:

$membercard = DataObject::get_one(
 'Member',
 "\"Email\" = '$SQL_email'"
);

7.	 Finally rewrite the following method:

public function sendemail($data, $form){
 if($this->duplicateEmail($data['Email'])){
 $form->addErrorMessage(
 'Email',
 'The given email address ' . $data['Email'] .
 ' already exists',
 'error'
);
 Session::set('FormInfo.Form_Form.data', $data);
 Director::redirectBack();
 return;
 } else {
 $member = new Member();
 $fields = array(
 'Sex',
 'FirstName',
 'Surname',
 'Birth',
 'Address',
 'Zip',
 'City',
 'Email',

Creating an Application

[20]

 'Phone',
);
 $form->saveInto($member, $fields);
 $member->MustCreateCard = true;
 $member->Birth = $data['Birth'];
 $member->write();

 if(!$group = DataObject::get_one(
 'Group',
 "\"Code\" = 'members'"
)){
 $group = new Group();
 $group->Code = 'members';
 $group->Title = 'Members';
 $group->write();
 }
 $group->Members()->add($member);

 Emailer_Controller::sendemail($data, $form);
 }
}

8.	 That's it—rebuild your database and flush the cache.

9.	 Now all the information of your form should be saved in the default Member table.
Try it out!

If you already have live data in your Membercard table, you will need to
migrate it manually. With the help of DB Plumber you can export the existing
table, make changes in your favorite editor and import the required data again.
Unfortunately there isn't a module that does that for you at the moment, and
the whole process is a little messy. Ideally you won't ever need to migrate
such major changes on a live project, having selected the right approach from
the start. In our example project we want to show both approaches and their
differences. As you shouldn't have any production-grade data in our test site, this
shouldn't be an issue after all.

From now on, we'll only use the Member class!

What just happened?
You already know how to add a decorator in the configuration from our custom site
configuration, so we can jump right to our decorator.

Chapter 11

[21]

The data object decorator
In order to understand the following steps, open up sapphire/security/Member.php as
that's the basis we're building upon:

�� We're using the method extraStatics() to add elements to the base class. As
a rule of thumb, public static variables in the data object are added through
this array to a decorated object. Simply put all elements into an array and make the
variable names the key of an associative sub-array.

�� Note that we don't need to add attributes such as Email as they already exist
in the base class. This is also true for the index on Email as well as the variables
$singular_name and $plural_name.

�� For the definition of specific input fields, we need to change the method to a
reference-based version—just like in the custom site configuration. The input
definitions themselves are the same as before.

�� The security-specific stuff can be left untouched. It already exists in the base class
and is simply overwritten here.

The Model Admin
You must change the managed model from Membercard to Member. However this leads
to one undesired side effect: If we search for our members in the backend, we'll now find
all users—including the admin and content editor users. To switch back to the previous
behavior, we need to add our own collection controller.

Please note that this section gets pretty technical. On the one hand,
if you don't require this feature, you can simply skip this part. On the
other hand, it really shows how flexible SilverStripe is. Even though
you might not need it right now, this kind of power could come in very
handy in the future.

First we need to register the collection's class name and then we need to implement it.
Following SilverStripe's convention, we're adding this class to the same file—just like with
a page's Model and Controller.

In our own collection, we're overwriting getSearchQuery($searchCriteria). This is
a little more complex, but don't worry—it's not too hard:

�� First we're fetching the group whose members we want to find. We're using the
unique code for doing that. As we've set up a group with the name Members, its
code is members.

Creating an Application

[22]

�� We're then fetching the group's ID—casting it to make sure it's a number.

If there's no group with the given code, we're using 0 instead, which will find no
object at all.

�� Then we're taking the original search query, including the user-defined parameters
of the searchable fields, and adding our own settings to it.

�� We've already said that groups and members are linked together through the
Group_Members table. The original query is only based on the classes given in
$managed_models. So we need to add the Group_Members table, simply attach
it to the already existing element with ->from(). Double quoting it is not strictly
necessary, but the core files generally follow this convention so it's a good idea
to stick to it.

�� Next we're adding the ->where clause. This limits the results to members of the
given group, but we won't go into the finer details of SQL here. If your knowledge
of this area is a bit rusty, please take a look at a database manual.

�� Then we're ordering the results, first showing the entries where the card hasn't
been created yet. Inside of the two resulting groups (card already created or not),
we're showing the oldest records first—using SilverStripe's automagical Created
attribute, which exists for every object.

This is helpful for finding out who has been waiting the longest for their card, but
you may want to use a different approach.

�� Finally we're returning the original query enriched with our custom settings.

The page
So far we've totally ignored one crucial aspect of our redesigned member card: How do we
actually add new users to a specific group?

We start off like before—creating a new object, adding all the attributes, and saving it. But
then we're checking if the desired group exists, using its unique code. If it doesn't already
exist, we're creating it. This isn't necessary in our case, as we've already created the group in
the CMS manually, but you may need it in the future.

Finally we need to link members and groups together. All you need is $group->Members()
->add($member); you don't need to set and write values, SilverStripe automagically does
that for you as it knows that Group and Member have a many-to-many relationship. Simply
adding one object to the other accomplishes what we want.

Chapter 11

[23]

Optimizations
Before continuing with the newsletter itself, let's take a look at two minor optimizations.
The code is already working fine, but there is one minor cleanup and one performance
enhancement we can easily add.

Hooks
Just like many other systems, SilverStripe can employ hooks. These are interfaces that allow
you to add code before or after certain events.

Data objects currently support onBeforeWrite(), onBeforeDelete(),
onAfterWrite(), and onAfterDelete(). You'll have guessed it, you can insert custom
code before or after saving or deleting an object.

This is especially handy if you're using an object in multiple places and want to inject the
same code whenever it's being used. You could call a dedicated method for that purpose, but
hooks are automatically injected so you can't forget to call them.

While this is not the case in our example, there's still a sensible use case. Right now we're
"polluting" the method for storing new members with the code for creating their group (if
required). That could be nicely done with a hook—ensuring our Members group is available
before adding members.

But before hacking away, let's also take a look at the second optimization.

Query caching
DataObject::get_one('Group', "Code = 'members'") is a pretty "cheap" query
in performance terms. However it's still redundant, except for the first time it's being called.
We've already covered partial caching in the template, but that is only applicable in the View.
Wouldn't it be clever if we had a similar construct for queries? Actually we do. Let's look at
it now.

If it's unlikely that data changes between queries (like in our example), you can cache
the query result or some other expensive operation. This is done with the Sapphire
class SS_Cache.

The cache life time you've defined for the partial caching
in the View is also used for SS_Cache. That means you
must change from development to test or live mode in the
configuration file—otherwise caching won't work!

Creating an Application

[24]

First you set up a unique cache key. The first time you access this key, you generate the result
and store it in the cache. On any subsequent request you simply retrieve the cached value.
We'll get to the code in a minute, which will make this much clearer.

Underscore methods

A similar feature is available via underscored methods. If you create a method
which starts with an underscore (public function _getValues() for
example), it will only hit the database once as the result is automatically stored.
But as this approach will soon be deprecated, we won't use it, focussing instead
on the future-proof version.

Putting it into action
Our objective is clear, but it's a little tricky to set up, so let's take a look at the code.

Time for action – optimizing
1.	 In the configuration file, add a new constant for our custom members' code:

define('MEMBERSCODE', 'members');

2.	 In the class MembercardPage_Controller remove the creation of the group
from the method sendemail() as we want to do that in our hook. We'll fetch the
group from its own method, which we'll call both from the Controller and the Model
(therefore it must be public):

$member->write();
$group = $this->getMembersGroup();
$group->Members()->add($member);

3.	 Add the method that we've just referenced in the same class:

public static function getMembersGroup(){
 $cachekey = 'members_group';
 $cache = SS_Cache::factory($cachekey);
 if(!($result = unserialize($cache->load($cachekey)))){
 $result = DataObject::get_one(
 'Group',
 "\"Code\" = '" . Convert::raw2sql(MEMBERSCODE) . "'"
);
 $cache->save(serialize($result));
 }
 return $result;
 }

Chapter 11

[25]

4.	 In the Membercard class add the following method:

public function onBeforeWrite(){
 $group = MembercardPage_Controller::getMembersGroup();
 if(!$group){
 $group = new Group();
 $group->Code = MEMBERSCODE;
 $group->Title = 'Members';
 $group->write();
 }
 parent::onBeforeWrite();
 return;
}

5.	 That's it—when adding a new user you shouldn't notice any difference.

What just happened?
In case you're wondering where the tricky part is, let's take a closer look at the code—it
definitely doesn't look like much:

�� The change in the sendemail() method: Remove the creation of a group and
simply fetch the object from a method in the same class.

�� Fetching the group is now done in the method getMembersGroup(). The
underlying database query hasn't changed. We've simply switched to the constant
MEMBERSCODE and are also escaping it, just to be on the safe side.

�� Additionally we've added some caching elements to the method
getMembersGroup():

�� First we need to set up a unique hash key: $cache = SS_Cache::
factory('unique'); In our example there is just a single object we want
to cache, so using a fixed string is fine. If your method depends on input
parameters (process a specific ID for example), you'd normally include these
parameters in the cache key to make it unique.

�� Next we're trying to load the cached element: $cache->load('unique')

�� If there is no such element, we execute our query and save its result into
our cache: $cache->save($result)

�� Finally we return the result, freshly fetched or from the cache, to the
calling method.

�� Note that you need to serialize() and unserialize() anything
that isn't a plain vanilla string. This includes our DataObject. But You'll get
an error message if you don't stick to this rule, so you can't accidentally
overlook it.

�� Using onBeforeWrite() we're making sure that our custom group exists. Before
even saving the user is just the right place for this.

Creating an Application

[26]

�� As getMembersGroup() is defined in MembercardPage_Controller and
it's a static method, we don't need to instantiate it, but can access it through
MembercardPage_Controller::getMembersGroup().

�� After fetching the group object, we're reusing the code from before these changes
to create a new one, if required.

�� Finally we should call onBeforeWrite() of the parent object. We don't want to
overwrite the hook, but only extend it.

Additionally there are some architectural issues to consider:

�� Why didn't we define getMembersGroup() in the decorator?

�� Normally you'd put this method in the Model—that's its area of operation
after all. However we're only using a decorator, which hasn't been made for
this purpose. So the Controller is the better choice in this case.

�� Why did we make getMembersGroup() static?

�� Because we only need a single instance for the whole class (the member
group is the same for all members). Additionally we don't need to
instantiate a new MembercardPage_Controller object in the
Membercard class.

�� Was it a good idea to introduce the onBeforeWrite() method?

�� That's definitely a valid point. Currently it makes things more complicated,
but if you ever want to add members inside another Controller, it will pay
off as we won't need to duplicate the logic to create the group. Decide for
yourself how extensible your solution needs to be without making it too
complex in simple situations.

In case you're not sure that the caching is really working, here's how to check. Normally
you'd simply use a URL parameter, for example ?debug_profile=1, which shows the
profiler for the current request (including our cache call). But due to the redirects it's not
working for our example, as there are multiple requests. As we just want to do a quick check,
we'll simply take a look at the cache files.

We've covered the location of SilverStripe's cache folder in Chapter 6,
Adding Some Spice with Widgets and Short Codes.

Chapter 11

[27]

Inside the cache folder there should be a file cache/zend_cache---members_
groupmembers_group. If you open it up in a text editor, you should see something like
the following screenshot. While serialized objects are hard to read, it's still obvious that our
query caching is working as it should.

Sending newsletters
Now that we've done the hard work, let's get down to the fun part. Get the latest version
of the newsletter module at http://silverstripe.org/newsletter-module/ and
install it, by rebuilding the database and flushing the cache. This will create many new tables,
resulting in quite a colorful output.

Configuration and convention
There is only a single settings in the configuration file mysite/_config.php,
you need to have and we've already added it in Chapter 5, Customizing Your Installation:
Email::setAdminEmail(EMAIL).

You should also have set up the constant EMAIL at the time. It defines the default sender
address of all e-mails (or the newsletter in our specific case), but can be overridden when
actually sending out the newsletter.

Secondly there's a convention to adding newsletter template files: It's either mysite/
templates/Email/ or themes/bar/templates/Email/—note that neither mysite/
nor themes/bar/ are hard-coded but dynamically set to the correct values. The folder
name Email/ could also be lowercased, but as both Includes/ and Layouts/ start with
an uppercase letter, we'll stick to this convention.

Creating an Application

[28]

As the newsletter template is definitely theme-specific, you should add it to the themes/
folder. You might want to create the themes/bar/templates/Email/ folder right away.

If your templates are not found, there are two possible reasons; First,
you've forgotten to flush the template cache—after creating a template
file always call ?flush=all in your browser. If that doesn't work, you
may need to move your newsletter templates from the themes/ folder
to mysite/. Due to a bug in some versions of the newsletter module,
only the latter path is sometimes picked up.

Templates
Now that we've defined our template folder, it's time to create the template itself. As
SilverStripe's newsletter module is well integrated into the rest of the system, we can
make use of the built-in template engine we already know. So let's get going!

Placeholders
The following placeholders are available:

�� $Body: The content of the e-mail, defined in the CMS.

�� $Member: Our extended member object, including all the attributes such as
$Member.FirstName, $Member.Birth, and so on.

�� $Subject: Subject of the e-mail.

�� $From: Sender of the e-mail.

�� $To: Recipient of the e-mail.

�� $UnsubscribeLink: A link to unsubscribe from the newsletter. We don't want
to spam our customers, right?

Creating a template
Before starting your design, a word of caution. The HTML support in e-mail applications
varies considerably and is often pretty bad. In particular there are two points to consider:

�� Web-based e-mail services such as GMail generally strip out the <html>, <head>,
and <body> tags. After all, they're embedding your mail into their site, so they can't
use that information. And they don't want to risk your styles colliding with their own
settings. Therefore you can't embed your CSS, but feel free to add it inline (to the
individual HTML tags). It will make you feel dirty, but at the moment there is no way
around it.

Chapter 11

[29]

We didn't do that in our previous Email.ss template. But as that was
just for internal notifications, we don't need to make it as rock-solid as the
public newsletter.

�� Desktop applications such as Microsoft Outlook only support a subset of current
HTML and CSS standards. That's the reason why many newsletters are still created
with a table-based design.

There are also people who prefer plain text e-mails. However that's a little too limited for us.
We'll compromise by creating a simple newsletter, including our background image and logo,
but without any advanced features. Instead let's focus on the content.

For the sake of modern web design we're avoiding tables. And we definitely won't use any
JavaScript—which is considered dangerous and is generally disabled by default.

Time for action – creating a newsletter template
Create the file themes/bar/templates/Email/Default.ss, add the following code to it
and don't forget to flush after finishing:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html style="margin: 0;padding: 0;">
 <head>

 </head>
 <body style="margin: 0;padding: 0;">
 <div id="background" style="background-image:
 url(http://localhost/themes/bar/images/background.jpg);
 background-color: #eee;margin: 0; padding: 10px;">
 <div id="container" style="margin: 40px;
 padding: 10px 20px; background: #fff;">
 <img id="logo"
 src=http://localhost/themes/bar/images/logo.png
 alt="Logo" style="float: left;padding: 10px;">
 <div id="body" style="float: left; padding-left: 20px;">
 <h1 style="font-size: 2.5em; color: #f7d400;
 margin: 0 0 10px 0;">
 Bar Newsletter
 </h1>
 <p style="font-size: 1em; color: #333;">
 Dear $Member.FirstName,
 </p>

Creating an Application

[30]

 $Body
 </div>
 <div id="foot" style="clear: both; text-align: center;
 margin: 0 auto; padding-top: 30px;">
 <p style="font-size: 1em;color: #333;">
 <a href="$UnsubscribeLink"
 style="color: #333;font-weight: bold;">
 Unsubscribe

 </p>
 </div>
 </div>
 </div>
 </body>
</html>

If your page isn't running on http://localhost or you want to send out newsletters
to customers, you'll need to replace the two references with your custom domain.

Inline CSS

Creating inline CSS is a real pain. However there are tools available that convert
embedded styles to inline ones, for example: http://www.mailchimp.
com/labs/inlinecss.php. That should ease the pain a bit at least.

What just happened?
This is pretty similar to our previous e-mail template. We could now move that to our
newly created Email folder. But as the file's just for internal notifications and the folder
for newsletters, we'll just leave it where it is.

The only uncommon thing about the code is that we're providing an absolute link to the
logo. You'd avoid that on websites, but in e-mails you don't have much choice. Also, in a real
newsletter you'd need a public domain name and not the one used for testing. But during
development, however, localhost should do.

In the CMS
Now that we've finished the coding, it's time in the CMS. The first time you go to the newly
created Newsletter tab, it's more or less empty:

Chapter 11

[31]

Time for action – sending the newsletter
So let's fill it up:

1.	 Click on the Create button and Add a new type. This is more or less like a page type:
You can have multiple ones for different purposes.

2.	 Then you can give your newly created newsletter a good name, select the group of
recipients (Members in our case), optionally overwrite the from address and select
our template. Don't forget to Save! The page should then look something like this:

Creating an Application

[32]

3.	 Next you can create your first draft, just like for a regular page.

4.	 Using the Preview this newsletter link you can take a look at how the final result
will look.

5.	 Using the Sent Status Report tab you can see the recipients and whether you've
already sent them this draft or not.

6.	 Once you're satisfied with your settings, you can actually Send... the newsletter.
You're given the option to send to a test address (you should definitely make use of
that before sending hundreds of mails), to everyone on the list or just the people
you've not yet sent this draft to.

7.	 A newsletter would look something like this, based on our template:

And that's it—you're ready to start your own e-mail campaign!

Chapter 11

[33]

Summary
By now you should have a good understanding of how to create features that don't focus
on pages.

In particular we've started working with Model Admin—our new tool for easily managing
data objects. With only a few lines of code we get full read and write access to a Model and
its data. Additionally, we took an in-depth look at SilverStripe's permission and role system,
which we've then integrated into our example. Finally we've made some changes to our code
to use SilverStripe's newsletter module. Everyone requesting a member card is automatically
added to our user base and the module allows us to easily send emails to all these
users—tightly integrated into the CMS and making use of SilverStripe's template engine.

By now our page is more or less finished. It's so good that we're ready to expand our
operations. This requires us to localize and internationalize our page—in short we want
to globalize it. And that's exactly what we'll do in the next and final chapter.

